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Abstract

Plastic waste pollution poses a major threat to environmental sustainability, and the
biochemical degradation of plastics through enzymatic processes offers an attractive and viable
solution to this menacing problem. However, identifying suitable plastic degrading enzymes is
a significant challenge. Traditional bioprospecting methods such as high-throughput enzyme
screening, although identified several experimentally validated enzymes, are largely
unsuccessful, time consuming, and expensive. Bioinformatics can offer a cheaper, quicker, and
more successful approach to bioprospecting of novel plastic degrading enzymes. This study
describes the development of an automated bioinformatics pipeline to identify proteins
homologous to a query protein using a range of criteria, including sequence similarity,
evolutionary relationship, and structural alignment. Using the sequences of known plastic
degrading enzymes as input, the pipeline identified four homologous proteins with a high
potential for plastic degrading functionality: Lipase, Lipase 1, and two uncharacterized
esterases, XCC2094 and ATUS5261. These proteins and the microorganisms which produce
them can be tested in vitro to confirm their plastic degrading abilities, with the aim of
identifying microorganisms capable of degrading all the seven types of plastics, or simply
providing better plastic degrading capabilities.
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1. Introduction

Plastic pollution is one of the biggest environmental problems currently facing the modern
society. The specific properties of plastics, including durability, light weight, and chemically
non-reactive, make them the perfect material for thousands of everyday uses; however, these
same properties also make them incredibly resistant to the natural process of degradation,
which can take thousands of years. In 2015, around 6.3 billion tonnes of total plastic waste
were generated, with 79% of that ending up in landfill sites. By 2050, it is predicted that 12
billion tonnes of plastic waste will be in landfill sites or in the natural environment (Geyer, et
al., 2017). Not only does the plastic waste take up a lot of space in landfill sites; if leaked into
the natural environment, it can disrupt ecosystems, harm wildlife, and contaminate the food
chain, which ultimately ends up in humans (Seltenrich, 2016).

Current methods of dealing with plastic waste come with significant limitations: only certain
plastics can be recycled, incineration releases hazardous ash and chemicals (e.g., greenhouse
gasses) into the environment, and there is only so much space available for landfill
(Gourmelon, 2015). Microorganisms capable of degrading plastics have provided a promising
and attractive alternative to plastic waste disposal. Certain microorganisms produce enzymes
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capable of breaking down plastic polymers. For example, Ideonella sakaiensis is a
microorganism that produces the enzyme PET hydrolase, capable of degrading the plastic
polyethylene terephthalate (PET) (Han, et al., 2017). Whilst this shows a great promise for
enzymatic degradation of plastics, there is currently little knowledge about the existence of
other types of plastic degrading enzymes. So far, only two of the seven main types of plastic
by production (PET and polyurethane) are known to be degraded by known, experimentally
validated plastic degrading enzymes. However, no enzyme has been identified yet to degrade
the other five types of plastics: polyethylene, polypropylene, polyphthalamide, polyvinyl
chloride, and polystyrene. In addition to this, methods of scaling-up the degradation of plastics
via microorganisms to tackle the millions of tonnes of plastics being produced each year are
currently non-existent (Ghosh, et al., 2013). For the microbial enzymatic degradation of
plastics to be a viable option, enzymes must be able to degrade all types of plastics at a suitable
rate, so that the process can be scaled up to depolymerise the millions of tonnes of plastics
being produced each year. Hence, the need for the discovery of new plastic degrading enzymes
and microorganisms is clear.

The search and evaluation of biological materials for use in valuable products and applications
is known as bioprospecting (Artuso, 2002). Traditional methods for bioprospecting of novel
enzymes are generally very time consuming, expensive, and resource-heavy, with a low success
rate. These methods include the screening of natural samples such as soil and industrial waste,
random mutagenesis to create a preferred enzyme mutant, or the sequencing of entire genomes
in attempt to find a desired enzyme gene sequence (Singh, et al., 2019). Bioinformatics, on the
other hand, has presented researchers with multiple new methods of bioprospecting for novel
enzymes (Greenbaum, et al., 2001). Tools such as sequence similarity searches can be used to
search biological databases for proteins with similar amino acid sequences. Therefore, given a
query protein with a known, biological function, it is possible to find a range of candidate
proteins that are highly likely to share a similar, if not the same, function. Not only is this
process much more efficient than conventional screening methods, but it also requires far less
resources and financial commitment whilst providing a higher success rate (Singh, et al., 2019).
Moreover, several individual bioinformatic programs can be combined to create an analysis
workflow or pipeline, which can be further automated to obtain the desired, final output from
a single user input quickly and efficiently.

The primary aim of this project is to identify novel enzymes, having a similar functionality to
the experimentally validated, known plastic degrading enzymes through developing an
automated bioinformatic workflow or pipeline. The identification of novel enzymes will help
identify their corresponding microorganisms, with the aim of finding microorganisms capable
of degrading the remaining five types of plastics. The bioinformatic pipeline consists of an
automated sequence similarity analysis workflow and an additional protein structure similarity
analysis. A sequence similarity network will be created in addition to a phylogenetic tree,
displaying a wider, more general look into the relationships of the protein families around the
query proteins. The novel, potentially plastic degrading enzymes and microorganisms
identified in this study would benefit from further in vitro analysis to confirm their plastic
degrading abilities.



2. Materials and methods

Fig. 1 shows the overall bioinformatic pipeline developed in this study and used for identifying
novel plastic degrading enzymes. As seen in Fig 1, the workflow is split into 3 parts: an
automated pipeline to analyse sequence similarity (green), the protein structure analysis (red),
and the sequence similarity network generation (orange). All parts of the workflow start with
the input of a query protein sequence. For the purpose of this study to find novel plastic
degrading enzymes and microorganisms, the query proteins used were known, experimentally
validated plastic degrading enzymes found via the search of literature.
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Figure 1: The bioinformatic pipeline developed and used in this study for identifying novel
plastic degrading enzymes.

Sequence similarity analysis pipeline

The sequence similarity analysis pipeline was automated using the coding language Python.
Python, along with Python modules such as BioPython (Cock, et al., 2009), was used to link
the command line tools BLAST, MUSCLE, and PhyML, so that the output of one programme
was the input to the subsequent programmes. First, NCBI BLAST (Coordinators, 2018) was
used to search the UniProt database by using the query protein accession number, with results
limited to 20 hits, a maximum e-value of 2.5, and a minimum length of 70% of the query
protein sequence. These parameters ensure that no significant hits will be missed, whilst not
overloading the analysis with more irrelevant protein hits. MUSCLE (Edgar, 2004) was then
used for a multiple sequence alignment (MSA) of the proteins returned by BLAST, with all
default settings being used. Finally, PhyML (Gascuel, et al., 2010) was used to run a
phylogenetic analysis from the results of the MSA using all default settings. Python and
BioPython were used for parsing of all results and file format conversion between the external
programmes, as well as for general functionality and usability of the pipeline, and the Python
module Matplotlib was used to draw the phylogenetic tree. Homologous proteins were selected
from the phylogenetic tree to undergo a further structural analysis. The accession numbers,
lengths, and alignment e-values of these proteins were taken from the BLAST results and
recorded. The e-value is a number used by BLAST to quantify the quality of a protein
alignment, and so is a good indication of sequence similarity.



Protein structure analysis

The structures of the selected proteins were obtained from the SWISS-MODEL Repository
(Bienert, et al., 2017), a database of annotated 3D protein structures, where possible. If the
protein structure was not present in the SWISS-MODEL repository, the structure was modelled
from its protein sequence using SWISS-MODEL (Waterhouse, et al., 2018). The protein
structures were loaded into PyMOL (DeLano, 2002), where they were superimposed using the
‘super’ command. The RMSD value (including all atoms) calculated by the superposition of
the proteins was recorded for each protein pair, which quantifies the difference in atom pair
positions on each protein and hence the differences in overall structure.

Generation of the sequence similarity network (SSN)

The SSN was generated using the web-tool EFI-EST (Zallot, et al., 2018) via the input of the
query protein sequence. The initial BLAST search was limited to 50 hits and was set to exclude
protein fragments, which are smaller fragments of existing, full-length protein sequences.
When finalizing the SSN, the edge cut-off alignment score was set to correspond to a protein
similarity of 60% (this was calculated using the % similarity vs alignment score graph provided
by the EFI-EST web-tool). Therefore, edges will only be drawn between proteins which are at
least 60% similar. Cytoscape (Shannon, et al., 2003) was used to view and reformat the
generated SSN. Node colours were set to correspond to the class of the proteins and edge
thickness was set to correspond to the % identity, so that the edges were thicker between
proteins with higher % identity. The nodes were organised into clusters depending on their class
and their similarity to each other.

3. Results and Discussion

Through a search of literature, four biochemically characterised and experimentally validated
plastic degrading enzymes were identified: PET hydrolase, MHETase, Polyurethanase A, and
Polyurethanase B (Danso, Chow, & Streit, 2019). These enzymes are reported to degrade the
plastics, PET and polyurethane. The amino acid sequences of these enzymes were used as input
to the developed bioinformatic analysis workflow, leading to the identification of six
homologous proteins with potential plastic degrading functions. To further investigate if these
proteins have the similar plastic degrading functions as their homologous query proteins, the
structures of these proteins were obtained and analysed against the structures of the query
proteins to which they relate to. Table 1 displays the results of this analysis. As can be seen
from Table 1, four of the six proteins identified to have a high likelihood of plastic-degrading
functionality, and hence further in vitro investigation into their function is warranted and
recommended.

To decide whether further investigation of a candidate protein is worthwhile, three main factors
were considered: the evolutionary relationship of the candidate to the query protein, the quality
of the pairwise sequence alignment of the candidate to the query protein, and the quality of the
structural alignment of the candidate to the query protein. The name of a protein can also be a
good indication of its function, and so this factor is also briefly considered during the analysis.



Table 1: List of homologous proteins returned by the analysis pipeline

. Candidate .
Query protein rotein Host Sequence RMSD Plastic
(accession P . . . alignment degradation
(accession microorganism value (A) S
number) e e-value likelihood
Lipase 1 .
(P19833) Moraxella sp. 3.58E-66 2.731 High
PET hydrolase Burkholderia
(AOAOKS8P6T7) Non-heme pyrrocinia
chloroperoxidase 0.104 19.281 Low
(P25026) Pseudomonas
pyrrocinia
Unc?:tr:gse:sed Xanthomans
XCC2094 capastries pv. 1.28E-56 4.463 High
(Q8UK62) campestries
MHETase
(AOAOKBPBET) | {jpcharacterised | Agrobacterium
fabrum
;Tsijga;gl 3.99E-47 | 5.542 High
Agrobacterium
(Q8UK62) tumefaciens
Polyurethanase . Pseudomonas .
A (Q4KBS6) Lipase (P41773) fluorescens 0 1.411 High
Lipase (P41773) | © ;ZZ?ZS"ZZZ:S 729E-115 | 3.004 High
Polyurethanase
B (Q4KBS3) Nodulation Rhizobium
protein O leguminosarum | 0.000634 16.928 Low
(P15728) bv. viciae

Evolutionary relationship

The evolutionary relationship was determined from the phylogenetic trees produced by the
pipeline, and candidate proteins were only selected for further analysis if they were deemed
homologous to the query protein (i.e., they share a common ancestor). Proteins were identified
as homologous from the phylogenetic tree analysis if they branched/ split off from the same
single node as the query protein. This shows that the query and candidate proteins are closely
related to a single common ancestor and are therefore likely to share similar properties to each
other. All six homologous proteins are displayed in Table 1, next to the query protein to which
they relate to: PET hydrolase was found to be homologous to Lipase 1 and Non-heme
chloroperoxidase, MHETase was found to be homologous to Uncharacterized esterases
XCC2094 and ATUS5261, Polyurethanase A was found to be homologous to Lipase, and
Polyurethanase B was found to be homologous to Lipase and Nodulation Protein O.

Quality of pairwise sequence alignment

The pairwise sequence alignment was performed in the pipeline using BLAST. A BLAST
pairwise sequence alignment is quantified by the e-value, which represents how many hits of
the same quality can be expected to be returned from the database by chance. Therefore, the
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lower the e-value, the more significant is the alignment and the corresponding hit. E-values
below 10 are generally considered to be biologically significant, and e-values in the range of
0-0.001 are considered to be very high-quality alignments (Wheeler & Bhagwat, 2007).

Five of the seven candidate proteins fall in the 0-0.001 range. Lipase 1, Lipase, Uncharacterized
esterase XCC2094, and Uncharacterized esterase ATU5261 all have e-values well below the
0.001 mark. This shows that the matches are high quality and are biologically significant, as it
is extremely unlikely that they have been matched by chance. Nodulation protein O matched
with Polyurethanase B at an e-value of 0.000634, which is also below the 0.001 mark. It can
therefore also be considered as a high-quality match, however not at the same certainty as the
previous 4 proteins. Non-heme chloroperoxidase matched with PET hydrolase with an e-value
of 0.104, and so whilst it is still biologically significant, it cannot be considered a high-quality
match.

Quality of structural alignment

The structure of each homologous protein was analysed by the superposition of its three-
dimensional (3D) structure against the query protein’s structure. The quality of a structural
alignment can generally be observed by eye; however, RMSD values were used in order to
quantify the alignment quality, which is especially important in cases where structural
differences were not so clear. RMSD is the root-mean-square deviation of pairs of atoms
between two 3D protein structures (Carugo & Pongor, 2001). In general, if the RMSD value
between two protein structures is less than 3 A, the alignment can be considered high quality
and the structures can be considered very similar. An RMSD of 6 A or higher suggests large
differences between the structures, and hence, they cannot be considered similar. The length of
the proteins must also be considered because the shorter the proteins are, the more significant
a higher RMSD value becomes (Reva, et al., 1998).

The highest quality alignment was obtained between the structures of Lipase to Polyurethanase
A at 1.411 A (Table 1). From both visual observations and the RMSD value, it is clear that the
structures of these two proteins are very similar. The structural alignments of Lipase to
Polyurethanase B, and Lipase 1 to PET hydrolase returned RMSD values of 3.004 A and 2.731
A, respectively (Table 1), which along with visually strong alignments confirm that the
structures are very similar. The alignments of MHETase to the uncharacterized esterases
XCC2094 and ATU5261 returned RMSD values of 4.463 A and 5.542 A, respectively. These
values are a little higher than the 3 A mark, however these proteins are very long at 576 and
553 amino acids, respectively. These proteins produced visually strong alignments, and taking
their length into consideration, it is clear that these proteins have a significant structural
similarity to MHETase. The alignments of Non-heme chloroperoxidase to PET hydrolase, and
Nodulation protein O to Polyurethanase B returned RMSD values of 19.281 A and 16.928 A,
respectively. These values are well beyond 3 A mark, and along with clear visual differences,
it is certain that the two sets of proteins are not structurally similar to each other. Since protein
function is directly dependent on the 3D structure, a similar structure indicates a similar
functionality between the compared proteins.

Protein name

Considering the three factors, it is clear that Non-heme chloroperoxidase and Nodulation
protein O are very unlikely to have plastic degrading functionality, and so it is not feasible to
take them further for an in vitro investigation. Although deemed as homologous to their
respective query proteins, these results are unsurprising. The name Non-heme



chloroperoxidase suggests that the function of the protein involves the chlorination of organic
molecules, which has very little to do with the hydrolysis of polymers. Nodulation suggests
that Nodulation protein O is involved in the nodulation process occurring in plant roots, which
again has very little to do with the hydrolysis of polymers. It is likely that these proteins were
identified as similar by the BLAST search due to sharing short sequence segments of high
similarity; however, their overall sequence is still significantly different. BLAST results such
as these can occur purely by chance and shows why further analysis is required.

The promising results for Lipase, Lipase 1, and the uncharacterized esterases XCC2094 and
ATUS5261 are also expected. Lipases and esterases are part of a class of enzymes known as
hydrolases, which catalyse the hydrolysis (splitting) of large molecules into smaller ones. This
is a good sign as plastic degradation is essentially the breakdown of long polymer chains into
monomers. For example, esterases are responsible for the splitting of ester bonds in polyester
polymers. Examples of polyester plastics are PET and polybutylene terephthalate (PBT).
Although lipases are generally thought to break down fat molecules, there is experimental
evidence suggesting a role in the degradation of plastics such as PET (Danso, Chow, & Streit,
2019).

Case study for homologous proteins of PET hydrolase

A case study for identifying the candidate proteins homologous to the PET hydrolase enzyme
is described in this section to explain the full analysis process carried out in this study for each
experimentally characterised query enzyme.

Uncharacterized protein MT2364
Uncharacterized protein RV2307C
Lipase 1
Non-heme chloroperoxidase
PET hydrolase

Quorum-quenching protein AIDA
A(j{j Uncharacterized protein PA2218
Uncharacterized protein YCJY

Putative dipeptidyl aminopeptidase C14C4.15¢c

Prolyl tripeptidyl peptidase
{ Argininosuccinate synthase
_{— Dipeptidyl peptidase 9
Dipeptidyl peptidase 8
Dipeptidyl aminopeptidase 4
_+_— S-formylglutathione hydrolase

5-nitroanthranilic acid degradation protein C
E Ethanol acetyltransferase 1
Putative carboxymethylenebutenolidase

Figure 2: A phylogenetic tree of PET hydrolase

Fig. 2 displays the phylogenetic tree of the query protein PET hydrolase (highlighted in orange)
produced by the automated sequence similarity pipeline. PET hydrolase and the green nodes,
Non-heme chloroperoxidase and Lipase 1 have all split off from the same original branch and
so, it is clear that they share the same common ancestor. The evolutionary distance (signified
by the branch length) is very small between the three proteins. Thus, it is likely that they still
share a similar original structure and function as the common ancestor because there has not
been a large amount of time spent for them to change significantly and acquire diverse
functions through evolution. The BLAST results for these two proteins were analysed in more
detail to find the e-value of the matches. As previously discussed, Lipase 1 was found to be a
high-quality alignment, whereas Non-heme chloroperoxidase was found to be a lower quality
match. The e-values provide more evidence as to whether a protein may have plastic degrading
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functionality; however, it is not conclusive on its own and so, both proteins were taken forward
to the final stage of the analysis.

Fig 3 displays the sequence similarity network (SSN) created for PET hydrolase. It displays
the relationships between protein families related to PET hydrolase. SSNs allow large-scale
visualization and analysis of sequence—function space in the context of entire protein families.
SSNs are used to visualize and analyse the evolutionary and functional relationships of
families, or clusters, or proteins. An SSN links together all the results of a BLAST search of
the query protein. Single proteins are represented by nodes and the edges (lines) joining them
represent their relatedness based on their BLAST alignment score (e-value) (Gerlt, 2016).

Mode Fill Color

B

- Gammaproteobacteria
- Actinobacteria
|:| Betaproteobacteria

Candidatus Muproteobacter

Figure 3: The SSN of PET hydrolase.

In Fig. 3, an edge value cut-off was used, so that an edge was only drawn between two proteins
if they passed a minimum similarity value of 60%. This has grouped families of proteins
together in clusters of high similarity, and therefore high potential of having the same/ similar
functions. The edge thickness has been varied depending on the similarity percentage between
the proteins; so, the thicker the edges are, the more similar are the proteins. Thus, it is clear that
PET hydrolase is most similar to the proteins with accession numbers AOATW6L588 and
Q8RR62 (each 82% similar); these proteins are a DLH domain-containing protein from the
organism Rhizobacter gummiphilus and a PBS (A) depolymerase from the organism
Acidovorax delafieldii, respectively. The homologous relationship of proteins with at least 60%
similarity is generally considered to be strong (Pearson & Sierk, 2005), and so there is a high
potential of similar functionality of all proteins belonging to the cluster.

The nodes in this SSN have been coloured depending on the class of the microorganism that
produces them. The largest class is Gammaproteobacteria, representing 26 of the 50 total nodes,
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with 11 coming from Betaproteobacteria, and 11 coming from Actinobacteria. Whilst
Gammaproteobacteria produce the majority of proteins similar to PET hydrolase, the proteins
most similar to PET hydrolase are produced by the Betaproteobacteria class. Therefore, further
research into this class of microorganism would be most beneficial, as it is most likely to result
in the discovery of a novel plastic degrading microorganism or protein. Sequence similarity
networks are not as rigorous as phylogenetic trees, and so the SSN was only created in order
to show a larger, more general protein family relationship for each query protein.

Figure 4: Superposition of 3D structures of PET hydrolase (red) and Lipase 1 (blue)

Fig 4 shows the superposition of the 3D structures of PET hydrolase (red) and Lipase 1 (blue),
each rotated 90° around the x-axis and displayed in ribbon diagrams. Whilst analysing protein
structures, the most important features to look at the are arrows and spirals, representing beta-
pleated sheets and alpha-helices, respectively, as this information constitutes the most
important part of the protein structure. A visual observation of the alignments shows that the
structure of Lipase 1 is very similar to that of PET hydrolase, with arrows and spirals of very
similar shapes are found in very similar positions. The RMSD value for this alignment
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(calculated by Pymol) was 2.731 A, confirming that the proteins are structurally and hence,
possibly functionally very similar.

Fig 5 shows the superposition of the 3D structures of PET hydrolase (red) and Non-heme
chloroperoxidase (green). The 3D structure of Non-heme chloroperoxidase (NHC) consists of
three chains, whereas PET hydrolase consists of only 1. Chains A and C of NHC are largely
irrelevant to PET hydrolase, and so were hidden to make the alignment clearer. Even after this
modification, a good alignment was not achieved, as there are clear differences in the positions
and shapes of the arrows and spirals. The RMSD value for this alignment was 19.281 A,
confirming that these two proteins do not have a similar structure and hence, are highly unlikely
to have similar functions.

Figure 5: Superposition of PET hydrolase (red) and Non-heme chloroperoxidase (green).

Thus, based on the aforementioned analyses performed using the three criteria, homology,
quality of pairwise sequence alignment, and quality of structural alignment, it can be concluded

10



that Lipase 1 is a strong candidate to be experimentally tested for plastic-degradation activities,
whereas Non-heme chloroperoxidase is not

4. Conclusions

The developed bioinformatics pipeline has successfully identified six proteins which are
homologous to known plastic degrading enzymes. After undergoing further rigorous and
systematic analysis, these six proteins were narrowed down to four candidate proteins with the
high potential of having a plastic degrading functionality. Although a rigorous and thorough
bioinformatics analysis has identified these potential plastic degrading enzymes, their
functionality must be tested experimentally by using appropriate in vitro enzyme assay
experiments to be confirmed about their predicted functions. This is because bioinformatics
analyses are only computational analyses that can predict the function of a protein sequence
with a high degree of certainty but cannot confirm the predicted functions, as the analysis
methods primarily rely on the sequence homology information provided by the experimentally
characterised proteins. However, such analyses are extremely valuable because they can
significantly expedite the discovery of novel plastic degrading enzymes with better functional
and catalytic characteristics by narrowing down the potential candidates from hundreds and
thousands of amino acid sequences present in the protein databases. An alternative use of the
developed pipeline is to apply it directly to certain metagenomes, rather than searching entire
protein databases. Most plastic-degrading microorganisms and proteins were identified by the
traditional screening of environmental samples such as soil samples taken from outside of
plastic recycling plants. Through the development of metagenome sequencing, it is now
possible to use bioinformatic tools such as this pipeline to search entire metagenome sequences
from environmental samples, rather than general protein databases. It is important that
traditional methods of bioprospecting for novel enzymes should continue. This pipeline is
capable of quickly, cheaply, and efficiently producing a list of potential candidate proteins with
high similarity to a query protein which can be taken for further experimental and functional
analysis. However, the results of the pipeline are only as good as the quality of the initial query
protein. Therefore, high-quality, experimentally validated plastic degrading enzymes are
required by the pipeline in order for it to produce high-quality results.
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