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ABSTRACT

The Max-Product belief propagation algorithm has been widely used to process constraints associated with optimization 
problems in a broad range of application domains such as information theory, multi-agent systems, image processing, 
etc. The constraint optimization of a given problem is typically accomplished by performing inference with the use of a 
message passing process. During the process, the Max-Product algorithm performs repetitive maximization operation, 
which has been considered as one of the main reasons the algorithm can be computationally expensive. In more detail, 
scalability becomes a challenge when Max-Product has to deal with constraint functions with high arity and/or variables 
with a large domain size. In either case, the ensuing exponential growth of search space can make the maximization 
operator of the algorithm computationally infeasible in practice. In effect, it is frequently observed that the output of an 
algorithm becomes obsolete or unusable as the optimization process takes too long. Specifically, the issue of an algorithm 
taking too long to complete its internal inference process becomes more severe and prevalent as the size of the problem 
increases. As a result, the practical scalability of such algorithms is constrained. However, it is challenging to maintain 
the solution quality while reducing the computation cost of the algorithm. This is important because success in doing so 
will eventually reduce the algorithm’s overall completion time without compromising on the quality of its solution. To 
address this issue, we develop a generic pruning technique that enables the maximization operator of the Max-Product 
algorithm to operate on a significantly reduced search space of at least around 85% or more (i.e. empirical observation). 
Additionally, we demonstrate theoretically that the pruned search space obtained through our approach has no negative 
impact on the algorithm’s outcome. Finally, further empirical evidence notably suggests that our proposed approach 
brings down 50% to around 99% of the time required to complete a single maximization operation.
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1. Introduction

Belief propagation algorithms, originally invented by Pearl, 
have been used to solve constraint reasoning problems in a 
wide range of application domains including error correcting 
codes, speech recognition, image understanding and multi-
agent coordination and constraint recommender systems [1, 
2, 3, 4], etc. In general, the belief propagation algorithms, 
also known as message passing algorithms, deal with the 
constraint reasoning problems by performing inference 
on graphical models that have been used to represent such 
problems [5]. The graphical models, such as Bayesian 
networks, Markov random field, junction trees or factor 
graphs, have been used with the same amount of success to 
articulate problems with deterministic behaviour, as well as in 
situations involving probability distributions or uncertainty 
[6, 7, 8]. The former is typically named as the deterministic 
graphical models and the latter as the probabilistic graphical 
models.

It is worth mentioning that the initial intention was to employ 
the belief propagation algorithms only for graphical models 
without loops or cycles for which they are guaranteed 
to provide an exact or optimal solution. Nevertheless, 
enough empirical evidences have been found showing the 
effectiveness of this class of algorithms on a number of 
loopy graphical models [9, 10, 11]. Additionally, one very 
important feature of the message passing algorithms have 

been identified by Aji and McEliece [12], in which they have 
famously shown that any algorithm of this type can be seen 
as a special case of Generalized Distributive Law (GDL) 
over a couple of specific semiring operators. For example, 
two semiring operators, “max” and “product”, are used to 
form one of the most studied message passing algorithm 
named Max-Product.

The Max-Product algorithm has received particular attention 
amongst all of the existing message passing algorithms. 
Similar to other such algorithms, Max-Product performs 
inference on a graphical model by either following a 
synchronous or an asynchronous message update protocol 
[6, 13]. The messages here are generated using the GDL 
framework that has an axiomatic tendency of computational 
savings [12]. In effect, this class of algorithms make efficient 
use of constrained computational and communication 
resources, and effectively represent and communicate 
complex utility relationships (generated from the constraints) 
through the graph. In any case, all the nodes of a graphical 
model continuously generate and exchange messages 
towards completing the inference process. During the 
process, the semiring operator “max” serves as the summary 
operator for the Max-Product algorithm. Moreover, nodes 
in this particular algorithm (and other similar algorithms 
of this class) calculate and propagate utilities (or costs) 
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for each possible value assignment of their neighbouring 
nodes. Thus, the nodes explicitly share the consequences of 
choosing non-preferred states with the preferred one during 
inference through a graphical representation. Eventually, 
this information helps the algorithm to achieve good solution 
quality for large and complex problems.

Despite these aforementioned advantages, scalability 
remains a widely acknowledged challenge for the belief 
propagation algorithms such as Max-Product [14, 15]. 
Specifically, they perform repetitive maximization operations 
(i.e. the semiring operator max) for each constraint function 
to select the locally best configuration of the associated 
variables, given the local utility function and a set of 
incoming messages. To be precise, a constraint function that 
depends on n variables having domains composed of d
values each, will need to perform d n computations for a 
maximizationoperation. As the system scales up, either due 
to discrete random variables with a very large number of 
possible states or constraint functions with high arity, the 
complexity of this step grows exponentially. Examples of 
such problems include massive task allocation in multi-agent 
settings, disparity estimation in computer vision, tracking 
problems in sensor networks, and error-control decoding. 
For such problems, and many other besides, it may be 
expensive to compute and/or store the messages. In essence, 
the inference process of the deployed message passing 
algorithm may take too long to complete, and as such their 
applicability be limited to only small-scale problem settings.

Motivated by this challenge, researchers have studied a 
variety of techniques in order to reduce the complexity of 
belief propagation algorithm in different applications. 
Specifically, over the past few years, a number of efforts 
have tried to improve the scalability of message passing 
algorithms by reducing the cost of the maximization operator. 
In particular, [15] and [16] reduce the domain size of 
variables associated with constraint functions for task 
allocation domains where nodes’ action choices are strictly 
divided into working on a task or not. However, this method 
is completely application dependent, because it can only be 
applied to a specific problem formulation of task allocation 
domain. Moreover, [17] carries a branch and bound search 
utilizing constraint functions to ensure that the upper and 
lower bounds can be evaluated using only a subset of variable 
values. Nevertheless, the bounding function they propose to 
accomplish this is entirely devoted to mobile sensor 
coordination. Therefore, it is not directly applicable to 
general settings. A more general approach to reduce the cost 
of the maximization operator, called Generalized Fast Belief 
Propagation (G-FBP), is proposed in [14]. In this approach, 

they select and sort the top cd
n−1

2 values of the search space, 
presuming the maximum value can be found from these 
ranges. Here, c is a constant. Nevertheless, they also admit 
that they cannot guarantee in advance whether the 
presumption is true or false, and in the latter case G-FBP 

incurs a significant penalty in terms of the computational 
cost [18]. Recently, [19] develops a generic Function 
Decomposing and State Pruning (FDSP) technique based on 
branch-and-bound. FDSP includes Function Decomposing 
(FD) phase that effectively computes the function estimation 
with the intent to reduce the over-heads in computing an 
upper bound of a partial assignment. Moreover, its State 
Pruning (SP) phase is based on branch and bound that 
reduces the search space. Besides, they also theoretically 
prove that these bounds are monotonically non-increasing 
during the search process.

On the other hand, another line of effort has recently been 
sought to reduce the computation cost of the maximization 
operator of the Max-Sum message passing algorithm [18]. 
This is motivated by the aforementioned pre-processing 
sorting based approach G-FBP. Similar to G-FBP, it is a one-
shot pruning technique. Notably, unlike G-FBP, they provide 
a theoretical guarantee that the reduced search space obtained 
by using their algorithm always provides the desired outcome 
from the maximization operator. The algorithm is generic in 
a sense that it can be applied to any application (or setting) 
of Max-Sum. To be exact, GDP computes the reduced search 
space by considering one of its two semiring operators “sum. 
Hence, GDP cannot be used on the maximization operator of 
the Max-Product algorithm in its current form, though the 
other benchmarking algorithm G-FBP is readily applicable 
to this algorithm. Considering this observation and the 
vast usability of Max-Product coupled with the theoretical 
guarantee, generic nature and significant empirical results of 
GDP leads to the fact that further investigation needs to be 
undertaken to comprehend whether GDP can be tailored for 
this particular message passing algorithm.

In light of the above background, this paper proposes a 
modified version of GDP, that we call that we call GDPx, that 
is applicable to the Max-Product algorithm, regardless of the 
application domain. Similar to GDP, GDPx operates as a part 
of the maximization operator, proveably without affecting its 
solution quality (see Lemma 1). In other words, we improve 
the computational efficiency of theMax-Product message 
passing algorithm by reducing the search space over which 
the maximization operation is computed. We empirically 
evaluate the performance of our approach, and we observea 
significant reduction of search space, ranging from around 
85% to 99% by using this technique. More importantly, we 
show the relative performance gain of GDPx gets better with 
an increase in the variables’ domain size and the constraint 
functions’ arity, in which the maximization operator acts on. 

The remainder of this paper is structured as follows. We 
describe the problem in more detail inthe section that 
follows. Then, in Section 3, we discuss the complete process 
of GDPx with a worked example. We end this section by 
providing theoretical analyses. Subsequently, in Section 4, 
wepresent the empirical results of our method compared to 
the current state-of-the-art, and Section 5 concludes.
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2. Problem Formulation

A constraint reasoning problem that can be solved using the 
Max-Product belief propagation algorithm is defined by a 
tuple X D F, , , where X is a set of discrete variables 

x x xm0 1
, , ,�� �  and D D D Dm� �� �0 1

, , ,  is a set of 
discrete and finite variable domains. Each variable xi  can 

take value from the states of the corresponding domain Di . 
F is a set of constraint functions F F FL1 2

, , ,�� � , where 
each F Fi ∈  is a function associated with a subset of 
variables xi X∈ defining the relationship among the 
variables in xi . Thus, thefunction Fi ix� �  denotes the 
value for each possible assignment ofthe variables in xi . 
Notably, the dependencies between the variables and the 
functions generate a bipartite graph, called a factor graph. 
The max-product algorithm operates directly in this 
particular graphical representation of a deployed problem. In 
a factor graph, each constraint function Fi ix� �  is represented 
by a square node and is connected to each of its associated 
variable nodes xi  (denoted by circles) by an individual 
edge. Note that the term function is also known as factor, and 
they are used interchangeably throughout this paper. Hence, 
xi  is the arity of Fi ix� �  in this particular graphical 
representation. Within the model, the objective is to assign 
values to the variables X from their corresponding domains 
in order to either maximize or minimize the global objective 
function, which eventually produces the value of each 
variable,  X *. 

For example, Fig. 1 depicts the relationship among variables 
and functions in a factor graph representation. Here, we have 
a set of four variables X x x x x� � �0 1 2 3

, , ,  and a set of two 
functions F F F�� �0 1

, . . Moreover, .  is a set of discrete 

and finite variable domains, each variable x Xi ∈ can take 

its value from the domain Di .The ultimate objective is to 

either maximize or minimize a global objective function 
F x x x x

0 1 2 3
, , ,� � . Here, the global objective function is 

aproduct of two local functions F x x x
0 0 1 2

, ,� �  and 
F x x x

1 1 2 3
, ,� � .

Fig. 1. A sample factor graph representation with two 
function/factor nodes F F

0 1
,� �  and four variable nodes 

x x x x
0 1 2 3
, , ,� � , illustrating a global objective function 

F x x x x
0 1 2 3
, , ,� � . In the figure, variables are denoted by 

circles and factors are squares. Here, the grey arrows are 
used to highlight the factor-to-variable messages of the Max-
Product belief propagation algorithm, each of which requires 
the maximization operation to be performed.
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L

i i
*

�� � ��
�
�
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�
�

1

x

 (1)

In the factor graph, F0  is associated (i.e. connected) 
with three variable nodes, and as such, the arity of the 
constraint function F0 is 3. Similar to F0 , the arity of 
constraint function F1 is 3  in this particular example. Note 
that the term function is also known as factor, and they are 
used interchangeably throughout this paper.

As mentioned in the previous section, belief propagation 
algorithms generally follow a message passing protocol 
(also known as belief update or summary propagation 
protocol) to exchange messages (i.e. beliefs) among the 
nodes of the factor graph representation of the aforementioned 
formulation. Notably, the Max-Product algorithm uses 
Equations 2 and 3 for their message passing, and they can be 
directly applied to the factor graph. Specifically, the variable 
and function nodes of a factor graph continuously exchange 
messages (variable xi to function Fj  (Equation 2) and 
function jF  to variable xi  (Equation 3) to compute an 
approximation of the impact that each of the variable’s value 
have on the global objective function by building a local 
objective function Z xi i� � . In Equations 2 - 4, Mi  stands for 
the set of functions connected to variable xi  and N j  
represents the set of variables connected to function Fj . 
Once the function is built (Equation 4), each variable picks 
the value that maximizes the function by finding
  

Q x R xx F i
F M F

F x ii j

k i j

k i�
�
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As discussed previously, due to the potentially large 
parameter domain size and constraint functions with high 
arity, the maximization operator of the factor-to-variable 
message is the main reason the max-product belief 
propagation algorithm can be computationally expensive. 
This can be visualized from an example where a function 
node has five variable nodes connected to it, meaning the 
arity of the function is n = 5 . Here, we assume each of the 
variables can take its value from 10 possible options (i.e. 
states of the domain), implying that the domain size is 
d =10  for each of the variables. In this case, the function 
node has to perform 10

5 or 100 000,  operations to generate 
a message for one of its neighbouring variable nodes. Now, 
each of the function nodes in a factor graph has to generate 
and send a single message to each of its neighbours to 
complete a single round of message passing [6, 12]. For 
example, function node F0  of Figure 1has to send a distinct 
message (grey arrow) to each of its neighbouring variable 
nodes x0 , x1  and x2 . Each of these messages includes the 
expensive maximization operator. Under such circumstances, 
it is possible to significantlyreduce the computational cost of 
this step. Meanwhile, it is essential to ensure that this 
reduction process does not limit the algorithms’ applicability, 
as well as not affecting the solution quality. We deal with the 
issue that arises from the trade-off in the remainder of this 
paper.

3. The GDPx Algorithm

GDPx (Algorithm 1) works as a part of Equation 3, which 
represents a function-to-variable message of the Max-
Product belief propagation algorithm, in order to reduce the 
search space over which the maximization needs to be 
computed. This algorithm requires as inputs a sending 
function node Fj jx� �  whose utility depends on a set of 
variable nodes ( x j ) associated with it (i.e.neighbours), a 
receiving variable node xi j∈ x  and all the incoming 
messages from the neighbour(s) of Fj  apart from the 
receiving node xi , denoted as M �x xij

.
 Finally, GDPx  

returns a pruned range of values (i.e.j ) for each state i of 
the domains of the variables over which the maximization 
operation needs to be performed to generate the message 
from the function node Fj � to the variable node xi �
(i.e.R xF x ij i� � � ).

In more detail, S stands for a set s s sr1 2
, , , ��� �

representing each state of the domains corresponding to x j �
(line 1 of Algorithm 1). This implies that S  is the union (

∪ ) of those sets of states, each of which corresponds to the 
domain of a variable in x j . Line 2 sorts the local utility of 
the sending function node Fj � independently by each state 

s Si ∈ . It is worth noting that this sorting can be carried out 
at runtime of a belief propagation algorithm without incurring 
an additional delay [18]. Then the total number of incoming 
messages received by Fj  is represented by n � (line 3). Note 
that, a complete worked example of GDPx is illustrated in 
Figure 2 where we use a part of the factor graph of Figure 1 
to show a factor-to-variable (i.e. F1  to x3 ) message 
computation (Figure 2a), as well as the operation of GDPx 
on it (Figure 2b). Here, the local utility of the sending 
function node F1 is shown in atable at the left side of Figure 
2a, which is based on three domain states R B G,� ,�� � (for 
simplicity red, blue and green colours are used to distinguish 
the values of the states, respectively) and three neighbouring 
variable nodes x1 , x2 � and x3 . Moreover, the direction of 
two incoming messages ( n = 2 ) received by 
F , . , . , .0 06203 0 05307 0 09390� �
and 0 08423 0 06310 0 04713. , . , .� � , from the variable 
nodes x1 and x2 , respectively, are indicated using the dotted 
black arrows. Then, the arrow from node F1  to variable 
node x3 indicates the desired function-to-variable message 

R xF x
1 3

3

4 4 4
3 603 10 3 027 10 2 309 10�

� � �� � � � � �� �. , . , . , 
and the complete calculation is depicted in a table at the left 
side of Fig. 2a.

At this point, line 4 computes m  which is the multiplication 
of the maximum values of each of the messages 
M M �k x xj i

∈  received by the sending function Fj , other 
than the receiving variable node xi . Here, k  is one ofthe 
n messages received by Fj . In the worked example of 
Figure 2b, since the maximum of the received messages 

0 06203 0 05307 0 09390. , . , .� � (i.e. 1 ) and 

0 08423 0 06310 0 04713. , . , .� � (i.e. 2 ) by F1 are 

0 09390. and 0 08423. respectively, the valueof 
m � � � � �

0 09390 0 08423 7 909 10
3

. . . . Now, the for 
loop in lines 5 12− �generates the range of the values for 
each state s Si ∈ � fromwhere we will always find the 
maximum value for the function Fj , and discardthe rest. To 

this end, the function sortedVal Fs j ji
x� �� � � gets the 

sorted value of si � from line 2, and stores them in an array 
i

(line 6). Then, line 7 finds p , which is the maximum of 
the local utility values for the state si � (i.e. max i� � ). In 
the worked example, the sorted values of domain state R are 
stored in ,epicted in the left side of Figure 2b. Hence, the 
value of p  = max .VR� � � � �

6 668 10
2 . Afterwards, line 

8� computes b , which is the multiplication of the 
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corresponding values of p � from the incoming messages of 
Fj (i.e. valp k� � ). In the example, the values 
corresponding to p (i.e. 6 668 10

2
. � � ) from two incoming 

messages are 9 390 10
2

. � � and 4 713 10
2

. � � , thus the 
value of b � � � � � �� � �

9 390 10 4 713 10 4 425 10
2 2 3

. . .

. This can be seen in the first row of the rightmost table of 
Figure 2b. The rows related to the computation for the state 
R  are summarized into this table from the rightmost table of 
Figure 2a, which the complete computation of the function 
F1 to variable x3  message based on domain states R , B  

and G . Having obtained the value of m  and b  from lines 
4 and 8 respectively, line 9 gets the cut point value c , where 
we develop an equation to compute the value, which is 

c p b
m

�
�

. The desired maximum value for the state si �

must always be found by considering the rows corresponding 
to the values in the range p c,� � , denoted by 
prunedRange p csi

,� �� � (lines 10 11− ) (See Lemma 1 
and its proof for the theoretical guarantee and the intuition 
behind the choice of the range).

In the worked example of Figure 2b, the value 

c �
�� �� �� �

�
� �

� �

�
�

6 668 10 4 425 10

7 909 10
3 371 10

2 3

3

2
. .

.
.

, given p � � �
6 668 10

2
. , b � � �

4 425 10
3

.  

and m � � �
7 909 10

3
. . Hence, the resultant 

range for the state R  of this particular example is 
 � � ��� ��

� �
6 668 10 3 371 10

2 2
. , . . This implies that the 

desired maximum value will be found by considering the 
rows corresponding to the values in the range  .  As can 

be seen in the right most table of Figure 2b, only considering 
the top three rows are sufficient to obtain the desired value 
of R ; hence, it is not necessary to consider the remaining 
6 rows for this particular instance. To be exact, the value 
for the state R  after maximization is 3 603 10

4
. � � , which 

isobtained from the row corresponding to the local utility 
value of 4 555 10

2
. � � . In this way, GDPx reduces the 

computational cost of the expensive maximization operator. 
The grey colour is used to mark the discarded rows of the 
table. We can see that even for such a small instance, having 
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domain size d = 3� and arity n = 3 , GDPx prunes more 
than 65%  of the search space during the maximization of a 
state in computing the function-to-variable message.

As argued above, it is important to ensure that combining 
GDPx with Equation 3 does not make the computation of 
a function-to-variable message prohibitively expensive. In 
this regard, the original GDP algorithm proposed for the 
Max-Sum algorithm shows that its overall time complexity 
isO Vr log i� �� �  [18]. Thus, GDP is able to reduce the 
search space significantly at the expense of a quasi-linear 
computation cost of its own. Here, r  stands for the number 

of states of the variables’ domain associated with the sending 
function node (line 5).Then, i  is the size of the array i , 
hence log i is the time complexity to do the binary search 
on i , which is required for their approach. On the other 
hand, our proposed approach GDPx, which works on the 
the Max-Product belief propagation algorithm, does not 
require performing binary search on i  to find the cut-point. 
Therefore, the overall complexity of GDPx is  r� � . This 
significantly indicates that GDPx can perform at the expense 
of a linear computation cost of its own.    

Fig. 2. (a) Computation of a factor-to-variable message (i.e. F1
 to x

3
.)
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Fig. 2. (b) Complete operation of GDPx on R xF x
1 3

3� � �

Figure 2.  Worked example of GDPx  in computing a factor-to-variable message, F1 to x3 or R xF x
1 3

3� � � , within the factor 
graph shown in Figure 1.  In this example, for simplicity, we show that part of the original factor graph which is necessary for 
this particular message computation. In the figure, red, blue and green coloured values are used to distinguish the domain states 
R , B  and G � respectively for each of the variables involved in the computation, and arrows between the nodes of the factor 
graph are used to indicate the direction of the corresponding messages.

Lemma 1. During the function-to-variable message compu-
tation, the desired maximum value for a state s Si ∈  must 
always be found from the rows corresponding to the values 
ranging from p  to c .

Proof. We prove this by contradiction. Assume there exists a 
row r

u  that resides outside the range from which the maxi-
mum value for si  can be found. That means:

p M p bu
k

p ku
�
� � � � �

1

n

val

     
(5)

where pu  is the local utility value for si which corresponds 
to the row ru  and val p ku

M� � (� � �k 1, , n ) is the cor-
responding value of pu  from the k th  incoming message of 
Fj . However, as the row ru is outside the pruned range, we 
have p cu < , or:

p p b
mu �
�

  
(6)

From Equations 5 and 6, we have:

p b
m

M p b
k

p ku

� � � � �
�
�

1

n

val .

 
(7)

Replace m in Equation 7 by the product identified in Line 4 
of Algorithm 1, we have:

k
p k

k
ku

M M
� �
� �� � � � �

1 1

n n

val max (8)

We can see that Equation 8 is false. Hence, there 
exists no such row as ru .

4. Empirical Results

Given the detailed description in the previous section, 
we now empirically evaluate how much speed-up can 
be achieved using GDPx and compare this with the 
performance of G-FBP. In so doing, we run our experiments 
on corresponding factor graphs representing different 
instances of the benchmarking graph colouring problem. It 
is obvious from the discussion of Lemma 1 that our approach 
neither improves nor affects the solution quality of Max-
Product; rather its sole objective is to reduce its computation 
cost while maintaining the same solution quality. Therefore, 
we focus on the computation aspect of the algorithm. More 
specifically, both the approaches, G-FBP and our proposed 
GDPx, intend to reduce the computation cost of the most 
expensive phase of the Max-Product belief propagation 
algorithm, that is the maximization operator. This particular 
operator, as discussed in Section 2, depends on two factors: 
i) domain size of the associated (i.e. neighbouring) variable 
nodes of the sending function nodes and ii) density of the 
factor graph, which can be apprehended from the values of 
arity/degree of the sending function nodes. Moreover, it is 
also observed from the literature that a pruning algorithm’s 
performance often varies with the size of the problem setting 
[14, 18].  In light of the aforementioned discussion, we 
perform our experiments on varying these three parameters. 
Note that all of the experiments were performed on a 
simulator implemented in an Intel i7� Quadcore i7� GHz 
machine with 16�GB of RAM.

In our first experiment, as illustrated in Figure 3, we consider 
factor graphs having a number of function nodes randomly 
taken from the range 5 to 50, and that each of the factor 
graphs is generated by randomly connecting a number of 
variable nodes per function node. Specifically, this number 
of variable nodes connected to each function node, termed 
the arity n  of a function node (i.e. density), is randomly 
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chosen from the range 2 8�� � . In Figure 3, we report the 
percentage of search space pruned by GDPx and G-FBP 
during the computation of function-to-variable messages 
as the values of the domain size of the variables (i.e. d
) increases. Notably, G-FBP is based on an intuition that 
the maximum value can be found from the partially sorted 
top cd

n−1

2 values (see Section 1 for details). When this 

presumption is false, it incurs a significant penalty in terms 
of the computation cost (i.e. search space). Nevertheless, we 
always consider that their assumption is true while reporting 
the performance of G-FBP for all of the experiments in 
this paper. Moreover, the developers of G-FBP specifically 
admitted in [14] that the chosen value of the constant c  can 

Fig. 3. Percentage of search space pruned as the domain size increases, GDPx vs G-FBP, for the factor graph representations of different 
instances of the graph colouring problem. Here the values of dependent variables, density and number of function nodes, are randomly 
taken from the ranges 2 8,� �  and 5 50,� � , respectively. In the figure, we use four different values of the constant $c$ in evaluating the 
performance of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 4. Percentage of search space pruned as the density increases, GDPx vs G-FBP, for the factor graph representations of different 
instances of the graph colouring problem. Here the values of dependent variables, domain size and number of function nodes, are randomly 
taken from the ranges 2 7,� �  and 5 50,� � , respectively. In the figure, we use four different values of the constant $c$ in evaluating the 
performance of G-FBP. Error bars are calculated using standard error of the mean.
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Fig. 5. Percentage of search space pruned as the number of function node increases, GDPx vs G-FBP, for the factor graph representations 
of different instances of the graph colouring problem. Here the values of dependent variables, domain size and density, are randomly taken 
from the ranges 2 7,� �  and 2 8,� � , respectively. In the figure, we use four different values of the constant c  in evaluating the performance 
of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 6. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 3. Error bars are calculated using standard error of the mean.

make notable difference in its overall performance, and 
hence they discussed the significance of a range of values of 
c . By taking their observation into account, we consider 4 
values (i.e. 2 5 10, ,  and 15 ) of c  for all of the experiments 
presented in this paper. It is worth noting that the local utility 
tables (i.e. probability distribution tables) for the function 
nodes of a factor graph are generated randomly. Now, to get 
the results based on the aforementioned setting, we initially 

compute the percentage of the search space pruned (i.e. 
speed-up) by the algorithms for a function node by taking 
the average of the speed-ups of all the messages sent by that 
function node. Afterwards, we take the average of the speed-
ups of all the nodes in a factor graph. Finally, we report the 
results of each factor graph averaged over 100  test runs 
in Figure 3, recording standard errors to ensure statistical 
significance.
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Fig. 7. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 4. Error bars are calculated using standard error of the mean.

Fig. 8. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the 
same setting as Figure 5. Error bars are calculated using standard error of the mean.

In Figure 3, the green line illustrates the performance of 
G-FBP with the value of c =15 . For this setting, it can be 
seen from the trend of the line that G-FBP’s performance is 
only notable for domain size 4 or more. To be exact, this 
algorithm prunes around 18%  of the search space during 

the computation of the maximization operation when d = 4
. While in the same setting G-FBP reduces around 35 64− %  
of the search space for the domain size 5 7− . Although 
G-FBP’s performance is slightly better with c  value 10 , the 
trend is similar to the previous one (orange line). Notably, its 
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pruning rate is around 48 75− %  for the value of the 
domain size 5 7− . On the other hand, as depicted in the 
orange line of Figure 3, for c = 5 , G-FBP’s pruning rates 
are around 37% , 60%, 74% and 85% for the d  values 
3 4 5,�,� and 6 , respectively (light-yellow line). The pruning 
rate reaches the maximum of 88% with d = 7  for this 
setting. Nevertheless, it is clear from the results shown in 
blue line that G-FBP performs even better with lower values 
of c  (i.e. c = 2 ). To be precise, it reaches at its peak with 
around 95% pruning rate for d = 7 . Having stated that, 
there is no theoretical guarantee that G-FBP will always 
provide the above performance, which as aforementioned, 
are generated considering their presumption always true. In 
this context, [18] shows that due to this phenomenon (i.e. the 
lack of theoretical guarantee), G-FBP produces severely 
inconsistent performance. Despite this issue, we consider 
such to show how our proposed GDPx performs compared 
to the best possible (although unrealistic) performance of the 
state-of-the-art algorithm, G-FBP. Significantly, the red line 
of Figure 3 illustrates that GDPx always performs better than 
all the versions of G-FBP. Similar to what we observed from 
the trend of G-FBP’s results, the performance GDPx is better 
when the variables take their values from a larger domain 
size, given that the other parameters remain identical. 
Nevertheless, unlike G-FBP, GDPx prunes around 90% of 
the search space for values of d  as small as 2 . Overall, the 
pruning rate of GDPx always lies within the range of 
90 96− % , and is correspondingly better than any version 
of the G-FBP algorithm.  Note that neither all the nodes, nor 
all the function-to-variable messages experience similar 
performance from the proposed approach, due to their 
differences in the content of the utility tables and incoming 
messages.  

Figure 4 illustrates the comparative performance of GDPx 
and G-FBP (four versions) for factor graphs representing 
different instances of the graph colouring problem with 
function nodes’ density/arity (i.e. n ) ranging from 2 to 8. 
Similar to the previous experimental setting, we consider 
factor graphs having a number of function nodes randomly 
taken from the range 5  to 50 . However, we report the 
pruning rate while increasing the value of n  to observe how 
the algorithms perform for the factor graphs with different 
density. Here, we randomly choose the values of the 
variables’ domain size from the range 2 7,� � . Finally, we 
report the results of each factor graph averaged over 100 test 
runs and record standard errors to ensure statistical 
significance. It is observed from Figure4 that GDPx prunes 
at least 88% or more of the search space during the 
computation of the maximization operation for the Max-
Product algorithm (red-line). Surprisingly, GDPx’s pruning 
rate reaches around 99% for the factor graphs with n ’s 
value 6, 7 or 8 for this setting. This trend coupled with the 
previous experiment’s observation is remarkably important 

because it gives us a clear indication that GDPx is able to 
prune the maximum amount of search space when the values 
of n  and d  becomes larger. On the other hand, even the 
best-case of the G-FBP algorithm never outperforms GDPx, 
though its performance is getting better with the lower value 
of c . However, it is worth noting that with a lower value of 
c  there is a higher possibility that their presumption is false, 
which would force G-FBP to consider the full search space 
again.

The final experiments for the metric pruning rate is shown in 
Figure 5 which reports the performance of GDPx and G-FBP 
(four versions) as the number of function node increases 
from as small as 5 to the maximum 100. For this experiment, 
the values of dependent variables, domain size d  and nodes’ 
density n , are randomly taken from the ranges 2 7,� �  and 
2 8,� � , respectively. Similar to the previous two experiments, 

we initially compute the percentage of the search space 
pruned by the algorithms for a function node by taking the 
average of the speed-ups of all the messages sent by that 
function node. Then, we take the average of the pruning rate 
(%) of all the nodes in a factor graph. Finally, we report the 
results of each factor graph averaged over 100 test runs in 
Figure 5, recording standard errors to ensure statistical 
significance. On the one hand, the best case of G-FBP 
(i.e. c = 2 ) prunes around 67 70− %  of the search space 
(blue-line) in this particular experiment. On the other hand, 
GDPx prunes around 90 92− %  of the search, and more 
importantly in a steady rate. In addition, for all three of these 
experiments, we run the one-way ANOVA with post-hoc 
Tukey HSD test. While doing so, we consider GDPx, G-FBP 
( c = 2 ), G-FBP( c = 5 ), G-FBP ( c =10 ) and G-FBP (
c =15 ) as treatments, each of which illustrates the 
percentage of the search space pruned. For each experiment, 
the observed p -value corresponding to the F-statistic of 
one-way ANOVA is lower than 0.05, suggesting that the one 
or more treatments are significantly different. Subsequently, 
we employ a post-hoc test (Tukey HSD) that also suggests 
that the performance of GDPx is significantly different from 
each of the remains, individually (i.e. p < 0 01. ).

When taken together the above empirical results, it is 
obvious that GDPx significantly reduces the computation 
cost of the maximization operator of the Max-Product 
algorithm by reducing the search space upon which the 
maximization operator acts on. It can also be claimed based 
on the theoretical analysis that GDPx does not compromise 
on the solution quality in doing so. Whereas its counterpart 
G-FBP cannot provide this theoretical guarantee. Moreover, 
GDPx reduces more of the search spaces compared to the 
best cases of all the versions of G-FBP, and this is true 
for all the cases that we have considered in our empirical 
evaluation. Now, in our final set of experiments, we examine 
what does this reduction of search space actually mean in 
reducing the completion time (Figures 6, 7, 8). To do so, we 
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report the time GDPx takes to compute a single function-
to-variable message (i.e. the completion time), and compare 
this with the completion time of a single message though 
full-search. Note that, since the search space obtained by 
G-FBP is always larger than what is achieved by GDPx, 
its completion time can never be smaller than GDPx. We 
therefore to avoid redundancy did not consider G-FBP in this 
particular experiment.

Specifically, Figure 6 illustrates the performance gain of 
GDPx in terms of completion time (red line), and compare 
this to the standard way of computing the maximization 
operation (dotted-black line) in a single function-to-variable 
message for the same experimental setting (i.e. the values of 
arity and the number of function nodes) used in Figure 3. To 
report the result for each domain size d , we take the average 
of 100  different observations and record standard errors to 
ensure statistical significance. It can be seen from Figure 6 
that GDPx saves 50% and 75% completion time of the full 
search when domain sizes are 2 and 3, respectively. Then, 
the impact of GDPx is getting larger with the value of d . To 
be precise, the performance gain reaches around 90 25. %  
to 99 32. %  for the domain size of the variable nodes 3 to 10 
in this setting. 

In Figure 7, the same metrics (i.e. the completion time) is 
considered to measure GDPx’s performance. However, the 
experimental setting for this experiment is identical to what 
we considered in Figure 4. It can be observed from the trend 
of comparative results depicted in the figure that GDPx 
consumes 50% to 90% less time than its counterpart for the 
value of n  (i.e. number of variables connected to a function 
node) 3 to 10. Notably, the trend is identical to the previous 
experiment, and this is important because it gives us a clear 
indication that GDPx is able to reduce the maximum amount 
of completion time when the values of n  and d  becomes 
larger.  

Finally, using the same experimental setting as depicted 
in Figure 5, Figure 8 illustrates the completion time of a 
single message through GDPx as well as with the standard 
approach. We do this to observe how GDPx performs for 
different size of factor graphs. Notably, GDPx experiences 
67% to 88% reduction of the completion time in this setting. 
More importantly, it is obvious from the figure that GDPx 
performance does not affected by the increase of the problem 
size, instead it gets better for larger settings. Moreover, it is 
worth noting from the results depicted in Figures6, 7 and 8 
that GDPx’s own runtime is also negligible. This is expected 

because from its complexity analysis we find that only 
a linear time is required to execute the proposed GDPx 
algorithm (see Section 3).  

5. Conclusion and Future Work

In this paper, we tailor the GDP algorithm and develop a new 
algorithm GDPx that is capable of significantly reducing the 
computation cost of the maximization operator of Max-
Product algorithm. Our extensive empirical evidence 
observes a significant reduction of search space, ranging 
from around 85% to 99%�by using this technique. We 
demonstrate that the relative performance gain of GDPx 
improves with increasing the domain size of the variables 
and the arity of the constraint functions on which the 
maximize operator acts. These findings also serve as 
empirical proof for scaling up. In the future, we intend to 
study whether branch and bound based FDSP can be used 
effectively to accelerate Max-Product in real-world 
applications and to compare its performance to that of our 
GDPx. 
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