Representation of material balance for fractional crystallization of reciprocal salt pair Systems: KNO<sub>3</sub> production case study

Authors

  • Sattar Ghader Shahid Bahonar University of Kerman
  • Vahid Shadravan Shahid Bahonar University of Kerman
  • Seyed Soheil Mansouri Shahid Bahonar University of Kerman
  • Ali Farsi Shahid Bahonar University of Kerman

DOI:

https://doi.org/10.3329/cerb.v14i2.5542

Keywords:

Fractional crystallization, KNO3 production, Material balance, Reciprocal Salt Pair systems

Abstract

In this paper, determination of material balance for reciprocal salt pair systems is considered and special case of KNO3 production is solved. A scheme is presented for calculation of material balance which is based on the conservation of ions and water. Material balance requires equilibrium composition and phase diagram of solid-liquid equilibria that is calculated by extended UNIQUAC thermodynamic model.

Keywords: Fractional crystallization; KNO3 production; Material balance; Reciprocal Salt Pair systems

DOI = 10.3329/cerb.v14i2.5542

Chemical Engineering Research Bulletin 14 (2010) 103-109

Downloads

Download data is not yet available.
Abstract
142
PDF
980

References

Ng KM, Systematic separation of a multicomponent mixture of solids based on selective crystallization and dissolution, Separations Technology, 1991. 1(2):pp. 108 120. doi:10.1016/0956-9618(91)80006-L

Cisternas LA and Rudd DF, Process designs for fractional crystallization from solution, Industrial & Engineering Chemistry Research, 1993. 32(9):pp. 19932005. doi:10.1021/ie00021a022

Dey SR and Ng KM, Fractional crystallization: Design alternatives and tradeoffs, AIChE Journal, 1995. 41(11):pp. 24272438. doi:10.1002/aic.690411109

Berry DA and Ng KM, Separation of quaternary conjugate salt systems by fractional crystallization, AIChE Journal, 1996. 42(8):pp. 21622174. doi:10.1002/aic.690420808

Cisternas LA and Swaney RE, Separation System Synthesis for Fractional Crystallization from Solution Using a Network Flow Model, Industrial & Engineering Chemistry Research, 1998. 37(7):pp. 27612769. doi:10.1021/ie970335y

Cisternas LA, Optimal design of crystallization-based separation schemes, AIChE Journal, 1999. 45(7):pp. 14771487. doi:10.1002/aic.690450711

Cisternas LA, Guerrero CP and Swaney RE, Separation system synthesis of fractional crystallization processes with heat integration, Computers & Chemical Engineering, 2001. 25(4-6):pp. 595 602. doi:10.1016/S0098-1354(01)00639-1

Purdon F and Slater V, Aqueous solution and the phase diagram, E. Arnold & Co., London, 1946

Mullin JW, Crystallization, Butterworth-Heinemann, Oxford, 4th edition, 2001

Fitch B, How to Design Fractional Crystallization Processes, Industrial & Engineering Chemistry, 1970. 62(12):pp. 633. doi:10.1021/ie50732a004

Cesar MAB and Ng KM, Improving Product Recovery in Fractional Crystallization Processes: Retrofit of an Adipic Acid Plant, Industrial & Engineering Chemistry Research, 1999. 38(3):pp. 823832. doi:10.1021/ie9803671

Thomsen K, Rasmussen P and Gani R, Simulation and optimization of fractional crystallization processes, Chemical Engineering Science, 1998. 53(8):pp. 1551 1564. doi:10.1016/S0009-2509(97)00447-8

Cisternas LA, Torres MA, Godoy MJ and Swaney RE, Design of separation schemes for fractional crystallization of metathetical salts, AIChE Journal, 2003. 49(7):pp. 17311742. doi:10.1002/aic.690490712

Cisternas L, Cueto J and Swaney R, Flowsheet synthesis of fractional crystallization processes with cake washing, Computers & Chemical Engineering, 2004. 28(5):pp. 613 623, eSCAPE 13. doi:10.1016/j.compchemeng.2004.02.006

Thomsen K, Rasmussen P and Gani R, Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems, Chemical Engineering Science, 1996. 51(14):pp. 36753683. doi:10.1016/0009-2509(95)00418-1

Thomsen K and Rasmussen P, Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems, Chemical Engineering Science, 1999. 54(12):pp. 1787 1802. doi:10.1016/S0009-2509(99)00019-6

Iliuta MC, Thomsen K and Rasmussen P, Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part A. Methanol water-salt systems, Chemical Engineering Science, 2000. 55(14):pp. 2673 2686. doi:10.1016/S0009-2509(99)00534-5

Thomsen K, Aqueous Electrolytes: Model Parameters and Process Simulation, Ph.D. thesis, Technical University of Denmark, 1997

Thomsen K, Simulation and Design of Processes with ElectrolyteMixtures, Masters thesis, Technical University of Denmark, 199

Downloads

Published

2010-11-18

How to Cite

Ghader, S., Shadravan, V., Mansouri, S. S., & Farsi, A. (2010). Representation of material balance for fractional crystallization of reciprocal salt pair Systems: KNO<sub>3</sub> production case study. Chemical Engineering Research Bulletin, 14(2), 103–109. https://doi.org/10.3329/cerb.v14i2.5542

Issue

Section

Articles