
https://doi.org/10.3329/dujase.v7i1.62886DUJASE Vol. 7 (1) 45-57, 2022 (January)

GDPx: An Application Independent Pruning Technique to Reduce
Computation Cost of Max-Product Belief Propagation Algorithm

Md. Mosaddek Khan1* and N. V. Q. Trung2

1Department of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh
2School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom

*Email: mosaddek@du.ac.bd
Received on 27 October 2021, Accepted for publication on 18 April 2022

ABSTRACT

The Max-Product belief propagation algorithm has been widely used to process constraints associated with optimization
problems in a broad range of application domains such as information theory, multi-agent systems, image processing,
etc. The constraint optimization of a given problem is typically accomplished by performing inference with the use of a
message passing process. During the process, the Max-Product algorithm performs repetitive maximization operation,
which has been considered as one of the main reasons the algorithm can be computationally expensive. In more detail,
scalability becomes a challenge when Max-Product has to deal with constraint functions with high arity and/or variables
with a large domain size. In either case, the ensuing exponential growth of search space can make the maximization
operator of the algorithm computationally infeasible in practice. In effect, it is frequently observed that the output of an
algorithm becomes obsolete or unusable as the optimization process takes too long. Specifically, the issue of an algorithm
taking too long to complete its internal inference process becomes more severe and prevalent as the size of the problem
increases. As a result, the practical scalability of such algorithms is constrained. However, it is challenging to maintain
the solution quality while reducing the computation cost of the algorithm. This is important because success in doing so
will eventually reduce the algorithm’s overall completion time without compromising on the quality of its solution. To
address this issue, we develop a generic pruning technique that enables the maximization operator of the Max-Product
algorithm to operate on a significantly reduced search space of at least around 85% or more (i.e. empirical observation).
Additionally, we demonstrate theoretically that the pruned search space obtained through our approach has no negative
impact on the algorithm’s outcome. Finally, further empirical evidence notably suggests that our proposed approach
brings down 50% to around 99% of the time required to complete a single maximization operation.

Keywords: Belief Propagation, Generalized Distributive Law, Max-Product, Maximization Operation

1. Introduction

Belief propagation algorithms, originally invented by Pearl,
have been used to solve constraint reasoning problems in a
wide range of application domains including error correcting
codes, speech recognition, image understanding and multi-
agent coordination and constraint recommender systems [1,
2, 3, 4], etc. In general, the belief propagation algorithms,
also known as message passing algorithms, deal with the
constraint reasoning problems by performing inference
on graphical models that have been used to represent such
problems [5]. The graphical models, such as Bayesian
networks, Markov random field, junction trees or factor
graphs, have been used with the same amount of success to
articulate problems with deterministic behaviour, as well as in
situations involving probability distributions or uncertainty
[6, 7, 8]. The former is typically named as the deterministic
graphical models and the latter as the probabilistic graphical
models.

It is worth mentioning that the initial intention was to employ
the belief propagation algorithms only for graphical models
without loops or cycles for which they are guaranteed
to provide an exact or optimal solution. Nevertheless,
enough empirical evidences have been found showing the
effectiveness of this class of algorithms on a number of
loopy graphical models [9, 10, 11]. Additionally, one very
important feature of the message passing algorithms have

been identified by Aji and McEliece [12], in which they have
famously shown that any algorithm of this type can be seen
as a special case of Generalized Distributive Law (GDL)
over a couple of specific semiring operators. For example,
two semiring operators, “max” and “product”, are used to
form one of the most studied message passing algorithm
named Max-Product.

The Max-Product algorithm has received particular attention
amongst all of the existing message passing algorithms.
Similar to other such algorithms, Max-Product performs
inference on a graphical model by either following a
synchronous or an asynchronous message update protocol
[6, 13]. The messages here are generated using the GDL
framework that has an axiomatic tendency of computational
savings [12]. In effect, this class of algorithms make efficient
use of constrained computational and communication
resources, and effectively represent and communicate
complex utility relationships (generated from the constraints)
through the graph. In any case, all the nodes of a graphical
model continuously generate and exchange messages
towards completing the inference process. During the
process, the semiring operator “max” serves as the summary
operator for the Max-Product algorithm. Moreover, nodes
in this particular algorithm (and other similar algorithms
of this class) calculate and propagate utilities (or costs)

46 Md. Mosaddek Khan and N. V. Q. Trung

for each possible value assignment of their neighbouring
nodes. Thus, the nodes explicitly share the consequences of
choosing non-preferred states with the preferred one during
inference through a graphical representation. Eventually,
this information helps the algorithm to achieve good solution
quality for large and complex problems.

Despite these aforementioned advantages, scalability
remains a widely acknowledged challenge for the belief
propagation algorithms such as Max-Product [14, 15].
Specifically, they perform repetitive maximization operations
(i.e. the semiring operator max) for each constraint function
to select the locally best configuration of the associated
variables, given the local utility function and a set of
incoming messages. To be precise, a constraint function that
depends on n variables having domains composed of d
values each, will need to perform d n computations for a
maximizationoperation. As the system scales up, either due
to discrete random variables with a very large number of
possible states or constraint functions with high arity, the
complexity of this step grows exponentially. Examples of
such problems include massive task allocation in multi-agent
settings, disparity estimation in computer vision, tracking
problems in sensor networks, and error-control decoding.
For such problems, and many other besides, it may be
expensive to compute and/or store the messages. In essence,
the inference process of the deployed message passing
algorithm may take too long to complete, and as such their
applicability be limited to only small-scale problem settings.

Motivated by this challenge, researchers have studied a
variety of techniques in order to reduce the complexity of
belief propagation algorithm in different applications.
Specifically, over the past few years, a number of efforts
have tried to improve the scalability of message passing
algorithms by reducing the cost of the maximization operator.
In particular, [15] and [16] reduce the domain size of
variables associated with constraint functions for task
allocation domains where nodes’ action choices are strictly
divided into working on a task or not. However, this method
is completely application dependent, because it can only be
applied to a specific problem formulation of task allocation
domain. Moreover, [17] carries a branch and bound search
utilizing constraint functions to ensure that the upper and
lower bounds can be evaluated using only a subset of variable
values. Nevertheless, the bounding function they propose to
accomplish this is entirely devoted to mobile sensor
coordination. Therefore, it is not directly applicable to
general settings. A more general approach to reduce the cost
of the maximization operator, called Generalized Fast Belief
Propagation (G-FBP), is proposed in [14]. In this approach,

they select and sort the top cd
n−1

2 values of the search space,
presuming the maximum value can be found from these
ranges. Here, c is a constant. Nevertheless, they also admit
that they cannot guarantee in advance whether the
presumption is true or false, and in the latter case G-FBP

incurs a significant penalty in terms of the computational
cost [18]. Recently, [19] develops a generic Function
Decomposing and State Pruning (FDSP) technique based on
branch-and-bound. FDSP includes Function Decomposing
(FD) phase that effectively computes the function estimation
with the intent to reduce the over-heads in computing an
upper bound of a partial assignment. Moreover, its State
Pruning (SP) phase is based on branch and bound that
reduces the search space. Besides, they also theoretically
prove that these bounds are monotonically non-increasing
during the search process.

On the other hand, another line of effort has recently been
sought to reduce the computation cost of the maximization
operator of the Max-Sum message passing algorithm [18].
This is motivated by the aforementioned pre-processing
sorting based approach G-FBP. Similar to G-FBP, it is a one-
shot pruning technique. Notably, unlike G-FBP, they provide
a theoretical guarantee that the reduced search space obtained
by using their algorithm always provides the desired outcome
from the maximization operator. The algorithm is generic in
a sense that it can be applied to any application (or setting)
of Max-Sum. To be exact, GDP computes the reduced search
space by considering one of its two semiring operators “sum.
Hence, GDP cannot be used on the maximization operator of
the Max-Product algorithm in its current form, though the
other benchmarking algorithm G-FBP is readily applicable
to this algorithm. Considering this observation and the
vast usability of Max-Product coupled with the theoretical
guarantee, generic nature and significant empirical results of
GDP leads to the fact that further investigation needs to be
undertaken to comprehend whether GDP can be tailored for
this particular message passing algorithm.

In light of the above background, this paper proposes a
modified version of GDP, that we call that we call GDPx, that
is applicable to the Max-Product algorithm, regardless of the
application domain. Similar to GDP, GDPx operates as a part
of the maximization operator, proveably without affecting its
solution quality (see Lemma 1). In other words, we improve
the computational efficiency of theMax-Product message
passing algorithm by reducing the search space over which
the maximization operation is computed. We empirically
evaluate the performance of our approach, and we observea
significant reduction of search space, ranging from around
85% to 99% by using this technique. More importantly, we
show the relative performance gain of GDPx gets better with
an increase in the variables’ domain size and the constraint
functions’ arity, in which the maximization operator acts on.

The remainder of this paper is structured as follows. We
describe the problem in more detail inthe section that
follows. Then, in Section 3, we discuss the complete process
of GDPx with a worked example. We end this section by
providing theoretical analyses. Subsequently, in Section 4,
wepresent the empirical results of our method compared to
the current state-of-the-art, and Section 5 concludes.

47GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

2. Problem Formulation

A constraint reasoning problem that can be solved using the
Max-Product belief propagation algorithm is defined by a
tuple X D F, , , where X is a set of discrete variables

x x xm0 1
, , ,�� � and D D D Dm� �� �0 1

, , , is a set of
discrete and finite variable domains. Each variable xi can

take value from the states of the corresponding domain Di .
F is a set of constraint functions F F FL1 2

, , ,�� � , where
each F Fi ∈ is a function associated with a subset of
variables xi X∈ defining the relationship among the
variables in xi . Thus, thefunction Fi ix� � denotes the
value for each possible assignment ofthe variables in xi .
Notably, the dependencies between the variables and the
functions generate a bipartite graph, called a factor graph.
The max-product algorithm operates directly in this
particular graphical representation of a deployed problem. In
a factor graph, each constraint function Fi ix� � is represented
by a square node and is connected to each of its associated
variable nodes xi (denoted by circles) by an individual
edge. Note that the term function is also known as factor, and
they are used interchangeably throughout this paper. Hence,
xi is the arity of Fi ix� � in this particular graphical
representation. Within the model, the objective is to assign
values to the variables X from their corresponding domains
in order to either maximize or minimize the global objective
function, which eventually produces the value of each
variable, X *.

For example, Fig. 1 depicts the relationship among variables
and functions in a factor graph representation. Here, we have
a set of four variables X x x x x� � �0 1 2 3

, , , and a set of two
functions F F F�� �0 1

, . . Moreover, . is a set of discrete

and finite variable domains, each variable x Xi ∈ can take

its value from the domain Di .The ultimate objective is to

either maximize or minimize a global objective function
F x x x x

0 1 2 3
, , ,� � . Here, the global objective function is

aproduct of two local functions F x x x
0 0 1 2

, ,� � and
F x x x

1 1 2 3
, ,� � .

Fig. 1. A sample factor graph representation with two
function/factor nodes F F

0 1
,� � and four variable nodes

x x x x
0 1 2 3
, , ,� � , illustrating a global objective function

F x x x x
0 1 2 3
, , ,� � . In the figure, variables are denoted by

circles and factors are squares. Here, the grey arrows are
used to highlight the factor-to-variable messages of the Max-
Product belief propagation algorithm, each of which requires
the maximization operation to be performed.

X arg max FX
i

L

i i
*

�� � ��
�
�

1

x ��

X arg min FX
i

L

i i
*

�� � �
�
�

1

x

 (1)

In the factor graph, F0 is associated (i.e. connected)
with three variable nodes, and as such, the arity of the
constraint function F0 is 3. Similar to F0 , the arity of
constraint function F1 is 3 in this particular example. Note
that the term function is also known as factor, and they are
used interchangeably throughout this paper.

As mentioned in the previous section, belief propagation
algorithms generally follow a message passing protocol
(also known as belief update or summary propagation
protocol) to exchange messages (i.e. beliefs) among the
nodes of the factor graph representation of the aforementioned
formulation. Notably, the Max-Product algorithm uses
Equations 2 and 3 for their message passing, and they can be
directly applied to the factor graph. Specifically, the variable
and function nodes of a factor graph continuously exchange
messages (variable xi to function Fj (Equation 2) and
function jF to variable xi (Equation 3) to compute an
approximation of the impact that each of the variable’s value
have on the global objective function by building a local
objective function Z xi i� � . In Equations 2 - 4, Mi stands for
the set of functions connected to variable xi and N j
represents the set of variables connected to function Fj .
Once the function is built (Equation 4), each variable picks
the value that maximizes the function by finding

Q x R xx F i
F M F

F x ii j

k i j

k i�
�

�� � � � ��

(2)

R x F Q xF x i x j j
x N x

x F kj i
j i

k j i

k j�
�

�� � � � � � � �
�

�
�
�

�

�
�
�

�max
x

x

(3)

Z x R xi i
F M

F x i
j i

j i
� � � � �

�
�� (4)

48 Md. Mosaddek Khan and N. V. Q. Trung

As discussed previously, due to the potentially large
parameter domain size and constraint functions with high
arity, the maximization operator of the factor-to-variable
message is the main reason the max-product belief
propagation algorithm can be computationally expensive.
This can be visualized from an example where a function
node has five variable nodes connected to it, meaning the
arity of the function is n = 5 . Here, we assume each of the
variables can take its value from 10 possible options (i.e.
states of the domain), implying that the domain size is
d =10 for each of the variables. In this case, the function
node has to perform 10

5 or 100 000, operations to generate
a message for one of its neighbouring variable nodes. Now,
each of the function nodes in a factor graph has to generate
and send a single message to each of its neighbours to
complete a single round of message passing [6, 12]. For
example, function node F0 of Figure 1has to send a distinct
message (grey arrow) to each of its neighbouring variable
nodes x0 , x1 and x2 . Each of these messages includes the
expensive maximization operator. Under such circumstances,
it is possible to significantlyreduce the computational cost of
this step. Meanwhile, it is essential to ensure that this
reduction process does not limit the algorithms’ applicability,
as well as not affecting the solution quality. We deal with the
issue that arises from the trade-off in the remainder of this
paper.

3. The GDPx Algorithm

GDPx (Algorithm 1) works as a part of Equation 3, which
represents a function-to-variable message of the Max-
Product belief propagation algorithm, in order to reduce the
search space over which the maximization needs to be
computed. This algorithm requires as inputs a sending
function node Fj jx� � whose utility depends on a set of
variable nodes (x j) associated with it (i.e.neighbours), a
receiving variable node xi j∈ x and all the incoming
messages from the neighbour(s) of Fj apart from the
receiving node xi , denoted as M �x xij

.
 Finally, GDPx

returns a pruned range of values (i.e.j) for each state i of
the domains of the variables over which the maximization
operation needs to be performed to generate the message
from the function node Fj � to the variable node xi �
(i.e.R xF x ij i� � �).

In more detail, S stands for a set s s sr1 2
, , , ��� �

representing each state of the domains corresponding to x j �
(line 1 of Algorithm 1). This implies that S is the union (

∪) of those sets of states, each of which corresponds to the
domain of a variable in x j . Line 2 sorts the local utility of
the sending function node Fj � independently by each state

s Si ∈ . It is worth noting that this sorting can be carried out
at runtime of a belief propagation algorithm without incurring
an additional delay [18]. Then the total number of incoming
messages received by Fj is represented by n � (line 3). Note
that, a complete worked example of GDPx is illustrated in
Figure 2 where we use a part of the factor graph of Figure 1
to show a factor-to-variable (i.e. F1 to x3) message
computation (Figure 2a), as well as the operation of GDPx
on it (Figure 2b). Here, the local utility of the sending
function node F1 is shown in atable at the left side of Figure
2a, which is based on three domain states R B G,� ,�� � (for
simplicity red, blue and green colours are used to distinguish
the values of the states, respectively) and three neighbouring
variable nodes x1 , x2 � and x3 . Moreover, the direction of
two incoming messages (n = 2) received by
F , . , . , .0 06203 0 05307 0 09390� �
and 0 08423 0 06310 0 04713. , . , .� � , from the variable
nodes x1 and x2 , respectively, are indicated using the dotted
black arrows. Then, the arrow from node F1 to variable
node x3 indicates the desired function-to-variable message

R xF x
1 3

3

4 4 4
3 603 10 3 027 10 2 309 10�

� � �� � � � � �� �. , . , . ,
and the complete calculation is depicted in a table at the left
side of Fig. 2a.

At this point, line 4 computes m which is the multiplication
of the maximum values of each of the messages
M M �k x xj i

∈ received by the sending function Fj , other
than the receiving variable node xi . Here, k is one ofthe
n messages received by Fj . In the worked example of
Figure 2b, since the maximum of the received messages

0 06203 0 05307 0 09390. , . , .� � (i.e. 1) and

0 08423 0 06310 0 04713. , . , .� � (i.e. 2) by F1 are

0 09390. and 0 08423. respectively, the valueof
m � � � � �

0 09390 0 08423 7 909 10
3

. . . . Now, the for
loop in lines 5 12− �generates the range of the values for
each state s Si ∈ � fromwhere we will always find the
maximum value for the function Fj , and discardthe rest. To

this end, the function sortedVal Fs j ji
x� �� � � gets the

sorted value of si � from line 2, and stores them in an array
i

(line 6). Then, line 7 finds p , which is the maximum of
the local utility values for the state si � (i.e. max i� �). In
the worked example, the sorted values of domain state R are
stored in ,epicted in the left side of Figure 2b. Hence, the
value of p = max .VR� � � � �

6 668 10
2 . Afterwards, line

8� computes b , which is the multiplication of the

49GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

corresponding values of p � from the incoming messages of
Fj (i.e. valp k� �). In the example, the values
corresponding to p (i.e. 6 668 10

2
. � �) from two incoming

messages are 9 390 10
2

. � � and 4 713 10
2

. � � , thus the
value of b � � � � � �� � �

9 390 10 4 713 10 4 425 10
2 2 3

. . .

. This can be seen in the first row of the rightmost table of
Figure 2b. The rows related to the computation for the state
R are summarized into this table from the rightmost table of
Figure 2a, which the complete computation of the function
F1 to variable x3 message based on domain states R , B

and G . Having obtained the value of m and b from lines
4 and 8 respectively, line 9 gets the cut point value c , where
we develop an equation to compute the value, which is

c p b
m

�
�

. The desired maximum value for the state si �

must always be found by considering the rows corresponding
to the values in the range p c,� � , denoted by
prunedRange p csi

,� �� � (lines 10 11−) (See Lemma 1
and its proof for the theoretical guarantee and the intuition
behind the choice of the range).

In the worked example of Figure 2b, the value

c �
�� �� �� �

�
� �

� �

�
�

6 668 10 4 425 10

7 909 10
3 371 10

2 3

3

2
. .

.
.

, given p � � �
6 668 10

2
. , b � � �

4 425 10
3

.

and m � � �
7 909 10

3
. . Hence, the resultant

range for the state R of this particular example is
 � � ��� ��

� �
6 668 10 3 371 10

2 2
. , . . This implies that the

desired maximum value will be found by considering the
rows corresponding to the values in the range . As can

be seen in the right most table of Figure 2b, only considering
the top three rows are sufficient to obtain the desired value
of R ; hence, it is not necessary to consider the remaining
6 rows for this particular instance. To be exact, the value
for the state R after maximization is 3 603 10

4
. � � , which

isobtained from the row corresponding to the local utility
value of 4 555 10

2
. � � . In this way, GDPx reduces the

computational cost of the expensive maximization operator.
The grey colour is used to mark the discarded rows of the
table. We can see that even for such a small instance, having

50 Md. Mosaddek Khan and N. V. Q. Trung

domain size d = 3� and arity n = 3 , GDPx prunes more
than 65% of the search space during the maximization of a
state in computing the function-to-variable message.

As argued above, it is important to ensure that combining
GDPx with Equation 3 does not make the computation of
a function-to-variable message prohibitively expensive. In
this regard, the original GDP algorithm proposed for the
Max-Sum algorithm shows that its overall time complexity
isO Vr log i� �� � [18]. Thus, GDP is able to reduce the
search space significantly at the expense of a quasi-linear
computation cost of its own. Here, r stands for the number

of states of the variables’ domain associated with the sending
function node (line 5).Then, i is the size of the array i ,
hence log i is the time complexity to do the binary search
on i , which is required for their approach. On the other
hand, our proposed approach GDPx, which works on the
the Max-Product belief propagation algorithm, does not
require performing binary search on i to find the cut-point.
Therefore, the overall complexity of GDPx is r� � . This
significantly indicates that GDPx can perform at the expense
of a linear computation cost of its own.

Fig. 2. (a) Computation of a factor-to-variable message (i.e. F1
 to x

3
.)

51GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

Fig. 2. (b) Complete operation of GDPx on R xF x
1 3

3� � �

Figure 2. Worked example of GDPx in computing a factor-to-variable message, F1 to x3 or R xF x
1 3

3� � � , within the factor
graph shown in Figure 1. In this example, for simplicity, we show that part of the original factor graph which is necessary for
this particular message computation. In the figure, red, blue and green coloured values are used to distinguish the domain states
R , B and G � respectively for each of the variables involved in the computation, and arrows between the nodes of the factor
graph are used to indicate the direction of the corresponding messages.

Lemma 1. During the function-to-variable message compu-
tation, the desired maximum value for a state s Si ∈ must
always be found from the rows corresponding to the values
ranging from p to c .

Proof. We prove this by contradiction. Assume there exists a
row r

u that resides outside the range from which the maxi-
mum value for si can be found. That means:

p M p bu
k

p ku
�
� � � � �

1

n

val

(5)

where pu is the local utility value for si which corresponds
to the row ru and val p ku

M� � (� � �k 1, , n) is the cor-
responding value of pu from the k th incoming message of
Fj . However, as the row ru is outside the pruned range, we
have p cu < , or:

p p b
mu �
�

(6)

From Equations 5 and 6, we have:

p b
m

M p b
k

p ku

� � � � �
�
�

1

n

val .

(7)

Replace m in Equation 7 by the product identified in Line 4
of Algorithm 1, we have:

k
p k

k
ku

M M
� �
� �� � � � �

1 1

n n

val max (8)

We can see that Equation 8 is false. Hence, there
exists no such row as ru .

4. Empirical Results

Given the detailed description in the previous section,
we now empirically evaluate how much speed-up can
be achieved using GDPx and compare this with the
performance of G-FBP. In so doing, we run our experiments
on corresponding factor graphs representing different
instances of the benchmarking graph colouring problem. It
is obvious from the discussion of Lemma 1 that our approach
neither improves nor affects the solution quality of Max-
Product; rather its sole objective is to reduce its computation
cost while maintaining the same solution quality. Therefore,
we focus on the computation aspect of the algorithm. More
specifically, both the approaches, G-FBP and our proposed
GDPx, intend to reduce the computation cost of the most
expensive phase of the Max-Product belief propagation
algorithm, that is the maximization operator. This particular
operator, as discussed in Section 2, depends on two factors:
i) domain size of the associated (i.e. neighbouring) variable
nodes of the sending function nodes and ii) density of the
factor graph, which can be apprehended from the values of
arity/degree of the sending function nodes. Moreover, it is
also observed from the literature that a pruning algorithm’s
performance often varies with the size of the problem setting
[14, 18]. In light of the aforementioned discussion, we
perform our experiments on varying these three parameters.
Note that all of the experiments were performed on a
simulator implemented in an Intel i7� Quadcore i7� GHz
machine with 16�GB of RAM.

In our first experiment, as illustrated in Figure 3, we consider
factor graphs having a number of function nodes randomly
taken from the range 5 to 50, and that each of the factor
graphs is generated by randomly connecting a number of
variable nodes per function node. Specifically, this number
of variable nodes connected to each function node, termed
the arity n of a function node (i.e. density), is randomly

52 Md. Mosaddek Khan and N. V. Q. Trung

chosen from the range 2 8�� � . In Figure 3, we report the
percentage of search space pruned by GDPx and G-FBP
during the computation of function-to-variable messages
as the values of the domain size of the variables (i.e. d
) increases. Notably, G-FBP is based on an intuition that
the maximum value can be found from the partially sorted
top cd

n−1

2 values (see Section 1 for details). When this

presumption is false, it incurs a significant penalty in terms
of the computation cost (i.e. search space). Nevertheless, we
always consider that their assumption is true while reporting
the performance of G-FBP for all of the experiments in
this paper. Moreover, the developers of G-FBP specifically
admitted in [14] that the chosen value of the constant c can

Fig. 3. Percentage of search space pruned as the domain size increases, GDPx vs G-FBP, for the factor graph representations of different
instances of the graph colouring problem. Here the values of dependent variables, density and number of function nodes, are randomly
taken from the ranges 2 8,� � and 5 50,� � , respectively. In the figure, we use four different values of the constant c in evaluating the
performance of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 4. Percentage of search space pruned as the density increases, GDPx vs G-FBP, for the factor graph representations of different
instances of the graph colouring problem. Here the values of dependent variables, domain size and number of function nodes, are randomly
taken from the ranges 2 7,� � and 5 50,� � , respectively. In the figure, we use four different values of the constant c in evaluating the
performance of G-FBP. Error bars are calculated using standard error of the mean.

53GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

Fig. 5. Percentage of search space pruned as the number of function node increases, GDPx vs G-FBP, for the factor graph representations
of different instances of the graph colouring problem. Here the values of dependent variables, domain size and density, are randomly taken
from the ranges 2 7,� � and 2 8,� � , respectively. In the figure, we use four different values of the constant c in evaluating the performance
of G-FBP. Error bars are calculated using standard error of the mean.

Fig. 6. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 3. Error bars are calculated using standard error of the mean.

make notable difference in its overall performance, and
hence they discussed the significance of a range of values of
c . By taking their observation into account, we consider 4
values (i.e. 2 5 10, , and 15) of c for all of the experiments
presented in this paper. It is worth noting that the local utility
tables (i.e. probability distribution tables) for the function
nodes of a factor graph are generated randomly. Now, to get
the results based on the aforementioned setting, we initially

compute the percentage of the search space pruned (i.e.
speed-up) by the algorithms for a function node by taking
the average of the speed-ups of all the messages sent by that
function node. Afterwards, we take the average of the speed-
ups of all the nodes in a factor graph. Finally, we report the
results of each factor graph averaged over 100 test runs
in Figure 3, recording standard errors to ensure statistical
significance.

54 Md. Mosaddek Khan and N. V. Q. Trung

Fig. 7. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 4. Error bars are calculated using standard error of the mean.

Fig. 8. Completion time (single message) of GDPx compared to full-search in the Max-Product algorithm. In this experiment, we use the
same setting as Figure 5. Error bars are calculated using standard error of the mean.

In Figure 3, the green line illustrates the performance of
G-FBP with the value of c =15 . For this setting, it can be
seen from the trend of the line that G-FBP’s performance is
only notable for domain size 4 or more. To be exact, this
algorithm prunes around 18% of the search space during

the computation of the maximization operation when d = 4
. While in the same setting G-FBP reduces around 35 64− %
of the search space for the domain size 5 7− . Although
G-FBP’s performance is slightly better with c value 10 , the
trend is similar to the previous one (orange line). Notably, its

55GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

pruning rate is around 48 75− % for the value of the
domain size 5 7− . On the other hand, as depicted in the
orange line of Figure 3, for c = 5 , G-FBP’s pruning rates
are around 37% , 60%, 74% and 85% for the d values
3 4 5,�,� and 6 , respectively (light-yellow line). The pruning
rate reaches the maximum of 88% with d = 7 for this
setting. Nevertheless, it is clear from the results shown in
blue line that G-FBP performs even better with lower values
of c (i.e. c = 2). To be precise, it reaches at its peak with
around 95% pruning rate for d = 7 . Having stated that,
there is no theoretical guarantee that G-FBP will always
provide the above performance, which as aforementioned,
are generated considering their presumption always true. In
this context, [18] shows that due to this phenomenon (i.e. the
lack of theoretical guarantee), G-FBP produces severely
inconsistent performance. Despite this issue, we consider
such to show how our proposed GDPx performs compared
to the best possible (although unrealistic) performance of the
state-of-the-art algorithm, G-FBP. Significantly, the red line
of Figure 3 illustrates that GDPx always performs better than
all the versions of G-FBP. Similar to what we observed from
the trend of G-FBP’s results, the performance GDPx is better
when the variables take their values from a larger domain
size, given that the other parameters remain identical.
Nevertheless, unlike G-FBP, GDPx prunes around 90% of
the search space for values of d as small as 2 . Overall, the
pruning rate of GDPx always lies within the range of
90 96− % , and is correspondingly better than any version
of the G-FBP algorithm. Note that neither all the nodes, nor
all the function-to-variable messages experience similar
performance from the proposed approach, due to their
differences in the content of the utility tables and incoming
messages.

Figure 4 illustrates the comparative performance of GDPx
and G-FBP (four versions) for factor graphs representing
different instances of the graph colouring problem with
function nodes’ density/arity (i.e. n) ranging from 2 to 8.
Similar to the previous experimental setting, we consider
factor graphs having a number of function nodes randomly
taken from the range 5 to 50 . However, we report the
pruning rate while increasing the value of n to observe how
the algorithms perform for the factor graphs with different
density. Here, we randomly choose the values of the
variables’ domain size from the range 2 7,� � . Finally, we
report the results of each factor graph averaged over 100 test
runs and record standard errors to ensure statistical
significance. It is observed from Figure4 that GDPx prunes
at least 88% or more of the search space during the
computation of the maximization operation for the Max-
Product algorithm (red-line). Surprisingly, GDPx’s pruning
rate reaches around 99% for the factor graphs with n ’s
value 6, 7 or 8 for this setting. This trend coupled with the
previous experiment’s observation is remarkably important

because it gives us a clear indication that GDPx is able to
prune the maximum amount of search space when the values
of n and d becomes larger. On the other hand, even the
best-case of the G-FBP algorithm never outperforms GDPx,
though its performance is getting better with the lower value
of c . However, it is worth noting that with a lower value of
c there is a higher possibility that their presumption is false,
which would force G-FBP to consider the full search space
again.

The final experiments for the metric pruning rate is shown in
Figure 5 which reports the performance of GDPx and G-FBP
(four versions) as the number of function node increases
from as small as 5 to the maximum 100. For this experiment,
the values of dependent variables, domain size d and nodes’
density n , are randomly taken from the ranges 2 7,� � and
2 8,� � , respectively. Similar to the previous two experiments,

we initially compute the percentage of the search space
pruned by the algorithms for a function node by taking the
average of the speed-ups of all the messages sent by that
function node. Then, we take the average of the pruning rate
(%) of all the nodes in a factor graph. Finally, we report the
results of each factor graph averaged over 100 test runs in
Figure 5, recording standard errors to ensure statistical
significance. On the one hand, the best case of G-FBP
(i.e. c = 2) prunes around 67 70− % of the search space
(blue-line) in this particular experiment. On the other hand,
GDPx prunes around 90 92− % of the search, and more
importantly in a steady rate. In addition, for all three of these
experiments, we run the one-way ANOVA with post-hoc
Tukey HSD test. While doing so, we consider GDPx, G-FBP
(c = 2), G-FBP(c = 5), G-FBP (c =10) and G-FBP (
c =15) as treatments, each of which illustrates the
percentage of the search space pruned. For each experiment,
the observed p -value corresponding to the F-statistic of
one-way ANOVA is lower than 0.05, suggesting that the one
or more treatments are significantly different. Subsequently,
we employ a post-hoc test (Tukey HSD) that also suggests
that the performance of GDPx is significantly different from
each of the remains, individually (i.e. p < 0 01.).

When taken together the above empirical results, it is
obvious that GDPx significantly reduces the computation
cost of the maximization operator of the Max-Product
algorithm by reducing the search space upon which the
maximization operator acts on. It can also be claimed based
on the theoretical analysis that GDPx does not compromise
on the solution quality in doing so. Whereas its counterpart
G-FBP cannot provide this theoretical guarantee. Moreover,
GDPx reduces more of the search spaces compared to the
best cases of all the versions of G-FBP, and this is true
for all the cases that we have considered in our empirical
evaluation. Now, in our final set of experiments, we examine
what does this reduction of search space actually mean in
reducing the completion time (Figures 6, 7, 8). To do so, we

56 Md. Mosaddek Khan and N. V. Q. Trung

report the time GDPx takes to compute a single function-
to-variable message (i.e. the completion time), and compare
this with the completion time of a single message though
full-search. Note that, since the search space obtained by
G-FBP is always larger than what is achieved by GDPx,
its completion time can never be smaller than GDPx. We
therefore to avoid redundancy did not consider G-FBP in this
particular experiment.

Specifically, Figure 6 illustrates the performance gain of
GDPx in terms of completion time (red line), and compare
this to the standard way of computing the maximization
operation (dotted-black line) in a single function-to-variable
message for the same experimental setting (i.e. the values of
arity and the number of function nodes) used in Figure 3. To
report the result for each domain size d , we take the average
of 100 different observations and record standard errors to
ensure statistical significance. It can be seen from Figure 6
that GDPx saves 50% and 75% completion time of the full
search when domain sizes are 2 and 3, respectively. Then,
the impact of GDPx is getting larger with the value of d . To
be precise, the performance gain reaches around 90 25. %
to 99 32. % for the domain size of the variable nodes 3 to 10
in this setting.

In Figure 7, the same metrics (i.e. the completion time) is
considered to measure GDPx’s performance. However, the
experimental setting for this experiment is identical to what
we considered in Figure 4. It can be observed from the trend
of comparative results depicted in the figure that GDPx
consumes 50% to 90% less time than its counterpart for the
value of n (i.e. number of variables connected to a function
node) 3 to 10. Notably, the trend is identical to the previous
experiment, and this is important because it gives us a clear
indication that GDPx is able to reduce the maximum amount
of completion time when the values of n and d becomes
larger.

Finally, using the same experimental setting as depicted
in Figure 5, Figure 8 illustrates the completion time of a
single message through GDPx as well as with the standard
approach. We do this to observe how GDPx performs for
different size of factor graphs. Notably, GDPx experiences
67% to 88% reduction of the completion time in this setting.
More importantly, it is obvious from the figure that GDPx
performance does not affected by the increase of the problem
size, instead it gets better for larger settings. Moreover, it is
worth noting from the results depicted in Figures6, 7 and 8
that GDPx’s own runtime is also negligible. This is expected

because from its complexity analysis we find that only
a linear time is required to execute the proposed GDPx
algorithm (see Section 3).

5. Conclusion and Future Work

In this paper, we tailor the GDP algorithm and develop a new
algorithm GDPx that is capable of significantly reducing the
computation cost of the maximization operator of Max-
Product algorithm. Our extensive empirical evidence
observes a significant reduction of search space, ranging
from around 85% to 99%�by using this technique. We
demonstrate that the relative performance gain of GDPx
improves with increasing the domain size of the variables
and the arity of the constraint functions on which the
maximize operator acts. These findings also serve as
empirical proof for scaling up. In the future, we intend to
study whether branch and bound based FDSP can be used
effectively to accelerate Max-Product in real-world
applications and to compare its performance to that of our
GDPx.

Acknowledgement
This paper builds on our previous work presented at the
Seventeenth International Conference on Autonomous
Agents and Multiagent Systems, held in Stockholm, Sweden,
from July 10-15, 2018 [18]. This work is primarily funded
by the Centennial Research Grant (CRG) of University of
Dhaka.

References
1. J. Pearl, Probabilistic reasoning in intelligent systems: Networks

of plausible inference (representation and reasoning), 1988.
2. J. Sun, N.-N. Zheng, H.-Y. Shum, Stereo matching using

belief propagation, IEEE Transactions on pattern analysis and
machine intelligence, 25 (7), 787–800, 2003.

3. M. P. Fossorier, M. Mihaljevic, H. Imai, Reducecomplexity
iterative decoding of low-density parity check codes based on
belief propagation, IEEE Transactions on communications, 47
(5), 673–680, 1999.

4. A. Farinelli, A. Rogers, A. Petcu, N. R. Jennings, Decentralised
coordination of low-power embedded devices using the max-
sum algorithm, in: Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Vol. 2, pp. 639–646, 2008.

5. R. Dechter, Reasoning with graphical models (2007).
6. F. R. Kschischang, B. J. Frey, H. Loeliger, Factor graphs and

the sum-product algorithm, IEEE Transactions on Information
Theory, 47 (2), 498–519, 2001.

7. A. R. Leite, F. Enembreck, J. A. Barth`es, Distributed constraint
optimization problems: review and perspectives, Expert
Systems with Applications, 41 (11), 5139–5157, 2014.

8. F. Fioretto, E. Pontelli, W. Yeoh, Distributed constraint
optimization problems and applications: A survey, Journal of
Artificial Intelligence Research, 61, 623–698, 2018.

9. K. P. Murphy, Y. Weiss, M. I. Jordan, Loopy belief propagation
for approximate inference: An empirical study, in: Proceedings
of the Fifteenth conference on Uncertainty in artificial
intelligence, Morgan Kaufmann Publishers Inc., pp.467–475,
1999.

57GDPx: An Application Independent Pruning Technique to Reduce Computation Cost of Max-Product Belief Propagation Algorithm

10. P. F. Felzenszwalb, D. P. Huttenlocher,Efficient belief
propagation for early vision, International journal of computer
vision, 70 (1), 41–54, 2006.

11. A. Farinelli, A. Rogers, N. R. Jennings, Agent-based
decentralised coordination for sensor networks using the max-
sum algorithm, Autonomous agents and multi-agent systems,
28 (3), 337–380, 2014.

12. S. M. Aji, R. McEliece, The generalized distributive law, IEEE
Transactions on Information Theory, 46 (2), 325–343, 2000.

13. M. M. Khan, L. Tran-Thanh, S. D. Ramchurn, N. R. Jennings,
Speeding up gdl-based message passing algorithms for large-
scale dcops, The Computer Journal, 61 (11), 1639 –1666, 2018.

14. Y. Kim, V. Lesser, Improved max-sum algorithm for dcop with
n-ary constraints, in: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 191–198, 2013.

15. S. D. Ramchurn, A. Farinelli, K. S. Macarthur, N. R. Jennings,
Decentralized coordination in robocup rescue, Computer
Journal, 53, 1447–1461, 2010.

16. K. S. Macarthur, R. Stranders, S. D. Ramchurn, N. R. Jennings,
A distributed anytime algorithm for dynamic task allocation
in multi-agent systems, in: Proceedings of the 25th AAAI
Conference on Artificial Intelligence, pp. 701–706, 2011.

17. R. Stranders, A. Farinelli, A. Rogers, N. R. Jennings,
Decentralised coordination of mobile sensors using the max-
sum algorithm, in: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), Vol. 9, pp. 299–
304, 2009.

18. M. M. Khan, L. Tran-Thanh, N. R. Jennings, A generic domain
pruning technique for gdl-based dcop algorithms in cooperative
multi-agent systems, in: Proceedings of the 17th International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), IFAAMAS, Stockholm, Sweden, pp. 1595–1603,
2018.

19. Z. Chen, X. Jiang, Y. Deng, D. Chen, Z. He, A generic approach
to accelerating belief propagation based incomplete algorithms
for dcops via a branch-and-bound technique, in: Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33, pp.
6038–6045, 2019.

