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Abstract: Application of Co (III)/Al2O3 catalyst in Fischer-Tropsch synthesis (FTS) was studied 

in a wide range of synthesis gas conversions and compared with ANN Simulation results. 

Present study applies Neural Network model to predict composition of CH4, CO2 and CO of the 

Fischer–Tropsch Process of Natural Gas, while the input vector was 4-dimension vector 

including four variables from operating pressure, operating temperature, time and ratio of CO/H2  

of 70 different experiments and the output were composition of CO2, CO and CH4. The MLP 

algorithm has been applied for the training and the test set was applied to evaluate the 

performance of the system including R2, MAE, MSE and RMSE. The results exposed that the 

predicted values from the model were in good agreement with the experimental data. The paper 

indicates how Neural Network, as a promising predicting technique, would be effectively used 

for FTS. 
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INTRODUCTION 

     Fischer-Tropsch synthesis (FTS) is an 

industrially important process for the 

conversion of syngas (𝐻2/CO) derived from 

carbon sources such as coal, peat, biomass, 

and natural gas into hydrocarbons and 

oxygenates [1-3]. FTS enables the 

production of virtually sulfur and aromatic 

free transportation fuels and chemical 

feedstock from carbon sources alternative 

from crude oil. Depending on FTS feedstock 

and desired products, either Cobalt or Iron 

catalyst are applied industrially [4]. Cobalt-

based catalysts are highly active, although 

Iron may be more suitable for low-

hydrogen-content synthesis gases such as 

those derived from coal due to its promotion 

of the water-gas-shift reaction. Alumina is 

often used as a support for cobalt FTS 

catalysts due to its favorable mechanical 

properties, but an alumina-supported 

catalyst has a limited reducibility due to a 

strong interaction between the support and 

the cobalt oxides [5]. The cobalt species, 

which strongly interact with the support, are 

generally inactive in CO hydrogenation due 

to their low reducibility. This can be 

improved to a certain extent by adding metal 

or metal oxide promoters, such as Pt, 

Re,𝑍𝑟𝑂2, etc [6].  

 

     Cobalt catalysts are more active for 

Fischer-Tropsch synthesis when the 

feedstock is natural gas. Natural gas has 

high hydrogen to carbon ratio, so the water-

gas-shift is not needed for cobalt catalysts. 

Iron catalysts are preferred for lower quality 

feed stocks such as coal or biomass. Several 

reactions are required to obtain the gaseous 

reactants required for FTS catalysis. First, 

reactant gases entering a FTS reactor must 

first be desulfurized to protect the catalysts 

that are readily poisoned. The other major 

class of reactions is employed to adjust the 

H2/CO ratio: 

 

Water gas shift reaction provides a source of 

hydrogen:  

𝐻2𝑂 + 𝐶𝑂 
𝑦𝑖𝑒𝑙𝑑𝑠
      𝐻2 + 𝐶𝑂2 

 

For FTS plants that start with methane, 

another important reaction is steam 

reforming, which converts the methane into 

CO and H2: 

𝐻2𝑂 + 𝐶𝐻4  
𝑦𝑖𝑒𝑙𝑑𝑠
      𝐶𝑂 + 3𝐻2 

 

     The Fischer-Tropsch synthesis (FTS) 

synthesis is a complex reaction giving rise to 

numerous gas, liquid and solid phase 

products. Thus, modeling FTS synthesis 

phenomenologically i.e., via mass, energy 

and momentum balance equations becomes 

difficult [7,8]. Catalyst design is a tedious 

and a complex process involving many 

steps, many variables and complex 

interactions among these variables, making 

the experimental studies quite expensive and 

time consuming [9]. In recent years, the 

artificial neural network (ANN) based 

modeling approach has opened a new 

avenue for developing empirical models. 

Based on the property of artificial neural 

network, the relation between catalytic 

performances (such as the selectivity of 

reaction and the conversion of reactant) and 

the components of catalyst could be 

expressed effectively. 

 

     There are many researches in various 

fields that applied these methods for 

nonlinear system identification. The neural 

networks has been applied for modeling  the 

green house effect, simulation  N2O 

emissions from a temperate grassland 

ecosystem, and assessment of flotation 

experiments [10] . Authors in [11] applied a 

combination of fuzzy model and neural 

networks in order to identify a complex 

http://en.wikipedia.org/wiki/Desulfurization
http://en.wikipedia.org/wiki/Water_gas_shift_reaction
http://en.wikipedia.org/wiki/Steam_reforming
http://en.wikipedia.org/wiki/Steam_reforming
http://en.wikipedia.org/wiki/Steam_reforming
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dynamic system. Wai and Chen also used a 

neuro-fuzzy model for the robot manipulator 

dynamic identification [12]. Sadrzadeh 

applied a neuro-fuzzy model coupled with a 

mathematical model for the prediction of 

zinc ions separation from wastewater using 

electrodialysis [13]. Erguo li and his 

colleague used a neuro-fuzzy system in 

order to construct a quality predictive model 

for injection process [14]. Evgueniy Entchev 

and Libing Yang applied an adaptive neuro-

fuzzy interface system to predict solid oxide 

fuel cell performance in residential micro-

generation installation [15]. In addition, the 

flow rate of dirty amine of an adsorption 

column in the Khangiran gas refinery was 

predicted using neural network and genetic 

algorithm [16]. A comparison of ANN and 

neuro-fuzzy model has been done recently to 

delineate the best model for the prediction of 

parameters. Yasin Varol and his coworker 

compared ANN and neuro-fuzzy models to 

predict the flow fields and temperature 

distributions due to natural convection in a 

triangular enclosure in [17]. Singh applied 

the neuro-fuzzy and ANN models for the 

prediction of Cadmium Removal [18].  The 

structural organization of network could 

show the complexity of catalyst system, and 

the weight matrix could show the 

interactions between different components 

[19]. 

 

     Present study aims to develop an ANN 

model in order to predict the experimental 

results of Fischer–Tropsch process with Co 

(III)/Al catalyst. 

 

EXPERIMENTAL 

Catalyst Preparation 

     One-tenth mole of ammonium 

heptamolybdate (Aldrich) was dissolved in 

one liter of distilled water. The color of the 

solution was white. The catalyst support the 

aluminum oxide (400 mesh alumina) was 

added to the solution, with 11 g of alumina 

per 3 grams of the complex. The solution 

was stirred by a high speed mechanical 

stirrer for 10 hours as heptamolybdate anion 

was chemisorbed on the surface of 

aluminum oxide particles. Deposition of 

complex anion on the catalyst support is a 

very crucial step in precatalyst formation. At 

this time 0.2 mole of hexaammoniumcobalt 

(III) chloride (Aldrich) [(NH3)6Co] Cl3 

complex (burnt orange to red crystals) was 

dissolved in sufficient distilled water. Next, 

as the solution was stirring, the cobalt 

complex was added drop wise to the 

solution. The stirring continued for five 

more hours. Formation of an even pale pink 

color on the catalyst support and a colorless 

solution indicated that the following reaction 

had occurred: 

 

2[(NH3)6Co] Cl3 + [(NH4)6Mo7O24]: Al2O3 

→ 6NH4Cl + [(NH3)6Co] 2[Mo7O24]: Al2O3 

(palepink)   

 

     The precatalyst was filtered. The filtrate 

was colorless; indicating that no cobalt 

complex remained in the solution and all 

had reacted with the molybdate complex on 

the catalyst support. The precatalyst was 

washed with distilled water to remove all 

ionic co-products.  The precatalyst was 

insoluble and unreactive in water at 0-100 
o
C. The precatalyst was gently dried in an 

oven. The formation of the pink 

[(NH3)6Co]2Mo7O24 : Al2O3  precatalyst was 

demonstrated by both the developed color of 

the alumina as well as by potassium bromide 

disc infrared spectroscopy which indicated 

the presence of (NH3)6Co
3+

 ion by NH3 

spreading modes and the Mo=O units of 

Mo7O24
6-

 ion by strong Mo=O stretching 

absorption. The partial reduction of 

cobalt/molybdate precatalyst was performed 

in a quartz tube at elevated temperature 

(400-450
o
C) under a steady flow of 
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hydrogen gas at ambient pressure for 24 

hours. During reduction, the color of the 

precatalyst changed from pale pink to dark 

black. The following procedure for syngas 

catalysis was followed: The reactor was 

allowed to equilibrate at desired 

temperature; syngas with certain 

composition and pressure was injected, and 

then the stirring motor was turned on; after 

the selected time, the syngas product was 

passed through a condenser to condense out 

the water vapor. The condenser was cooled 

by a salt and ice mixture. Then the syngas 

was stored in the sample collector for gas 

chromatography analysis. There was no oily 

material observed above the water; the water 

was weighed.   

   

     The chromatograph was used to analyze 

the products. A Varian Aerograph Model 90 

P with a carbosieve B 60/80 mesh column 

and thermal conductivity detector (TCD), 

with helium as carrier gas was used for CO, 

CO2, and CH4.  

 

 
Figure1: Stainless Steel Autoclave Reactor Used for 

Syngas Evaluation 

 

Reactor System  

 

     The catalyst evaluation was carried out in 

one liter volume stainless steel autoclave 

reactor. In gas and out gas lines were also 

made of 316 stainless steel tubing.  This 

reactor was equipped with electrical heater, 

magnetic stirring motor, and magnetic 

stirrer. The magnetic stirring motor was 

driven by air flow. The temperature of the 

reactor was controlled by a thermocouple 

model F2M Scientific 240 temperature 

programmer (Hewlett Packard). The 

autoclave reactor was convenient to use at 

medium to high pressure 150 bars and at 

temperature up to 350
o
C. The autoclave 

reactor was manufactured by Autoclave 

Engineers, Inc., Erie PA. USA. The 

experimental setup is shown in the Figure 1.  

 

MODELING 

     In this study the modular artificial neural 

networks were created by using computer 

codes written in MATLAB Back-

propagation algorithm with delta rule of 

error correction was used as the learning 

algorithm to adapt the weights [20]. The 

commonest type of artificial neural network 

consists of three layers of units: a layer of 

"input" units is connected to a layer of 

"hidden" units, which is connected to a layer 

of "output" units. (See Figure 2) 

 
Figure2: Architecture of the ANN Model [20] 

 

     Figure 2 illustrates a typical full-

connected network configuration. Such an 

ANN consists of a series of layers with a 

number of nodes. As one of the most widely 

implemented neural network topologies, in 
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this paper, the multilayer perceptron (MLP) 

is employed [21,22]. The network calculates 

a set of output data from the given set of 

input data. Then the difference between thus 

calculated output data and the given output 

data is propagated backward through the 

network to adjust the weight of connections 

between the neurons. This procedure is 

iterated until the calculated output data 

become close to the given output data [23]. 

In artificial neural network (ANN) all feed-

forward neural networks (such as MLP and 

RBF) can be represented by the following 

equation: 

 







M

j

jjj xxy
1

),(),,( 

           (1) 

 

Where )(j can be chosen as any arbitrary 

non-linear function. The model is always 

linear with respect to sj but may be non-

linear with respect to the sj .  

 

Figure 2 represents a feed-forward neural 

network with a single hidden layer for a 

Multiple Input Single Output (MISO) 

system. 

 

 

 
 

 

Figure3: Architecture of the Three-layered Feed-

Forward Neural Network with a Single Hidden Layer 

for a MISO system [16] 

 

 
 

Figure 4: Learning Procedure for Training MLP 

Networks 

 

Table 1: Comparison of Experimental Data with 

Predicted Values for CH4, CO2   and CO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION   

P 

(bar) 

t 

(hr) 

T 

(oC) 

Ratio 

CO/H2 
CH4 CO2 CO 

Predi- 

cted 

CH4 

Predi- 

cated 

CO2 

Predi 

cted 

CO 

9.1 12 250 0.25 51 28 21 49.39 28.21 21.96 

20.8 12 250 0.25 72 14 14 73.02 16.36 12.35 

34.7 12 250 0.25 86 5 9 86.71 5.51 6.89 

48.6 12 250 0.25 81 7 12 80.95 7.54 13.01 

34.7 23 200 0.5 64 25 11 63.31 24.23 11.62 

34.7 23 200 0.25 80 14 6 80.34 13.85 2.58 

34.7 23 200 0.167 93 1 6 93.61 1.75 10.51 

34.7 1 150 0.25 0 4 96 0.34 4.21 96.76 

34.7 1 170 0.25 26 14 60 26.08 14.46 59.78 

34.7 1 200 0.25 64 20 16 63.37 14.82 17.26 

34.7 1 250 0.25 75 12 13 75.05 12.48 13.33 

34.7 1 300 0.25 81 7 12 80.95 6.80 12.70 

34.7 10 170 0.25 35 18 47 35.35 17.10 48.97 

34.7 20 170 0.25 46 27 27 46.65 27.09 27.44 

34.7 0.5 200 0.25 57 20 23 57.71 18.94 24.04 

34.7 1 200 0.25 64 20 26 63.37 19.82 26.26 

34.7 2 200 0.25 64 21 10 64.66 14.57 11.77 

34.7 5 200 0.25 74 16 10 73.29 15.87 11.77 

34.7 10 200 0.25 73 17 10 73.29 17.88 10.28 

34.7 15 200 0.25 81 10 8 79.08 12.14 7.49 

34.7 23 200 0.25 80 14 6 80.34 14.85 6.58 

34.7 32 200 0.25 87 5 8 87.00 5.54 8.38 

34.7 36 200 0.25 88 6 60 88.13 6.88 61.34 

34.7 1 250 0.25 75 12 13 75.05 12.48 13.33 

34.7 10 250 0.25 84 7 9 84.68 12.15 9.82 

34.7 20 250 0.25 89 5 6 89.09 5.53 6.01 

34.7 0.5 300 0.25 80 6 14 79.37 6.97 13.91 

34.7 1 300 0.25 81 7 12 80.95 6.80 12.70 

34.7 10 300 0.25 85 5 10 84.42 5.10 10.07 

34.7 20 300 0.25 89 4 7 89.06 4.02 6.63 
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RESULTS AND DISCUSSION 

     Table 1 shown data experimental data 

and predicted data for Co (III)/Al2O3 

catalyst in Fischer-Tropsch synthesis (FTS). 

This table show, the results predicted by 

Neural Networks are in a relatively good 

agreement with the experimental data. 

 

     In this research, there are 70 various data 

for the Fischer–Tropsch synthesis of Natural 

Gas with Co (III)/Al2O3 catalyst system. 

Table 2 shows neural network features for 

Fischer–Tropsch synthesis system. 

 
Table 2:  Neural Network Features 

 

Network Type Feed-forward Back 

Propagation 

Training Function Trainlm  

(Levenberg marquardt) 

Number of Layer 3 

Number of neurons in first Layer 7 

Number of neurons in Second 

Layer 

9 

Transfer function in first Layer tanhyperbolic 

Transfer function in second 

Layer 

tanhyperbolic 

Regression for training 0.991 

Regression for validation 0.996 

Regression for testing 
0.913 

 

     Figure 5, 6 and 7 shows comparison of 

the predicted value with the neural network 

and measured of the experimental data for 

CH4, CO2 and CO of the Fischer–Tropsch 

Process of Natural Gas.  

 
Figure 5: Comparison of the Predicted with the 

Neural Network and Measured of the Experimental 

Data for CH4 

 

 
Figure 6: Comparison of the Predicted with the 

Neural Network and Measured of the Experimental 

Data for CO2 

 
Figure 7: Comparison of the Predicted with the 

Neural Network and Measured of the Experimental 

Data for CO 
 

     Figure 8 shows the network which has 

seven neurons in the first hidden layer, and 

Figure 9 network which has nine neurons in 

second hidden layer, generating least error, 

so due to this minimum error, for predicting 

CH4, CO2 and CO, this network has been 

used for simulating. 

 
Figure 8: Training Error versus Number of Neurons 

in First Hidden Layer 
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Figure 9: Training Error versus Number of Neurons 

in Second Hidden Layer 

 

     Table 3 reveals Mean absolute error 

(MAE), Mean square error (MSE), Root 

Mean square error (RMSE) and Mean 

absolute percentage error(MAPE) for 

Fischer–Tropsch synthesis of Natural Gas 

with Co (III)/Al2O3 catalyst  Respectively. 

MAE, MSE and RMSE are defined as 

below: 

n

n

i
ii

yy 




 1    error(MAE)  absoluteMean  
                    (2) 

    
 

n

n

i
ii

yy 




 1

2)(

   (MSE)error   squareMean 
        (3) 

    
 

n

n

i
ii

yy 




 1

2)(

 (RMSE)error  squaremean Root 
        (4) 

    
 

Where yi is the ith actual value and
i

y  is 

the ith predicted value for the train and test 

data. 

 
Table 3: MAE, MSE, RMSE and MAPE for CH4, 

CO2 and CO which Modeled by ANN 

 

 

CONCLUSION 

 

     This paper presents an application of the 

ANN in the prediction of the Fischer-

Tropsch Synthesis's products. Fischer-

Tropsch based on the operating pressure, 

temperature of the reaction, time and ratio of 

CO/H2. From the presented results it is 

proved that ANNs can be used with 

satisfactory accuracy for the prediction of 

the composition of the Fischer-Tropsch 

products. This study helps application 

engineers determine the CO, CO2 and CH4 

concentration and conversion of them easily 

without exhaustive experiments, thus saving 

both money and time. The ANN model 

based on a back propagation algorithm was 

developed which has a two hidden layers 

and 4–7-9–3 neuron configuration. The 

performance of the ANN Prediction and 

experimental results was measured using the 

mean-squared error (MSE), Mean Absolute 

Error (MAE), and Root Mean-squared Error 

(RMSE) and the correlation Coefficients 

(R
2
) values. The developed ANN model 

showed a good regression analysis with The 

R
2
 in the range of 0.92 to 0.99. As the 

regression coefficients indicate the ANN 

approach could be considered as an 

alternative and practical technique to 

evaluate the composition of the Fischer-

Tropsch products based on the operating 

pressure, temperature of the reaction, time 

and ratio of CO/H2 with a high degree of 

accuracy. 
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