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Abstract: Natural convection flow from a porous 
vertical plate in presence of heat generation have 
been presented here.  The governing  boundary 
layer equations are first transformed into a non 
dimensional form and the resulting non linear 
system of partial differential equations are then 
solved numerically using finite difference method 
together with Keller-Box scheme. The numerical 
results of the surface shear stress in terms of skin 
friction coefficient and the rate of heat transfer in 
terms of local Nusselt number, velocity as well as 
temperature profiles are shown graphically and 
tabular form for a selection of parameters set of 
consisting of heat generation parameter Q, 
Prandtl number Pr. 
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1 Introduction 
The study of heat generation or absorption in 
moving fluids is important in problems 
dealing with chemical reactions and those 
concerned with dissociating fluids. Possible 
heat generation effects may alter the 
temperature distribution; consequently the 
particle deposition rate in nuclear reactors, 
electronic chips and semiconductor wafers.     
Free convection in presence of heat 
generation has been drawn forth not only for 
its fundamental aspects but also for its 
significance in the contexts of space 
technology and processes involving high 
temperature. In the presence of heat 
generation, natural convection boundary 
layer flow from a porous vertical plate of a 
steady two dimensional viscous 
incompressible fluid has been investigated. In 
this analysis consideration had been given to 
grey gases. Over the work it is assumed that 
the surface temperature of the porous vertical 
plate Tw, is constant, whereTw>T∞. Here T∞ is 

the ambient temperature of the fluid, T is the 
temperature of the fluid in the boundary 
layer, g is the acceleration due to gravity, the 
fluid is assumed to be a grey emitting and 
absorbing, but non scattering medium. In the 
present work variations in fluid properties are 
limited only to those density variations which 
affect the buoyancy terms. 
Vajravelu and Hadjinicolaou [1] studied the 
heat transfer in a viscous fluid over a 
stretching sheet with viscous dissipation and 
internal heat generation. In their study, they 
considered that the volumetric rate of heat 
generation ]/[ 3mWq m should be: 
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where 0Q is the heat generation constant. The 
above relation explained is valid as an 
approximation of the state of some 
exothermic process and having T∞ as the 
onset temperature. When the inlet 
temperature is not less than T∞ they used 
Q0(T- T∞). Merkin [2] studied free convection 
with blowing and suction.  Lin and Yu [3] 
studied free convection on a horizontal plate 
with blowing and suction. Hossain et al [4] 
studied the effect of radiation on free 
convection flow with variable viscosity from 
a porous vertical plate.  Hossain et al [5] 
studied flow of viscous incompressible fluid 
with temperature dependent viscosity and 
thermal conductivity past a permeable wedge 
with variable heat flux. Hossain and Takhar 
[6] studied radiation effect on mixed 
convection along a vertical plate with 
uniform surface temperature. Molla et al. [7] 
studied natural convection flow along a 
vertical wavy surface with uniform surface 
temperature in presence of heat 
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generation/absorption. Akhter [8] studied the 
effect of radiations on free convection flow 
on sphere with isothermal surface and 
uniform heat flux. Ali [9] studied the effect 
of radiation on free convection flow on 
sphere with heat generation. Makinde and 
Moitsheki: [10] studied on non-perturbative 
techniques for thermal radiation effect on 
natural convection past a vertical plate 
embedded in a saturated porous medium. 
Makinde and Ogulu [11] studied the effect of 
thermal radiation on the heat and mass 
transfer flow of a variable viscosity fluid past 
a vertical porous plate permeated by a 
transverse magnetic field. Ogulu and 
Makinde [12] studied unsteady 
hydromagnetic free convection flow of a 
dissipative and radiating fluid past a vertical 
plate with constant heat flux.  Hossain et al. 
[13] studied the effect of radiation on free 
convection flow from a porous vertical plate. 
They [13] analyzed a full numerical solution 
and found, an increase in Radiation 
parameter Rd causes to thin the boundary 
layer and an increase in surface temperature 
parameter causes to thicken the boundary 
layer. The presence of suction ensures that its 
ultimate fate if vertically increased is a layer 
of constant thickness.  
None of the aforementioned studies, 
considered the heat generation effects on 
laminar boundary layer flow of the fluids 
along porous plate without radiation heat 
loss.  
The present study deals with natural 
convection flow from a porous vertical plate 
in presence of heat generation. The results 
will be obtained for different values of 
relevant physical parameters and will be 
shown in graphs as well as in tables. 
The governing partial differential equations 
are reduced to locally non-similar partial 
differential forms by adopting some 
appropriate transformations. The transformed 
boundary layer equations are solved 
numerically using implicit finite difference 
scheme together with the Keller box 
technique [14]. Here, we have focused our 
attention on the evolution of the surface shear 
stress in terms of local skin friction and the 
rate of heat transfer in terms of local Nusselt 
number, velocity profiles as well as 
temperature profiles for selected values of 
parameters consisting of heat generation 
parameter Q, Prandtl number Pr. In order to 

check the accuracy of our numerical results 
the present results are compared with [13]. 
 
2  Formulation of the problem   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have investigated natural convection flow 
from a porous plate in presence of heat 
generation. The fluid is assumed to be a grey, 
emitting and absorbing. Over the work it is 
assumed that the surface temperature of the 
porous vertical plate, Tw, is constant, where 
Tw > T. The physical configuration considered 
is as shown in Fig. 1. 
The conservation equations for the flow 
characterized with steady, laminar and two 
dimensional boundary layers; under the usual 
Boussinesq approximation, the continuity, 
momentum and energy equations can be 
written as: 
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where ρ is the density, k is the thermal 
conductivity, β is the coefficient of thermal 
expansion, ν is the reference kinematic 
viscosity ν = µ/ρ , µ  is the viscosity of the 
fluid, Cp is the specific heat due to constant 
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pressure. In order to reduce the complexity of 
the problem  
Now introduce the following non-
dimensional variables: 

Vyη
νξ

= ,
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Where, θ is the non-dimensional temperature 
function, θw is the surface temperature 
parameter. 
Substituting (5), (6) into Equations (1), (2) 
and (3) leads to the following non-
dimensional equations 
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Where Pr=νCp/k is the Prandtl number and 
Q=ν2Q0/V2ρCp is the heat generation 
parameter. The boundary conditions (4) 
become 

0, 1 at 0
0, 0 as

f
f

θ η
θ η
′= = = =

′ = = →∞

0, f
                  (9) 

The solution of equations (6), (8) enable us to 
calculate the nondimensional velocity 
components u,⎯v from the following 
expressions  

2
2

1

( , )
( )

(3 )

w

u u f
Vg T T

fv f f
V

ν ξ ξ η
β

ν ξ ξ η ξ
ξ

∞

−

′= =
−

∂′= = + − +
∂

            (10) 

In practical applications, the physical 
quantities of principle interest are the 
shearing stress τw and the rate of heat transfer 
in terms of the skin-friction coefficients Cfx  
and Nusselt number Nux respectively, which 
can be written as 
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qc is the conduction heat flux. 
Using the Equations (6) and the boundary 
condition (9) into (11) and (12), we get 
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                                (13) 

The values of the velocity and temperature 
distribution are calculated respectively from 
the following relations: 

( )2 ( , ),      ,u f x yξ ξ η θ θ′= =              (14) 
 
3 Method of Solution 
Solutions of the local non similar partial 
differential equation (7) to (8) subjected to 
the boundary condition (9) are obtained by 
using implicite finite difference method with 
Keller-Box Scheme, which has been 
described in details by Cebeci.[15] 
The solution methodology of equations (7) 
and (8) with the boundary condition given in 
eqn. (9) for the entire ξ values based on 
Keller – box scheme is proposed here. The 
scheme specifically incorporated a nodal 
distribution favoring the vicinity of the plate, 
enabling accuracy to be maintained in this 
region of steep gradient. In detail equations 
(7) and (8) are solved as a set of five 
simultaneous equations. 
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To apply the aforementioned method, we first 
convert Equations (15)-(16) into the 
following system of first order equations with 
dependent variables ),( ηξu , ),( ηξv ,  

),( ηξp and ),( ηξg  as 
f′′ = u, u′= v,   g =θ, and θ′= p                   (17) 
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where  
p1 =3, p2 = 2,  p4 = Q                           (20) 
 
The corresponding boundary conditions are 

( ,0) 0, ( ,0) 0 and ( ,0) 0
( , ) 0, ( , ) 0

f u g
u g
ξ ξ ξ
ξ ξ

= = =
∞ = ∞ =

(21) 
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We now consider the net rectangle on the 
(ξ,η) plane and denote the net point by  

0 10 1, 2,, ,j j jh j Jη η η −= = + = …
0 10 1,2,, ,n n

nk n Nξ ξ ξ −= = + = …  
 
We approximate the quantities (f, u, v, p) at 
the points ),( j

n ηξ  of the net by 

),,,( n
j

n
j

n
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n
j pvuf  which we call net function.  
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Now we write the difference equations that 
are to approximate Equations (17) - (18) by 
considering one mesh rectangle for the mid 
point ),(
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Similarly Equations (18) – (19) are 
approximate by centering about the midpoint 
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The corresponding boundary conditions (21) 
become  

0 0 00 0 1, ,n n nf u g= = =  

0 0,n n
J Ju g= =     

which just express the requirement for the 
boundary conditions to remain during the 
iteration process. Now we will convert the 
momentum and energy equations into system 
of linear Equations and together with the 
boundary conditions can be written in matrix 
or vector form, where the coefficient matrix 
has a block tri-diagonal structure. The whole 
procedure, namely reduction to first order 
followed by central difference 
approximations, Newton’s quasi-linearization 
method and the block Thomas algorithm, is 
well known as the Keller- box method. 
 
4 Results and Discussions 
In this exertion natural convection flow on a 
porous vertical plate in presence of heat 
generation is investigated. Numerical values 
of local rate of heat transfer are calculated in 
terms of Nusselt number Nux for the surface 
of the porous vertical plate from lower 
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stagnation point to upper stagnation point, for 
different values of the aforementioned 
parameters and these are shown in tabular 
form in Table:1 and Table:2 and graphically 
in Fiqure 2-5. The effect for different values 
of heat generation parameter Q on local skin 
friction coefficient Cfx and the local Nusselt 
number Nux, as well as velocity and 
temperature profiles are displayed in Fig.2 
and 5.These figures are to display how the 
profiles vary in ξ , the selected streetwise co-
ordinate.  
Figures 2(a)-2(b) display results for the 
velocity and temperature profiles, for 
different values of heat generation parameter 
Q with Prandtl number Pr = 1.0 surface 
temperature parameter θw = 1.1. It has been 
seen from Figures 2(a) and 2(b) that as the 
heat generation parameter Q increases, the 
velocity and the temperature profiles 
increase. The changes of velocity profiles in 
the η direction reveals the typical velocity 
profile for natural convection boundary layer 
flow, i.e., the velocity is zero at the boundary 
wall then the velocity increases to the peak 
value as η increases and finally the velocity 
approaches to zero (the asymptotic value).  
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Fig. 2 (a) Velocity and (b) temperature profiles 
for different values of heat generation parameter 
Q with others fixed parameters. 

The maximum values of velocity are 
recorded to be 0.29587 at η = 0.88811, 
0.27770 at η = 0.83530, 0.26129 at η = 
0.88811, 0.24586 at η = 0.88811 and 0.23163 
at η = 0.88811    for Q = 00.0, 5.0, 10.0, 15.0  
and 20.0 respectively, the maximum values 
of velocity are recorded to be  0.29587. Here, 
it is observed that at η = 0.88811, the 
velocity increases by 27.73% as the heat 
generation parameter Q changes from 20.0 to 
0.0. The changes of temperature profiles in 
the η direction also shows the typical 
temperature profile for natural convection 
boundary layer flow that is the value of 
temperature profile is 1.0 (one) at the 
boundary wall then the temperature profile 
decreases gradually along η direction for the 
values Q = 0.0, 5.0, 10.0, 15.0. But for Q = 
20.0 the temperature profile increases (at η = 
0.04001 temperature is 1.00106 for Q = 20.0) 
and again it decreases gradually along η 
direction to the asymptotic value. 
However, in Figures 3(a)-3(b), it is shown 
that when the Prandtl number Pr increases 
with θw = 1.1 and Q = 1.0, both the velocity 
and temperature profiles decrease. 
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Fig. 3 (a) Velocity and (b) temperature profiles for 
different values of prandtl number Pr with others fixed 
parameters. 
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Figures 4(a)-4(b) show that skin friction 
coefficient Cfx increases and heat transfer 
coefficient Nux decrease respectively for 
increasing values of heat generation 
parameter Q. in case of Prandtl number Pr = 
1.0 and surface temperature parameter θw = 
1.1. The values of skin friction coefficient Cfx  
and Nusselt number Nux are recorded to be 
0.16000, 0.26292, 0.14698, 0.14119, 0.13585 
and 0.26292, 1.10101, 1.86750, 2.57037, 
3.15576 for Q =20.0, 15.0, 10.0, 05.0 and 
00.0 respectively which occur at the same 
point ξ = 0.21. Here, it is observed that at ξ = 
0.21, the skin friction increases by 17.75% 
and Nusselt number Nux  decreases by 
91.66% as the heat generation parameter Q 
changes from 00.0 to 20.0. 
The variation of the local skin friction 
coefficient Cfx and local rate of heat transfer 
Nux for different values of Prandtl number Pr 
for θw = 1.1 and Q = 1.0 are shown in Figures 
5(a)-5(b). We can observe from these figures 
that as the Prandtl number Pr increases, the 
skin friction coefficient decreases and rate of 
heat transfer increase. 
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Fig. 4 (a) Skin friction and (b) rate of heat transfer for 
different values of heat generation   parameter Q with 
others fixed parameters. 
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Fig. 5 (a) Skin friction and (b) rate of heat transfer for 
different values of Prandtl number   parameter Pr with 
others fixed parameters. 
 
Table 1 Skin friction coefficient and rate of heat 
transfer against x for different values of heat 
generation parameter Q with other controlling 
parameters Pr = 1.0, Rd = 0.1, θw =1.1. 

Q=00.00 Q=05.00 ξ  
Cfx Nux Cfx Nux 

0.01 
0.03 
0.05 
0.07 
0.09 
0.11 
0.13 
0.15 
0.17 
0.19 
0.21 

0.00641 
0.01926 
0.03214 
0.04505 
0.05797 
0.07092 
0.08388 
0.09686 
0.10985 
0.12284 
0.13585 

57.25668 
19.42423 
11.85422   
8.61061 
6.80953 
5.66423 
4.87206 
4.29179 
3.84865 
3.49935 
3.21706 

0.00641 
0.01928 
0.03222 
0.04524 
0.05839 
0.07167 
0.08513 
0.09878 
0.11265 
0.12678 
0.14119 

57.212612 
19.32271 
11.69491   
8.39311 
6.53330 
5.32863 
4.47636 
3.83509 
3.32983 
2.91729 
2.57037 

Q=15.00 Q=20.00 ξ  
Cfx Nux Cfx Nux 

0.01 
0.03 
0.05 
0.07 
0.09 
0.11 
0.13 
0.15 
0.17 
0.19 
0.21 

0.00642 
0.01931 
0.03328 
0.04564 
0.05924 
0.07323 
0.08773 
0.10285 
0.11871 
0.13545 
0.15324 

57.12444
19.11912 
11.37400 
7.95203 
  5.96815 
  4.63432 
  3.64650 
  2.86178  
2.20351 
  1.62638 
  1.10101 

0.00642
0.01933 
0.03244
0.04585 
0.05967
0.07404   
0.08910   
0.10501 
0.12198 
0.14022
0.16000 

57.08034 
19.01700 
11.21239  
7.72837 
  5.67901 
4.27504  
3.21108 
  2.34253 
  1.59093 
  0.90842 
  0.26292 

 
Numerical results of skin friction and rate of 
heat transfer are calculated from equation 
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(13) for the surface of the porous plate from 
lower stagnation point to upper stagnation 
point at ξ = 0.01 to  ξ =0.21. Numerical 
values of Cfx  and Nux are depicted in Table 1. 
Here in this table the values of skin friction 
coefficient Cfx and Nusselt number Nux are 
recorded to be 0.16000, 0.26292, 0.14698, 
0.14119, 0.13585 and 0.26292, 1.10101, 
1.86750, 2.57037, 3.15576 for Q =20.0, 15.0, 
10.0, 05.0 and 00.0 respectively which occur 
at the same point ξ = 0.21. Here, it is 
observed that at ξ = 0.21, the skin friction 
increases by 17.75% and Nusselt number Nu 
decreases by 91.66% as the heat generation 
parameter Q changes from 20.0 to 00.0.  
 
5 Comparison of the Results 
In order to verify the accuracy of the present 
work, the values of Nusselt number and skin 
friction for Q = 0, Rd = 0.05.Pr = 1.0 and 
various surface temperature wθ =1.1, wθ =2.5 
at different position ofξ are compared with 
Hossain et al. [13] as presented in Table 2. 
The results are found to be in excellent 
agreement. 
 

Table 2 Comparison of the present paper with 
Hossain et al. [13] 

θw= 1.1 
Hossain Hossain ξ 

Cfx Cfx Cfx Cfx 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

6.4627 
3.4928 
2.0229 
1.5439 
1.3247 
1.1995 
1.0574 

0.06535 
0.13138 
0.26408 
0.39519 
0.52166 
0.64024 
0.88192 

6.48306 
3.50282 
2.03018 
1.55522 
1.32959 
1.20347 
1.06109 

  θw = 2.5 
Hossain Hossain ξ 

Cfx Cfx Cfx Cfx 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

8.0844 
4.2858 
2.4003 
1.7863 
1.4860 
1.1098 
1.1098 

0.07078 
0.14313 
0.29120 
0.44145 
0.59080 
0.73590 
1.05693 

8.10360 
4.29682 
2.40669 
1.78912 
1.48991 
1.31822 
1.11262 

  
6 Conclusion 
Natural convection flow on a porous vertical 
plate in presence of heat generation has been 
investigated for different values of relevant 
physical parameters including Prandtl 
number Pr, and heat generation parameter Q.  

• Significant effects of heat generation 
parameter Q on velocity and temperature 
profiles as well as on skin friction and 
the rate of heat transfer have been found 
in this investigation but the effect of heat 
generation parameter Q on rate of heat 
transfer is more significant. An increase 
in the values of heat generation 
parameter Q leads to increase both the 
velocity and the temperature profiles, the 
local skin friction coefficient Cfx 
increases at different position of η  and 
the local rate of heat transfer Nux 
decreases at different position of ξ for ξ 
< 0.1 and decrease asymptotically when 
Pr =1.0. 

• The increase in Prandtl number Pr leads 
to decrease in all the velocity profile, the 
temperature profile, the local skin 
friction coefficient Cfx but the local rate 
of heat transfer Nux increase.  

 
 
Nomenclatures 
Q   Heat generation parameter  
Cfx   Local skin friction coefficient 
Cp    Specific heat at constant pressure 

f     Dimensionless stream function 
u     Dimensionless velocity component along 
       x-axis                                                                                     
v     Dimensionless velocity component along 
        y-axis 
g     Acceleration due to gravity 

k     Thermal conductivity 

Nux   Local Nusselt number 
T     Temperature of the fluid in the boundary  
       layer 
qw      Heat flux at the surface 
qc      Conduction heat flux. 
Pr   Prandtl number 
x    Axis in the direction along the surface  
y    Axis in the direction normal to the surface  
T∞    Temperature of the ambient fluid 
Tw    Temperature at the surface 
V    Wall suction velocity 
 
Greek symbols 
θw     Surface temperature parameter 
β    Coefficient of thermal expansion 
θ    Dimensionless temperature function 
ξ    Similarity variable 
η    Similarity variable 
ν    Kinematic viscosity 
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ρ    Density of the fluid 
µ    Viscosity of the fluid  
Τ    Coefficient of skin friction 
τw      Shearing stress 
ψ    Non-dimensional stream function 
 
Subscripts 
w    Wall conditions  
∞    Ambient temperature 
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