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Abstract

This study investigated the effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) on some biochemical constituents like
chlorophyll, nitrogen and protein levels in rice. A pot experiment was conducted using agricultural loamy soil amended with graded

concentrations of Cd, Pb, Zn, and Cu salts, with untreated soil serving as control. Rice leaf samples were collected after 45 days of

transplantation in in-situ conditions and analyzed for chlorophyll content. Nitrogen and protein content in rice grains were determined

after harvest at ripening. Results revealed significant (p<0.05) reductions in chlorophyll a, chlorophyll b, and total chlorophyll across
all treatments, with Cd exerting the most severe inhibitory effect, followed by Pb, Cu, and Zn. Similarly, nitrogen and protein contents
declined under metal exposure, with Cd and Pb causing the greatest reductions, while Zn and Cu showed comparatively moderate

toxicity. These findings demonstrate that heavy metal stress disrupts pigment biosynthesis, nitrogen metabolism, and protein synthesis

in rice, thereby compromising its physiological performance and nutritional quality.
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Introduction

Heavy metal contamination in agricultural soils is an
escalating concern, particularly in regions heavily reliant on
industrial ~activities, urbanization, and agrochemical
usage!?. Among these metals, lead (Pb), cadmium (Cd),
zinc (Zn), and copper (Cu) have emerged as significant
pollutants, disrupting soil health and threatening crop
productivity’>. The toxic effects of these metals often
manifest in plant physiological and biochemical processes,
including chlorophyll synthesis and protein metabolism,
which are critical for plant growth and yield*.

Rice (Oryza sativa L.) is a staple food for over half of
the world’s population, is highly sensitive to environmental
stressors, including heavy metal contaminated soils’.
Chlorophyll, essential for photosynthesis, and protein
content, critical for nutritional quality, are frequently
impaired under metal stress®’. Lead and cadmium,
categorized as non-essential and highly toxic elements, are
known to disrupt enzymatic activities and interfere with
nutrient uptake. On the other hand, zinc and copper,
although essential in trace amounts, become toxic at
elevated concentrations, causing oxidative damage and
protein denaturation in plants®°.

Studies have highlighted the detrimental impact of lead
and cadmium on chlorophyll synthesis, resulting in
chlorosis and reduced photosynthetic efficiency. Cd is

readily absorbed by rice plants, primarily through ion
transporters like OsSNRAMPS and OsIRT1, disrupting root
cell growth, photosynthesis, and enzyme activity while
inducing reactive oxygen species (ROS) production and
phytotoxicity'®. Rice mitigates Cd stress via regional
sequestration, chelation with  phytochelatins, and
L2 Similarly, Pb toxicity
impairs rice growth, reproductive development, and

antioxidative mechanisms

photosynthesis by disrupting ATP production, lipid
peroxidation, and essential nutrient uptake, but rice deploys
detoxification strategies such as Pb sequestration in
vacuoles and activation of antioxidants®. For instance, Pb
competes with essential cations such as calcium (Ca),
magnesium (Mg), and potassium (K) for uptake by root
cells, resulting in nutrient imbalances and physiological
disorders. Pb was shown to replace Mg ions in chlorophyll
molecules, directly affecting their stability and function'>.
Conversely, zinc and copper, while necessary for various
enzymatic reactions and structural proteins, exhibit dual
behavior. Excess zinc has been shown to hinder protein
metabolism by disrupting nitrogen assimilation pathways'“.
Elevated copper levels lead to lipid peroxidation and
protein degradation, exacerbating cellular damage in rice
plants'. Cu stress affects root growth, photosynthesis, and
nutrient absorption, with high Cu levels disrupting essential
metal homeostasis and chloroplast ultrastructure, reducing



yield and productivity'®. Cu-induced oxidative stress also
alters the TCA cycle, with significant down regulation of
intermediates like citric and malic acids, severely impairing
carbohydrate metabolism and rice growth!”.

Despite these findings, the synergistic or antagonistic
interactions of these metals and their individual effects on
rice remain largely unexplored. Furthermore, limited
research has specifically examined how Pb, Cd, Zn, and Cu
collectively influence chlorophyll and protein content in
rice. These gaps hinder the development of comprehensive
strategies for mitigating heavy metal toxicity in rice-based
agroecosystems. The present study is to investigate the
effects of lead, cadmium, zinc, and copper on chlorophyll,
nitrogen and protein content in rice. Specifically, the main
objectives are to:

(a) Assess the effect of individual metal exposures on
chlorophyll a, chlorophyll b, and total chlorophyll
content.

(b) Evaluate the effect of metals on the protein
content of rice grains.

Materials and Methods
Experimental Design and Soil Preparation

Four separate controlled pot experiments with agricultural
loamy soil, free from prior contamination was conducted at the
Crop field of the Department of Soil Science, University of
Chittagong, during mid-January 2022 to June 2022 to evaluate
the effects of four heavy metals such as cadmium (Cd), lead
(Pb), zinc (Zn), and copper (Cu) on the chlorophyll and protein
content of rice (Oryza sativa L.). Soil was collected from the
surface layer (0—15 cm), air-dried, and sieved through a 2 mm
mesh. Physicochemical properties of the soil, including pH
(5.32 gL, electrical conductivity (128.1 pscm™), organic
matter (1.41%), CEC (24.24 meq/100g), total nitrogen (0.5%),
total phosphorus (0.07%), Cd (0.003 mg kg™), Pb (0.01 mg kg
1, Zn (10 mg kg") and Cu (6 mg kg™) respectively, were
analyzed prior to treatment.

Five treatments consisted of a single heavy metal were
added to the soil in the form of its respective salt that is
cadmium as cadmium sulfate (3CdSOs. 8H20), lead as lead
nitrate [Pb (NOs):], zinc as zinc sulphate (ZnSOa. 7H,0), and
copper as copper sulphate (CuSOa. SH,0). Metal salts were
thoroughly mixed with the soil to obtain Cd levels of 2, 4, 6,
8 and 10 mg kg™! soil, Pb levels of 20, 40, 60, 80 and 100 mg
kg™ soil, Zn levels of 30, 60, 90, 120 and 150 mg kg™ soil and
Cu levels of 4, 8, 12, 16 and 20 mg kg soil, respectively. A
control treatment without heavy metal addition was also
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maintained in each experiment. Thus, six treatments were
arranged in a randomized complete block design (RCBD)
with three replications in each separate experiment.

Planting and Growth Conditions

Pre-germinated rice seeds (Oryza sativa L.) of variety
BRRI -28 were transplanted into 4 kg capacity plastic pots
containing the treated soils. One seedling was planted per
pot. The pots were maintained under natural daylight in a
research field. Soil moisture was maintained throughout the
growth period by regular watering with tap water.

Duration of Exposure and Sampling

Plants were grown for a period about 120 days following
transplantation'$. At harvest, the fully expanded leaves were
collected, rinsed with distilled water to remove surface
contaminants, and immediately subjected to biochemical
analyses. Leaf samples were analysed for chlorophyll content
in fresh weight basis and rice grain were collected for
analyzing nitrogen and protein content in dry weight basis.

Chlorophyll Analysis

Chlorophyll a, chlorophyll b, and total chlorophyll
(Chl) contents were determined following the method of
Armon" an additional modified by Lichtenthaler and
Wellburn®. Fresh leaf tissue (1 g) was homogenized in
100% acetone and centrifuged at 200 rpm for 1 hour and
made volume up to 50 ml in the volumetric flask. The
absorbance of the supernatant was measured at 645 nm and
662 nm using a UV—Vis spectrophotometer (Shimadzu UV-
1800). Chlorophyll contents were calculated using
following equations?! and expressed as mg g! fresh weight.
11.75A4652 — 2.35464s

Chi—a= W x 1000
1861445 — 396445,
Chl—b = W x 1000

Total Chl = (Chla + Chl b)
Where, A = absorbance at specific wavelength, V = final
volume of chlorophyll extract in 100% acetone, W = fresh
weight of leaf tissue, Chl-a = chlorophyll a, Chl-b =
chlorophyll b and Total Chl = total chlorophyll.

Total Nitrogen and Protein Analysis

Total nitrogen content was determined using the Kjeldahl
digestion method”. Oven-dried 0.5 g ground rice grain was
digested with concentrated sulphuric acid in the presence of a
digestion catalyst (KoSOs: CuSO4.5H,O: Se = 100:10:1) and
volume up to 100 ml in volumetric flask. The digested samples
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were distilled and titrated with dilute acid to quantify nitrogen
content, expressed as a percentage of dry weight.

% Toral Nitrogen (1) = S e

where, T = Sample titration value (mL) of standard H,SO4;
B = Blank titration value (mL)
of standard H,SOs; f = strength of HoSO4, W = Weight of
rice grain in gram.

Protein content was estimated by multiplying total
nitrogen values by a conventional factor of 6.25, assuming
that nitrogen constitutes approximately 16% of plant
protein. Percent of protein content was calculated with the

following formula on a dry weight basis®.
Protein % = % Nitrogen % 6.25 (conversion factor)

Statistical Analysis

The significance of differences among the means of the
treatments were evaluated by one way Analysis of
Variance (ANOVA) followed by Duncan’s Multiple
Range Test (DMRT) at the significance level of 5%. The
statistical analyses were done using Excel, and SPSS

version 20. All data were carefully examined for
accuracy and consistency prior to statistical analysis.

Results and Discussion
Chlorophyll content

Figure 1 illustrates the impact of cadmium (Cd), lead
(Pb), zinc (Zn), and copper (Cu) exposure on chlorophyll a,
chlorophyll b, and total chlorophyll content in rice leaves,
expressed inmg g!. Across all treatments, a general decline
in chlorophyll content was observed in comparison to the
control. Chlorophyll a showed the most pronounced
reduction under Cd exposure, followed by Pb, Cu, and Zn.
Chlorophyll b also declined under all heavy metal
treatments, with Cd again having the most substantial
inhibitory effect. Total chlorophyll content mirrored the
trends observed for individual pigments, demonstrating the
cumulative stress effect of heavy metals, particularly Cd
and Pb. The reductions were statistically significant
(p<0.05), indicating that heavy metal exposure, especially
Cd, adversely affects chlorophyll biosynthesis in rice.
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Figure 1. Effect of heavy metals (Cd, Pb, Zn and Cu) exposure on chlo-a, chlo-b and total chlo (mg g!) content in rice.
Bars having same letter(s) are not significantly different among treatments by DMRT (p<0.05). [chlo-a = chlorophyll a,
chlo-b = chlorophyll b, total chlo = total chlorophyll].



The observed decrease in chlorophyll content under
heavy metal stress disruption in
photosynthetic efficiency and pigment biosynthesis.

Cadmium and lead, known for their phytotoxicity, likely

suggests a

interfere with chloroplast structure and enzymatic
24, 25. The
significant decline in chlorophyll a under Cd exposure
might be attributed to the
protochlorophyllide reductase or enhanced chlorophyll
degradation pathways?. These findings are consistent
with earlier studies by Rai et al.” who reported that Cd
and Pb reduce chlorophyll content in various cereal

activity responsible for pigment formation

inhibition  of

crops, impairing photosynthesis and growth. The

relatively lower reduction observed under Zn and Cu
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could be due to their dual role as both essential
micronutrients and toxicants at higher concentrations?’.

Total Nitrogen Content

The total nitrogen content (%) in rice plants
subjected to Cd, Pb, Zn, and Cu exposure (Figure 2). A
consistent reduction in nitrogen content was recorded
The
maximum decline in nitrogen content was observed

across all treatments relative to the control.

under Cd treatment, followed closely by Pb. Zn and Cu
also caused a measurable decline, but the reductions
were less severe than those caused by Cd and Pb. All
statistically ~significant (p<0.05),
suggesting a systemic disruption of nitrogen assimilation

reductions were

or translocation under heavy metal stress.
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Figure 2. Effect of heavy metals (Cd, Pb, Zn & Cu) exposure on total nitrogen (%) content in rice. Bars having same

letter(s) are not significantly different among treatments by DMRT (p<0.05).

Nitrogen is a critical macronutrient involved in
amino acid and protein synthesis. The marked reduction
in nitrogen content, especially under Cd and Pb stress,
could be linked to impaired nitrate reductase activity and
root uptake mechanisms?® 2. Cadmium is particularly
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notorious for causing root membrane damage, thereby
limiting the plant's ability to absorb nutrients efficiently.

The results are in alignment with the work of Lebrazi
et al.*® who demonstrated that Cd toxicity limits nitrogen
metabolism in rice by down regulating key enzymes and
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transporters. Similarly, Pb inhibit

assimilation enzymes and displace essential cations,

can nitrogen

exacerbating nutritional deficiencies?!. Zinc and copper,
despite being essential for plant metabolism, become
toxic at elevated levels and can disrupt nitrogen transport

and metabolism3% 33

. However, the relatively lower
decline observed under Zn and Cu treatments might
reflect a threshold effect,

pronounced due to their functional roles in enzymatic

where toxicity is less

reactions.
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The percentage of protein content in rice exposed to
various heavy metals data is presented in figure 3. A
downward trend in protein content was evident for all
treatments compared to the control. The most substantial
decrease was associated with Cd exposure, followed by
Pb, Cu, and Zn. The protein content declined
significantly (p<0.05), with Cd and Pb showing the most
adverse effects.
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Figure 3. Effect of heavy metals (Cd, Pb, Zn and Cu) exposure on protein (%) content in rice.
Bars having same letter(s) are not significantly different among treatments by DMRT (p<0.05).

Protein synthesis is directly influenced by nitrogen
availability and metabolic function. The decline in
protein content under heavy metal exposure reflects a
combination of impaired nitrogen uptake, altered gene
expression, and disrupted cellular machinery. Cadmium
and lead are known to inhibit ribosomal function and

amino acid biosynthesis,
34,31

thereby affecting protein
assembly
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The parallel decline in nitrogen and protein contents
suggests that heavy metal toxicity compromises the
nitrogen-to-protein conversion pathway. The result is
supported by findings from Hasan et al>* who observed
reduced protein levels in rice and wheat under similar metal
stress conditions. The relatively lesser reduction in protein
under Zn and Cu treatments may reflect the metals’ role in
maintaining enzymatic functions at lower concentrations,
although chronic exposure remains detrimental®® .



Overall, the decline in protein content under heavy metal
stress raises serious concerns for nutritional quality and
food security in contaminated areas.

Conclusion

This research highlights the detrimental effects of
Cd, Pb, Zn, and Cu on key biochemical parameters in
rice, including chlorophyll content, nitrogen
concentration, and protein levels. Cadmium emerged as
the most toxic metal, significantly impairing pigment
biosynthesis and nitrogen metabolism. Lead followed a
similar trend, while Zn and Cu exhibited moderate
toxicity. These findings underscore the importance of
monitoring heavy metal contamination in agricultural
soils, particularly in rice-growing regions exposed to
industrial and urban runoff. From a physiological and
agronomic perspective, such contamination can
compromise crop quality and yield, with downstream
effects on human health and food systems. Therefore, it
is recommended to evaluate long-term field responses to

metal contamination under varied agronomic practices.
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