
DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 1, JANUARY 2010

19

ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION
OF CRACK PROPAGATION THROUGH

PARALLEL COMPUTATION

Md. Rajibul Islam1 and Norma Alias2
1Faculty of Information Science and Technology, Multimedia University, Malaysia

2Ibnu Sina Institute, Faculty of Science, University Technology Malaysia, Johor
E-mail: md.rajibul.islam05@mmu.edu.my, norma@ibnusina.utm.my

Abstract: In this study, a new approach of the
application of finite element method is presented,
to solve the initial stages of crack propagation
problems which mean the deformation due to the
stress and strain of a material. In early
applications of the finite element method for the
analysis of crack propagation, the crack-tip
motion was modelled by discontinuous jumps. We
have implemented one dimensional finite element
discretization to solve crack propagation
problem. The parallel algorithm with parallel
computer system has been used in order to
perform the computational analysis of finite
element for this study. Parallel Virtual Machine
(PVM) has been used as a message passing
software with Parallel Computer System. The
result of this study will be useful in the
mathematics and engineering fields. In
mathematics, the research will widen the
application of finite elements in solving the
engineering science problems.

Keywords: Finite Element Method (FEM), Crack
Propagation, Parallel computation, Parallel
Virtual Machine (PVM).

1 Introduction
Finite element method is a powerful
technique that originally develops for
structural analysis. Propagation problems
refer to time-dependent, transient and
unsteady-state phenomena. The method is
applied to evaluate the stress intensity factors
for plates of arbitrary shape using
conventional finite elements [1].
PVM is a software package that permits
heterogeneous collection of Linux
environment as open space software hooked
together by a network to be used as a single
distributed parallel processor.
The most common applications are found in
mechanics – solid mechanics, fluid
mechanics, heat transfer and thermal stress
analysis, couple problems, etc. A modern

definition of the finite element method might
state that it is simply a numerical procedure
for finding approximate solution to
boundary-value problems. In other words, it
is to find a best-fit solution. Here, the value
of the residual is minimized in some way to
obtain the best-fit solution. In view of the fact
that the method is approximation, so to
archive such approximation there are four
common methods to be used; collocation,
subdomain integration, Galerkin, and least
squares [2].
The basic concept of finite element method
can be track through a series of papers which
was published by Turner et al., Clough,
Martin and Topp in 1956 [1, 3]. With these
papers, the development of finite element in
engineering applications began [3, 4]. The
method was soon recognized as a general
method of solution for partial differential
equation.
We have divided this paper in the following
way: In section 2, steps of the proposed finite
element application is presented to solve one
dimension crack propagation problem along
with the C programming source code, parallel
computation and performance measurement
equations are explained in section 3, in
section 4, a mathematical model of initial
stages of crack propagation and discretization
is constructed. Section 5 and 6 will describe
numerical analysis and results and parallel
performance estimation respectively and by
the end of this paper, the conclusion has been
presented.

2 Our Proposed Approach
We have implemented the following steps of
finite element applications in order to solve
the one dimension crack propagation
problem,

ISLAM ET AL: ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF CRACK PROPAGATION THROUGH …

20

Step (i): discretization of the domain,
Step (ii): selection of an interpolation or
shape function,
Step (iii): derivation of element characteristic
matrices and vectors,
Step (iv): assemblage of element
characteristic matrices and vectors,
Step (v) solution of the system equations.

Below is the part of C programming source
code that was developed to analyze one
dimension crack propagation problem.
__

printf("Load Vector, F:\n");
fprintf(OutFile,"Load Vector, F:\n");
for(element=1;element<=e;element++)
{
 printf("f[%d]=\n",element);
 fprintf(OutFile,"f[%d]=\n",element);
 for(i=1;i<=e+1;i++)
 {
 if(i==element || i==element+1)

 f[element][i]=(Area[element]*l*0.2836)/2;
 else
 f[element][i]=0;
 printf("%15lf\n",f[element][i]);
 fprintf(OutFile,"%15lf\n",f[element][i]);
 }
 printf("\n");
 fprintf(OutFile,"\n");
}
printf("Global Load Vector, F:\n");
fprintf(OutFile,"Global Load Vector, F:\n");
for(i=1;i<=e+1;i++)
{
 for(element=1;element<=e;element++)
 {
 if(i==e+1 && element==e)
 GLV[i] = f[element][i]+F;
 }
}
for(i=1;i<=e+1;i++)
{
 printf("%20lf\n",GLV[i]);
 fprintf(OutFile,"%20lf\n",GLV[i]);
}
printf("\n");
fprintf(OutFile,"\n");
printf("Displacement, u:\n");
fprintf(OutFile,"Displacement, u:\n");
for(i=1;i<=e+1;i++)
 u[i][0]=0;
double j1=TOLERANCE,dif[30];
for(itr=1;(itr <= TIMESTEP)&&(j1>=TOLERANCE);itr++)
{
 for(element=1;element<=e+1;element++)
 {
 {
 for(j=1;j<=element-1;j++)
 sum1 += GSM[element][j]*u[j][itr];
 for(j=element+1;j<=e+1;j++)
 sum2 += GSM[element][j]*u[j][itr-1];
 u[element][itr] = (GLV[element]-sum1-
sum2)/GSM[element][element];
 }
 {
 for(j=1;j<=element-1;j++)
 sum1 += GSM[element][j]*u[j][itr];
 for(j=element+1;j<=e+1;j++)

 sum2 += GSM[element][j]*u[j][itr-1];
 u[element][itr] = (GLV[element]-sum1-
sum2)/GSM[element][element];
 }
 printf("u[%d][%d]=
%.15lf\n",element,itr,u[element][itr]);
 fprintf(OutFile,"u[%d][%d]=
%.15lf\n",element,itr,u[element][itr]);
 }
 printf("\n");
 fprintf(OutFile,"\n");
 j1=0.0;
 for(element=1;element<=e+1;element++)
 {
 dif[element]=fabs(u[element][itr]-
u[element][itr-1]);
 j1=(dif[element]>j1) ? dif[element] : j1;
 }
}
printf("Overall extension is %.15lf\n\n",u[element-1][itr-1]);
fprintf(OutFile,"Overall extension is %.15lf\n\n",u[element-
1][itr-1]);
for(element=1;element<=e;element++)
{
 Delu[element]=u[element+1][itr-1]-u[element][itr-
1];
 strain=Delu[element]/l;
 stress[element]=E*strain;
}
printf("The axial stress in each element is:\n");
fprintf(OutFile,"The axial stress in each element is:\n");
for(element=1;element<=e;element++)
{
 printf("stress[%d]= %15.15lf\n",element,stress[element]);
 fprintf(OutFile,"stress[%d]=
%15.15lf\n",element,stress[element]);
}
printf("\n");
fprintf(OutFile,"\n");
gettimeofday(&tv2,(struct timezone*)0);
dt1 = tv2.tv_sec-tv1.tv_sec;
dt2 = tv2.tv_usec-tv1.tv_usec;
if(dt2<0)
{
 dt--;
 dt2 = 1000000 +dt2;
}
printf("time=%d06%d\n"dt1,dt2);
fclose(OutFile);
__

3 Parallel Computation
Parallel Computing becomes an essential and
vital problem solving standard for several
computationally intensive applications, such
as image processing, robotics, fracture
mechanics [10]. The Parallel Virtual Machine
(PVM) is a software tool for parallel
networking of computers. It is designed to
allow a network of heterogeneous machines
to be used as a single distributed parallel
processor. Such approach has proven to be a
viable and cost-effective technology for
parallel computing in many application
domains [5]. The PVM system has gained
widespread acceptance in the high-
performance computing community.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 1, JANUARY 2010

21

High-performance computing (HPC) is a
term that arose after the term
“supercomputer”. The term HPC refers to the

use of parallel computers – that is computing
systems comprised of multiple processors

Fig. 1 Flow chart of parallel algorithm

Yes

No

No

Yes

No

Yes

Start Master

Input of initial data; assign
memory space

Gred the ids

Spawn the slave tasks

Run the problem 4 times for ?

Iteration
Sufficient?

Send the initial data to the slaves and
include the neighbour info for exchanging

boundary data

No. of
processor >1

Waiting for the results

Receive result, update solution

Iteration
Sufficient?

Produce output

End Master

Yes

No

No

Yes

No

Yes

Start Slave

Setting the parameters of
computational process

Receive data from master

Copy the initial data into working array

Iteration <
of data ?

Perform the calculation

Timestep -
1 > i

Do calculation for the iteration

num_data<j

Send result to master

End Slave

Communication between processors

Calculate the left and right

ISLAM ET AL: ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF CRACK PROPAGATION THROUGH …

22

linked together in a single system with
commercially available interconnects [13].
The requirements of engineers and scientist
for ever more powerful digital computers
have been the main driving force in the
development of digital computers [6].
Parallel Algorithm
According to [5], the performance of a
parallel algorithm is assessed primarily by the
following three factors:
i. Computing time (Time Complexity).
ii. Number of processors required (Processor

Complexity).
iii. Model of the machine required.

There are some frequently used terms in
parallel computing [5]:
1. Speedup: Wall-clock time of best serial
execution divided by wall-clock time of
parallel execution, also known as parallel
speedup.

Speedup =
p

s
T
T

 (1)

where
sT = execution time for a single processor

pT = execution time using p parallel
processors
2. Efficiency: The efficiency is a measure of
hardware utilization, equal to the ratio of
speedup achieved on p processors to p itself.

Efficiency =
p

Speedup
 (2)

3. Effectiveness: The effectiveness is used to
calculate the speedup and the efficiency. It
also can be said that the efficiency of a
parallel program divided by the execution
time.

Effectiveness =
ppT

Speedup
 (3)

4. Temporal performance: Temporal perfor-
mance is a parameter to measure the
performance of a parallel algorithm.

Temporal =
pT

1
 (4)

5. Scalability: A parallel system’s ability to
gain proportionate increase in parallel
speedup with the addition of more
processors.

4 The Discretization of Crack
 Propagation
Fracture mechanics is used to investigate the
failure of brittle materials, which is to study
material behaviour and design against brittle
failure [7]. These failures arise as a
consequence of unstable crack propagation
from a pre-existing defect owing to material
processing or fabrication [8].
The engineering study of fracture mechanics
does not emphasize how a crack is initiated;
the goal is to develop methods of predicting
how a crack propagates, that is, how it
lengthens [9]. The study of fracture therefore
focuses primarily on the lengthening of a
crack, and the resultant growth in surface
area, as the load on the body is increased [12].

Fig. 2 One-Dimension Rod Element

Consider an element of length l of a bar
subjected to an axial force as shown in figure
2. We know that the extension of the element
is given by:

AE
dxFud = ⇒

AE
F

dx
ud
= (5)

where ud is the extension of an element of
length dx due to force, F. E and A are the
Young’s Modulus and constant cross
sectional area of the element respectively. If

F is constant over the element then 0=
dx
dF

.

Hence equation (5) becomes

02

2
=

dx
udAE (6)

Equation (6) is the governing equation for an
axial element. Integrating over the length l,
we get

1C
dx
udAE = (7)

21 CxCuAE += (8)

l

T T node i node j (e)

ui uj

if̂ jf̂x

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 1, JANUARY 2010

23

Now, at ii uuxx == , and jj uuxx == , ,
we have

21 CxCuAE ii += (9)

22 CxCuAE jj += (10)
from which

()
() ()ij

ij

ij uu
l

AE
xx

uuAE
C −=

−

−
=1

iuAEC =2

Therefore, () iuAExuu
l

AEuAE +−= 12

or () iij u
l
xuuu +−= (11)

After differentiation, we find from equation
(11)

()
l

uu
dx
du ij −= (12)

At ixx = →

()
l

uu
AE

dx
duAEf ij

x
i

i

−
−=⎟

⎠
⎞

⎜
⎝
⎛−=

At jxx = →

()
l

uu
AE

dx
duAEf ij

x
j

j

−
=⎟

⎠
⎞

⎜
⎝
⎛=

The above can be expressed in matrix
notation as

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

j

i

j

i

u
u

l
AE

f
f

11
11

Finally, take

[] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

11
11

l
AEK

Then
[]{ } { }FuK = (13)

where
[]K = element stiffness matrix

)(

1

e
E

e

k∑
=

=

{ }F = vector force

)(

1

e
E

e
F∑

=
=

{ }u = constantly incremental displacement
for border condition

To obtain{ }u , we may use one of the
numerical method, i.e. Gauss-Seidel Method
[14].

ii

l
jij

n

ij

l
jij

n

ji
j

i

l
i K

uKuKf

u

∑∑
+=

+

≠
=

+

−−

=
1

)1(

1
)1(;

∀ i = 1, 2, … n (14)
After obtained the displacement,)(eu we

can proceed to find the axial stress in each
element, e.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

=

l
uu

E

E

ij

x
e

x εσ)(

 (15)

The problem is solved by using the method
discussed in section 2 and by using C
programming and PVM as the platforms.

5 Numerical Analysis and Result
Based on the algorithm in Fig. 1, the
solutions obtained are illustrated graphically
with three different e to shown the stress-
strain relationship between each node as well
as each element.
According to Table 1, the relation between
force applied to the element and stress
generated can be concluded as: The axial
stress is directly proportional to strain while
strain is related to nodal displacement; such
that:
and communication and

computational ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

l
uu ij

xε

Table 1 Three different of discretization of the rod
element for the analysis of one-dimensional continuum

Length
(m)

Width
(m)

Force
(N)

No. of
element

(e)
10 2 100 5
10 2 100 10
10 2 100 15

Time execution for each different number of
discretization of the domain increasing as the
number of element discretises increase.
Computational complexity is determined
through the algorithm develop and shown as
below:
Complexity = (number of operators used) ×

xx εασ

ISLAM ET AL: ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF CRACK PROPAGATION THROUGH …

24

(number of iteration, k)
= 31 × k
= 31k

Table 2 Time Execution for 1 CPU of three types
number of element, e.

Number of
Element, E

Time Execution for 1
CPU (sec.)

5 6.17E-03
10 6.32E-03
15 6.43E-03

6 Parallel Performance analysis
Based on the numerical results obtained, the
performance measurements of parallel
computing were analyzed from the aspect of
time execution, speedup, efficiency,
effectiveness and temporal performance. Fig.
2 is the time execution in second for 6 types
of number of processors – 1, 4, 8, 12, 16 and
20. According to the graph, the time executes
decreasing while the number of processors
increases. This is because the task from the
master had been divided into small parts to
the slave. The more processors used means
the more slaves the master can to divide the
task. Thus as the number of processors
increase, the time execute decrease.
Speedup: One way of judging the
performance of an algorithm is to measure its
speedup. This is because we are usually
concerned to know about the performance
gains from the algorithm over a similar
algorithm run on a serial computer. Table 3
shows the speedup from the different number
of processors.

From Fig. 4, we can see that as the number of
processor increase, the speedup of the
parallel algorithm also increasing. The results
can be concluded as valid because in reality,
when the more processors we used, the faster
the calculation will performance.

Efficiency: The efficiency is used to judge
how effective a parallel algorithm is. By
formula (2), efficiency is measure through
the fraction of time that a processor spends
performing useful work. Table 4 shows the
efficiency of the algorithm developed.

From the graph in Fig. 5 it shows that, while
the number of processors increase, the
efficiency of the parallel algorithm
decreasing and all of them are less than 1 due
to the communications involved within the
processors. Following the equation (2), the
speedup is increasing while the numbers of
processors are also increase, thus the
efficiency of the parallel algorithm
decreasing.
Effectiveness: The efficiency of a parallel
program divided by the execution time is
known as the effectiveness of the parallel
algorithm. Table 5 shows the effectiveness of
the parallel algorithm developed.

Fig. 6 shows the effectiveness of the parallel
algorithm versus the number of processors.
As the number of processors increase, the
effectiveness are also increase but in this
study, the effectiveness of the parallel
algorithm decreasing when the number of
processors exceeds twelve. This might be due
to the communication problems within the
processors.

Table 3 Time Execution and speedup of different
number of processors

No. of
Processors

Time Execution
(sec.)

Speedup

1 60.660402 1
4 18.065915 3.357726525
8 10.629508 5.706793014

12 6.819884 8.894638384
16 6.524762 9.296952441
20 6.271058 9.673073029

Table 4 Efficiency of the parallel algorithm
No. of

Processors
Time Execution

(sec.)
Efficiency

1 60.660402 1
4 18.065915 0.839431631
8 10.629508 0.713349127

12 6.819884 0.741219865
16 6.524762 0.581059528
20 6.271058 0.483653651

Table 5 Effectiveness of the parallel algorithm.
No. of

Processors
Time

Execution
(sec.)

Effectiveness

1 60.660402 0.016485219
4 18.065915 0.046464939
8 10.629508 0.067110268
12 6.819884 0.108685113
16 6.524762 0.089054517
20 6.271058 0.077124729

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 1, JANUARY 2010

25

0

2

4

6

8

10

12

0 5 10 15 20 25

No. of processor(s)

Sp
ee

du
p

Speedup
Fig. 4 Analysis of speedup for the different number of processors.

0.0E+00
1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01

0 5 10 15 20 25

No. of processor(s)

Ti
m

e
ex

er
cu

tio
n

(s
ec

.)

Time Execution (sec.)
Fig. 3 Time Execution (sec.) for different number of processors.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

No. of processor(s)

Ef
fic

ie
nc

y

Efficiency

Fig. 5 Analysis of efficiency for the different number of processors.

ISLAM ET AL: ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF CRACK PROPAGATION THROUGH …

26

Temporal Performance: Temporal
performance also used to analysis the
performance of the parallel algorithm. Table
6 shows the temporal performance of the
parallel algorithm developed in this research.

Fig. 7 shows that, the temporal performance
are increasing while the number of processors
increases. This is because of the decreasing
of the execution time as the number of
processors used increasing.
After running the parallel computing based
on 1, 4, 8, 12, 16 and 20 numbers of CPU,

the parallel performance analyzed from the
aspect of time execution, speedup, efficiency,
effectiveness and temporal performance can
be conclude as achieving the target of using
parallel algorithm – to solve much larger
problems at minimal time and by the same
time increase the performance of the
calculation.
The results have proven that parallel
algorithm is better than the sequential
algorithm or in other words, we can say that
it is better than using a single processor. The
computation of FEM is well suite in parallel
algorithm because it involve in large scale of
matrices and load vectors.
In this study, a C-programme as well as the
PVM code has constructed to solve the
problem. From the analysis of the
performance of PVM, it has shown that the
parallel computation using multi-processor is
more efficient than the sequential
computation using one processor in one PC
while the parallel algorithm is used in order

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25

No. of processor(s)

Ef
fe

ct
iv

en
es

s

Effectiveness

Fig. 6 Analysis of effectiveness for the different number of processors.

Table 6 Temporal performance of the parallel
computer

No. of
Processors

Time Execution
(sec.)

Temporal
Performance

1 60.660402 0.016485219
4 18.065915 0.055352856
8 10.629508 0.094077732

12 6.819884 0.14663006
16 6.524762 0.153262295
20 6.271058 0.159462725

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 5 10 15 20 25

No. of processor(s)

Te
m

po
ra

l P
er

fo
rm

an
ce

Temporal Performance
Fig. 7 Analysis of temporal performance for six different numbers of processors.

DAFFODIL INTERNATIONAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY, VOLUME 5, ISSUE 1, JANUARY 2010

27

to analyze the performance of the algorithm
developed.

7 Conclusion
The finite element method is broadly used to
analyze most engineering science problems
[11]. In this study, we concern with the
application of the finite element method to
the calculation of the elastic stress and strain
distribution in loaded bodies to solve the
deformation problem. In this study, we have
implemented the analysis of one-dimensional
continuum in sequential algorithm using C-
programming as well as the parallel
algorithm using PVM. The solutions that will
be obtained from parallel algorithm are
expected to be more accurate and better than
the result from sequential algorithm. Based
on the numerical results and parallel
performance evaluations, it’s confirmed that
parallel algorithm is an efficient solution of
crack propagation prediction. The
relationship between the applied force to the
individual elements and the nodal
displacement involved setting up the
elements’ stiffness matrices. Finite element
methods are an alternative approach instead
of finite difference discretization in terms of
accurate prediction of crack propagation
problem.

Acknowledgment
The authors acknowledge the Research
Management Center, Institute of Ibnu Sina,
UTM and Ministry of Science, Technology
and Innovation Malaysia for the financial
support (Grant no: 75019).

References
[1] Cheung, Y. K., Lo, S. H. and Leung, A. Y. T.,

Finite Element Implementation, Germany:
Blackwell Science, Ltd. 1996.

[2] Chandrupatla, T. R. and Belegundu, A. D.,
Introduction To Finite Elements in Engineering,
(2nd edition), New Jersey: Prentice Hall, Inc.
1997.

[3] Gutpa, K. K. and Meek, J. L., Finite Element
Multidisciplinary Analysis. (2nd edition),
Virginia: AIAA, Inc. 2003.

[4] Rao, S. S., Applied Numerical Methods for
Engineers and Scientists, New Jersey: Pearson
Education International, 2002.

[5] Xavier, C. and Iyengar, S. S., Introduction To
Parallel Algorithms, Canada: John Wiley &
Sons, Inc. 1998.

[6] Gray, J. P. and Naghdy, F., Parallel Computing:
Technology and Practice, Australia: IOS Press.
1994.

[7] Bannantine, J.A., Comer, J.J. and Handrock,
J.L., Fundamentals of Metal Fatigue Analysis,
USA: Prentice-Hall, Inc. 1990.

[8] Henry, H., Levine, H., “Dynamic Instabilities of
Fracture Under Biaxial Strain Using a Phase
Field Model”, Phys. Rev. Lett., Vol. 93, No. 10,
2004, pp. 105504.

[9] Bui, H. D., Fracture Mechanics: Inverse
Problems and Solutions, The Netherlands:
Springer, 2006.

[10] Alias, N., Sahimi, M.S., and Abdullah, A.R.,
“The AGEB Algorithm for Solving the Heat
Equation in Two Space Dimensions and Its
Parallelization on a Distributed Memory
Machine”, Proceedings of the 10th European
PVM/ MPI User’s Group Meeting: Recent
Advances In Parallel Virtual Machine and
Message Passing Interface, Vol. 7, 2003, pp.
214–221.

[11] Lewis, R. W., Nithiarasu, P. and Seetharamu, K.
N., Fundamentals of the Finite Element Method
for Heat and Fluid Flow, England: John Wiley
& Sons Ltd., 2004.

[12] Stanley, P. ed., Fracture Mechanics in
Engineering Practice, London: Applied Science
Publishers Ltd., 1977.

[13] Wilkinson, B. and Allen, M., Parallel
Programming Techniques and Applications
Using Networked Workstations and Parallel
Computers, Prentice Hall, Upper Saddle River,
New Jersey, 1999.

[14] Norma Alias, Md. Rajibul Islam and Nur
Syazana Rosly, “A Dynamic PDE Solver for
Breasts’ Cancerous Cell Visualization on
Distributed Parallel Computing Systems”, in
Proc. of The 8th International Conference on
Advances in Computer Science and Engineering
(ACSE 2009), Phuket, Thailand, 2009, pp. 138-
143.

Md. Rajibul Islam received
his Bachelor of Computer
Applications (BCA) degree
from the Indira Gandhi
National Open University,
New Delhi, India, in 2004
and just completed his M.Sc

degree in Information Technology from
Multimedia University, Melaka, Malaysia.
Currently he is working as a Research Assistant at
Ibnu Sina Institute for Fundamental Science
Studies, in Science Faculty of University
Technology Malaysia, Johor. His research
interests include High Performance Computing
(HPC), Numerical Computation, Pattern
Recognition, Image Processing, Computer Vision,
and Artificial Intelligence.

ISLAM ET AL: ONE-DIMENSIONAL FINITE ELEMENT DISCRETIZATION OF CRACK PROPAGATION THROUGH …

28

Dr. Norma Alias obtained
her PhD (Industrial
Computing: Parallel
Computing) from National
University of Malaysia in
2004 and her M.Sc degree
in Industrial Computing
and BSc in Mathematics

from the same University in 1997 and 1991
respectively. Currently, she is working as a
Senior lecturer at the Mathematics Department in
Faculty of Science, University Technology
Malaysia (UTM) and the Researcher Head of
High Performance Computing Group as well in
Ibnu Sina Institute for Fundamental Science
Studies, UTM. She has published over 100
papers in several referred International journals,
conferences, workshops, lecture notes and book
chapters. She is a reviewer of several International
Journals with high impact factor and association
with some International conferences and
workshops organized by Ibnu Sina Institute. Her
research interests include Industrial Computing,
Numerical Computation, and Scientific
Computing & High Performance Computing on
Distributed Parallel Computer Systems.

