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ABSTRACT 

Feature selection methods are used as a preliminary step in different areas of machine learning. Feature selection 

usually involves ranking the features or extracting a subset of features from the original dataset. Among various 

types of feature selection methods, distance-based methods are popular for their simplicity and better accuracy. 

Moreover, they can capture the interaction among the features for a particular application. However, it is difficult to 

decide the appropriate feature subset for better accuracy from the ranked feature set. To solve this problem, in this 

paper we propose Relief based Feature Subset Selection (RFSS), a method to capture more interactive and relevant 

feature subset for obtaining better accuracy. Experimental result on 16 benchmark datasets demonstrates that the 

proposed method performs better in comparison to the state-of-the-art methods.  
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1. Introduction 

Feature selection is necessary to extract important 

information from different areas including medical, cyber 

security, image processing, bioinformatics, agriculture and 

natural language processing. For example, to identify the 

nurse care activity from different sensor data which helps to 

identify the activity and performance evaluation of nurse 

[1]. The data produced in these fields often contain noisy 

and irrelevant features. Feature selection methods extract 

informative and relevant features [2, 3, 4] from a set of 

features to correctly predict the output which reduces the 

number of dimensions of the original data [5, 6]. 

Feature selection methods can be broadly categorized into 

two types: feature ranking methods and feature subset 

selection methods. In the ranking method, features are 

ranked based on some criteria that weights the importance 

of the features in an ordered way. The most important 

features are in the top ranked positions of the ranked feature 

list and the irrelevant features are in lower ranks as they are 

less important for the output prediction. From the ranked 

list p features are chosen as selected subset S. Popular 

feature ranking methods include minimal redundancy 

maximal relevance (MRMR) [7], joint mutual information 

(JMI) [8], relax MRMR [9], Relief F [10], MAPrelief [11], 

SURF [12] and MultiSURF [13], etc. In feature subset 

selection, the main goal is to find an optimal subset of 

features which gives better accuracy for a particular 

application. It can be classified into three categories: 

embedded, wrapper and filter [14]. Embedded methods are 

dependent on a classifier and implemented by optimizing an 

objective function during the training of the classifier [15]. 

The wrapper methods are also classifier-dependent, but 

their computational costs are relatively high. Filter 

methods, the most popular among these three, are classfier-

independent and are built on the intrinsic properties of the 

features [16]. Our proposed method uses the filter approach. 

mDSM [17], DSbM [18], IGIS+ [19], BIRS [20] and DSM 

[21] are some of the feature subset selection methods. 

Various search mechanisms are used to find the optimal 

feature subset. Among them, forward search and backward 

elimination [22] are widely used. Forward search decides to 

add a feature to the list when the addition improves the 

value of a certain criterion. Backward elimination starts off 

with all the features, and then eliminates them one by one 

based on some criteria. At some point the elimination stops, 

and the remaining features are the selected subset of 

features. In this work, we use greedy forward search. For 

the feature selection criteria to select the features, there are 

various approaches for feature selection, such as 

Correlation [23, 24], Mutual Information (MI) [7, 17, 25, 

26], distance-based [10, 11, 12, 27, 28, 29] methods. At the 

very beginning of feature selection method, correlation 

coefficient was used, but it can’t remove the similar type of 

features and relation among features for the classification. 

Distance-based methods are easier to use and take less time 

to run than the other methods. 

Relief [27] is the first algorithm of distance-based method 

where the feature is weighted according to the class 

separability of a feature in terms of a target instance. From 

the target instance, the nearest sameclass data instances are 

called ’hits’ and different-class instances are called 

’misses’. Relief takes 1 nearest neighbor (NN) from the 

target instance and measures how much one class data 

differs from another by taking the distance difference value 

from miss to hit. In Relief, the feature weight value is 

between -1 to 1. Negative weight means the feature creates 

noise and it is irrelevant to output prediction. More positive 

weight means more relevant information about the output is 

provided by the feature. Relief works in binary 

classification problems and it uses only one nearest 

neighbor in distance calculation. But taking a decision 

using only one NN creates noise in decision making in the 

existence of noisy features in a dataset [10]. ReliefA [10] 

introduced k nearest neighbour to handle the noisy data. 

However, in the case of missing data in a dataset, neither 

Relief nor ReliefA could weight the features. The next 

versions of Relief(BD) [10] are able to complete the 

missing data. Among them, ReliefD is best as it uses 

probabilistic estimation to fill the incomplete data. But the 
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above variation of the Relief algorithm can not handle the 

multiclass data. The next versions of Relief (E-F) method 

are designed to transform binary class solution to a 

multiclass problem solution. ReliefF [10] uses k (user-

defined parameter) nearest neighbours for feature 

weighting. To fulfill the condition of k ReliefF needs to 

take instances that are far from the target instance. As it is a 

problem to fix the value of k, Spatially Uniform ReliefF 

(SURF) [30] uses a distance threshold value for selecting 

the next k nearest hit and miss instances for the target 

instance. To capture better interaction than the SURF 

method, SURF* [31] takes both the near and far instances 

from the target instance in feature weighting to detect two-

way interactions. Here near instances are the ones whose 

distances are less than the distance threshold value, and the 

other ones are far instances. But as all instances are used in 

weighting, computation time is high in SURF*. 

MultiSURF* [32] discards the boundary region instances 

with a standard deviation (±σ) along with threshold distance 

and takes only the outside and inside instances. By 

discarding the instances MultiSURF* reduces the 

computation time of SURF*. However, when far weights 

are calculated then the original feature weight gets affected. 

In MultiSURF [13], the far weighting is avoided and near 

weighting is calculated for feature weighting. The methods 

discussed so far assume that the datasets are balanced 

(equal distribution of classes in the dataset). In the case of 

highly imbalanced data, these methods can output an 

erronous ranking of the features. To solve this problem, 

MAPrelief [11] was designed to handle imbalance and 

multiclass data. There still remains a problem of outliers in 

the dataset, which can mislead the weighting mechanism of 

the above methods. To handle outlier data, Iterative relief 

[29] is introduced. Apart from the above-discussed 

methods, there is another approach for feature weighting 

named EBFS [28] which calculates neighbors like Relief 

but rather than calculating distance among hit and miss it 

measures how much entropy is between the hit-miss feature 

value and the target feature value. However, Relief is 

feature subset selection method and the later version of 

Relief based methods give weights and serialize the features 

based on their performance [33].  

Most of the existing feature selection methods are ranking 

methods, so it is difficult to decide up to which number of 

features should be taken for better classification. To get an 

optimal subset, a feature selection method is necessary. We 

modify the original ReliefF algorithm in combined weight 

calculation and propose a new feature selection method 

RFSS where the feature is selected when the combined 

feature set gives more margin difference among classes. 

Our proposed method is effective compared to the existing 

method because we take the features that increase the class 

separability of the data instances otherwise, we discard. As 

existing method are ranking method and combined feature 

performance is not measured, a feature will be in the ranked 

set where we remove the feature. In this work we 

experimented by applying this method only on the ReliefF 

algorithm. But it can also be applied in all the variations of 

the Relief algorithms discussed above.   

Literature Review 

The Relief algorithm considers feature dependency when it 

searches for the nearest hit and miss neighbour from the 

target instance. The same class neighbour from the target 

instance is called the hit instance and a different class is 

called the miss instance. For an attribute fc, Relief is an 

approximation of Eq.(1) two probability difference.  

 (1) 

A feature weight (w[fc]) in Eq.(2) is calculated for each 

target instance and updated in every target instance.  

 ( 2)

 

Here, N is the number of instances, xn is the target instance, 

d calculates the distance of hit and miss from the target 

instance. Weight(w[fc]) of a feature is always between 0 

and 1. Distance calculation in Eq.(2) is different for 

numerical and categorical data. For categorical data there is 

Eq.(3),  

 
 (3)

 

For numerical data difference is calculated as Eq.(4) gives 

the value between 0 and 1. 

 (4) 

Relief(B-D) [10] develops several techniques to handle the 

missing data. In ReliefB [10], single instance value is 

missing then the distance is calculated using Eq.(5) 

 (5)

 

ReliefC ignores the missing data distance estimation. 

ReliefD performs better over ReliefB and ReliefC for the 

probabilistic estimation to calculate missing data. When one 

instance feature value is unknown ReliefD calculates the 

distance using the following form in Eq.(6) 

 (6) 

where yn is the target instance class and C is the miss 

(different) classes of the nearest neighbour instance. In 

Eq.(7), both instance value is missing. 

 

(7)

 

ReliefE and ReliefF is the solution to the binary class 

problem of Relief. ReliefE is the straight forward 

implementation of Relief. But in ReliefF, k-nearest miss is 

calculated for all different(miss) class. ReliefF optimizes 

the following Eq.(8) 
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 ( 8) 

ReliefF [10] choose fixed k for the nearest hit and miss but 

sometimes the nearest neighbour may be so far from the 

target instance that it is the barrier for actual approximation. 

Spatially Uniform Relief (SURF) [12] takes the instances 

inside the threshold distance. The threshold distance is 

calculated by averaging all the instance pairwise distance. 

SURF* [31] takes the outside boundary instances to capture 

two-way interaction using far weighting. SURF* takes a 

long time for execution. MultiSURF* [32] eliminates the 

instances around the threshold boundary(±σ) and it takes 

less time than SURF*. But the original goal of class 

separability cannot be achieved due to the more impact of 

far weighting. MultiSURF [13] calculates only the near 

weight of MultiSURF*. 

The above-mentioned method is applicable in the balance 

dataset scenario. In MAPRelief [11], imbalanced and 

multiclass data is handled using the class prior probability. 

It takes k-nearest neighbour from the rest miss class without 

taking k-nearest neighbour from the different class 

respectively. MAPRelief optimizes the Eq.(9) to solve the 

class imbalance problem. 

 

 ( 9) 

There is another kind of feature selection method namely 

Entropy Based Feature Selection (EBFS) which uses 

Eq.(10) entropy in feature weighting. 

 (10) 

When the nearest feature miss value is 1; 1; 1; 1 and hit 

value 0; 0; 0; 0 the feature separates nearest hits and misses 

perfectly, miss and hit in Eq.(10) provide same entropy 

value. To overcome the problem class label is also used 

when calculating feature entropy in Eq.(11). 

 (11) 

But all the above-discussed methods are ranking method 

and can not decide up to which number of feature we 

should take to achieve good classification. To solve this 

issue we propose a greedy forward selection algorithm 

(RFSS) which selects the feature-based provided new 

classification information of the candidate features with the 

selected subset. 

2. Proposed Method 

In this work, we modify the original ReliefF method to 

work for feature subset selection rather than only for feature 

ranking. In our proposed method, initial feature weights are 

calculated similar to ReliefF. But our contribution is that we 

propose a weighting mechanism for combined features. By 

maximizing the combined feature subset weight, we 

develop a forward feature subset selection method named 

RFSS. Here, the features are sequentially added to the 

subset, and when the new combined feature subset performs 

better than the previous feature subset, we conclude that the 

new candidate feature provides additional information with 

the selected subset about output prediction. In this section, 

we describe how we rank the features and what criteria we 

use to construct the optimal feature subset.  

2.1 Ranking the features 

Individual features are weighted by the output separation 

capability of a feature. We can represent the values of 

individual features by a straight line in Fig.1. Here,  

refers to the target instance xn for a candidate feature fc, 

while   and  refer to the same-class 

and different-class nearest neighbors respectively. For an 

individual feature, target ,  and  

remain in linear space. 

 

Fig.  1. Individual feature weighting 

In Eq.12, hit miss instance distance difference from the 

target instance is equal to the distance between hits and 

misses. So it is clear that, for each instance it measures how 

much the hit and miss instances are far from each other.  

 (12) 

 

Fig.  2. Combined feature weight= 

We calculate individual feature weights using Eq.13 and 

sort the features in descending order based on the feature 

weight. 

 

 (13) 

From w[fc], we get the feature weight value [−1; 1] where 

more positive weight means the feature is more relevant to 

the classes otherwise the feature is irrelevant. 
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2.2 Calculating the weight of combined features 

Traditional ReliefF algorithm ranks the features 

individually, but does not have a process of weighting 

combined features. Our proposed method is a subset 

selection method where we incrementally add features to the 

subset in the descending order of ranking as calculated in the 

previous subsection. To decide whether to add a new 

candidate feature to the subset, a weighting criteria for the 

combined feature subset is required. A major contribution of 

our work is that we propose a weighting mechanism for 

combined features. When a candidate feature improves the 

performance, then the weight of the combined feature set is 

increased. 

Fig. 2 is used to explain what happens to the hit-miss 

calculation when a set of features are used rather than one 

individual feature. In this figure,  refers to the target 

instance xn when the candidate feature fc is combined with 

a feature subset S. hit( ) and miss ( ) correspond to 

the same-class and different class nearest neighbors as 

stated before. However, in contrast to the individual feature 

case, ,  hit ( ) and miss ( ) will most likely not 

be in linear space when features are combined. These points 

may now form a triangle like that shown in Fig. 2. In this 

scenario, traditional ReliefF weight calculation will 

measure the difference of hit and misses respectively from 

the target instance, and then subtract the results to get the 

weight. That is, traditional ReliefF takes the difference of 

the sides , hit ( ) and miss ( ) from the triangle 

of Fig. 2. However, this could give a very small value even 

if hit ( ) and miss ( ) are very far apart in the non-

linear space. In our proposed method, we use the distance 

between hit and miss considering the dimension > 1, i.e., 

we take the length of the hit ( ) - miss ( ) side of the 

triangle as our weight for the combined feature set. This 

gives a much better estimate of the performance of the 

combined set of features. 

The combined weight is calculated using Eq.14 to capture 

the actual difference of the predicted output.  

 

 

 (14)

 

2.3 Constructing the feature subset 

After getting the feature rank using Eq.8 we select the top 

feature from the ranked feature set and insert it into the 

selected subset S. Then the remaining features are taken 

sequentially one by one as candidate features. Combined 

weight is calculated by appending a candidate feature (fc) to 

the selected subset S using Eq.14. When the candidate 

feature in combination with the selected subset improves 

the weight than before, it means the candidate feature 

should be added to the subset to achieve better accuracy. 

This greedy forward weight maximization technique is 

followed to capture the appropriate feature subset. The 

overall of view of how our proposed method works is 

shown in Algorithm 1.  

2.4 Illustrative Example 

To understand the overall method, let’s take a look on the 

following example. In Table 1, we take 10 instances of two 

class data. We calculate the rank of feature using Eq.(8) for 

ReliefF which gives,  

 Algorithm 1: ReliefF Selection 

Input: Dataset (D): instances, X ={x1,x2,x3, ...xn} and features, 

F={f1,f2,f3, ...fm} 

Parameter: Number of neighbour (k) and threshold (T) 

Output: Subset of features, S  F 

1: Calculate the feature weight using Eq.8 

2: Sort features(F) based on their weight in descending order. 

3: Select f1 from the sorted feature rank. 

4: S ← f1; Sc ← Sc \ f1; 

5: for all i = 2: (m − |S|) do 

6: Calculate weight w(fc, S) using the following     Eq.14 

7: if (w(fc, S) − w(S)) > T then 

8: S = S  fc 

9: end if 

10: m = m-1  

11: end for 

12: return S 

Table 1. Example Dataset 

F1 1 2 1 1 -2 2 1 1 2 2 

F2 1 1 0 2 1 5 -2 3 0 5 

F3 1 4 2 1 0 0 1 7 6 6 

F4 2 1 2 2 8 4 1 -2 8 7 

F5 1 3 1 1 2 2 1 2 3 2 

Class + - + + + - + + - - 

<F5, F4, F3, F2, F1 > rank. For our selection method, we rank 

the feature using Eq. 13. Then our selection process 

maximizes the Eq. 14 and the final selected feature subset is 

< F5, F4, F2 >. We have measured the performance using 

SVM classifier where two test instances is used. Our 

method can classify both instances where Relief failed for 

one instance. Hence, our method is better than the Relief 

ranking method. Our method will also perform better over 

the existing ReliefF, SURF*, SURF, and MultiSURF as 

these methods are ranking method and selection mechanism 

will select most relevant and informative features.  

3. Results and Discussion 

In this section, we first describe the datasets and the 

implementation details, and then present a discussion on the 

experimental results.  
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Dataset description and implementation detail  

For our experiments, we use 16 datasets from UCI machine 

learning repository [34]. The detail of the datasets is shown 

in Table II.  

Table 2. Dataset Description 

Dataset Instance Feature Class 

Parkinsons 195 22 2 

Steel 1941 27 7 

Breast 569 30 20 

Dermatology 366 34 6 

Wdbc 569 30 2 

Sonar 208 60  2 

Glass 214 9 6 

German 1000 20 2 

Musk 473 165 2 

Page-blocks 5472 10 5 

Glass123_vs_456 214 9 2 

Glass6 214 9 2 

Vehicle0 846 18 2 

Vehicle1 846 18 2 

Vehicle2 846 18 2 

Southgerman 1000 20 2 

In this experiment, we run 10 fold cross validation (CV) on 

each dataset and the final result is the average of accuracies 

and F-score of the 10 folds. Features values are normalized 

by using maximum−minimum normalization to keep the 

feature values between 0 and 1. For fair comparison the 

same training-testing is performed for all compared 

methods (such as ReliefF, SURF, MultiSURF*, 

MultiSURF). Python skrebate [35] library of Relief Based 

method is used for all the comparative method result 

generation. Results are generated in Intel core-i5 2.20GHz 

processor, 12GB RAM and 64-bit windows 10 operating 

system. To measure the relative efficiency of RFSS, we 

generate the accuracy of the existing methods (ReliefF, 

SURF, MultiSURF* and MultiSURF) using the RFSS-

selected number of features. 

In Table III and IV, our proposed method RFSS is 

compared with ReliefF, SURF, MultiSURF* and 

MultiSURF. The accuracy scores obtained by the respective 

methods are given in the method-wise columns. The 

number of selected features by RFSS is given in the 

parentheses of RFSS column. For example, in musk dataset 

RFSS accuracy is 83.1% and the number of selected 

features is 74. For the same dataset, accuracy of ReliefF 

(77.9%), SURF (80.4%), MultiSURF* (81%) and 

MultiSURF (81.5%) are obtained using the same number of 

features as selected by RFSS. To compare the overall 

performance of RFSS over the other methods, win/ tie/ loss 

are calculated. Win means RFSS classification accuracy / 

F-score is better than the compared method accuracy, tie 

occurs where the accuracy is the same as RFSS, loss when 

the compared method’s accuracy / F-score is better than 

that of RFSS. For example, among the 16 datasets, RFSS 

wins in 14 datasets over ReliefF, is equal in 1 dataset and 

loses in 1 dataset. The best performing method’s accuracy / 

F-score for each dataset is shown in bold format. 

The results show that the proposed RFSS performs much 

better than all the existing methods we compared. In 

comparison to SURF method, RFSS loses in four datasets. 

One reason could be that SURF does not need to meet the 

criterion of k neighbors, so uninformative instances can be 

avoided in feature weighting. But our method takes k-

nearest neighbour and to meet k we may need to take 

uninformative and far instances which do not provide 

information about the class separability. Presumably for this 

reason SURF performs better in these four (dermatology, 

pageblocks0, glass123 vs 456 and southgerman) datasets. 

Our method losses for glass123 vs 456 dataset against 

MultiSURF and MultiSURF*. As MultiSURF takes 

instances inside the different threshold boundary for each 

instance, it’s not necessary to fulfill the k nearest neighbour 

instance. 

Moreover, MultiSURF* capture two way interaction by 

weighting the feature both near and far scoring. That is the 

reason of doing better of these two methods against RFSS. 

 

Table 3: Experimental Result Accuracy Using Svm Classifier 

Dataset ReliefF SURF MultiSURF* MultiSURF RFSS 

Parkinsons 0.840 0.845 0.750 0.855 0.850(15) 

Steel 0.674 0.639 0.672 0.654 0.682(19) 

Breast 0.971 0.971 0.957 0.974 0.976(20) 

Dermatology 0.968 0.975 0.970 0.975 0.970(33) 

Wdbc 0.971 0.974 0.957 0.974 0.976(19) 

Sonar 0.791 0.768 0.763 0.786 0.795(47) 

Glass 0.535 0.534 0.595 0.534 0.609(8) 

German 0.751 0.751 0.756 0.751 0.751(18) 

Musk 0.779 0.804 0.810 0.815 0.831(74) 

Page-blocks 0.914 0.923 0.899 0.920 0.914(4) 

Glass123_vs_456 0.913 0.926 0.904 0.926 0.917(8) 

Glass6 0.954 0.954 0.931 0.954 0.959(8) 

Vehicle0 0.962 0.945 0.959 0.945 0.957(15) 

Vehicle1 0.745 0.741 0.741 0.741 0.759(10) 

Vehicle2 0.871 0.878 0.879 0.881 0.906(12) 

Southgerman 0.768 0.771 0.770 0.770 0.756(19) 

Win / tie / loss 14 / 1 / 1 11 / 1 / 4 14 / 0 / 2 12 / 1 / 3  
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Table 4: Experimental Result F-Score 

Dataset ReliefF SURF MultiSURF* MultiSURF RFSS 

Parkinsons 0.72 0.72 0.44 0.73 0.73(15) 

Steel 0.59 0.55 0.63 0.654 0.62(19) 

Breast 0.96 0.97 0.95 0.97 0.97 (20) 

Dermatology 0.96 0.97 0.96 0.97 0.96(33) 

Wdbc 0.96 0.97 0.95 0.97 0.97(19) 

Sonar 0.78 0.75 0.75 0.78 0.78(47) 

Glass 0.33 0.33 0.36 0.33 0.38(8) 

German 0.66 0.66 0.67 0.66 0.66(18) 

Musk 0.77 0.8 0.8 0.81 0.82(74) 

Page-blocks 0.29 0.31 0.28 0.3 0.29(4) 

Glass123_vs_456 0.89 0.89 0.85 0.89 0.88(8) 

Glass6 0.89 0.89 0.85 0.89 0.91(8) 

Vehicle0 0.92 0.92 0.94 0.92 0.93(15) 

Vehicle1 0.43 0.42 0.42 0.42 0.49(10) 

Vehicle2 0.8 0.82 0.82 0.83 0.87(12) 

Southgerman 0.69 0.69 0.69 0.69 0.67(19) 

Win / tie / loss 10 / 4 / 2 9 / 3 / 4 11 / 1 / 4 7 / 5 / 4  
 

4. Conclusion  

In this paper, we propose a feature selection method RFSS, 

which constructs a feature subset by modifying ReliefF 

algorithm in such a way that maximizes the class separation 

capability of the combined set of features. RFSS follows a 

greedy forward selection method to add the features to the 

subset based on their ReliefF ranking. We introduce a 

mechanism to calculate the weight of combined features, 

and a candidate feature is added to the feature set if the 

addition increases the weight of combined feature set. 

Rigorous experiment shows that RFSS performs better over 

four state-of-the-art methods ReliefF, SURF, MultiSURF* 

and MultiSURF. 

In the future, we will apply the same technique to other 

versions of the Relief family of algorithms. While 

experimental results show a favorable performance for 

RFSS, a thorough theoretical analysis is yet to be 

performed. For example, the adverse effect of outliers has 

not been measured for RFSS. Also, choosing the right value 

of k is a problem in RFSS. These limitations will be 

addressed in our future work.  
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