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ABSTRACT

Frequent pattern mining is a core problem in data mining. Algorithms for frequent pattern mining have been proposed 
for itemsets, sequences, and graphs. However, existing graph mining frameworks follow an edge-growth approach to 
building patterns which limits many applications. Motivated by real-life problems, in this work, we define a novel graph 
mining framework that incorporates vertex-based extensions along with the edge-growth approach. We also propose an 
efficient algorithm for mining frequent subgraphs. To deal with the exploding search space, we introduce a canonical 
labeling technique for isomorphic candidates as well as downward closure property-based search space pruning. We 
present an experimental analysis of our algorithm on real-life benchmark graph datasets to demonstrate the performance 
in terms of runtime.
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1. Introduction

Frequent pattern mining from a given collection of data is one 
of the core problems of data mining. Frequent patterns can be 
used for classification [1-2], clustering, data summarization, 
outlier analysis, etc. Research has been conducted on 
developing methods for mining frequent itemsets [3], 
sequences [4]. Frequent itemset mining algorithms take a 
collection of unordered itemsets as input and extract itemsets 
that co-appear frequently. These algorithms are useful for 
market basket analysis, recommendation systems, etc. 
Frequent pattern mining algorithms for sequential data such 
as DNA sequences, protein sequences take a collection of 
sequences as input and find frequent subsequences from those. 

A graph is a data structure that can represent more complex 
associations than itemsets and sequences. Graphs are useful 
for encoding information such as web data [5], social 
network data [6], protein structures, chemical compounds, 
etc. Analogous to frequent itemset and subsequence 
mining, algorithms have been proposed for mining frequent 
subgraphs from a collection of graphs [7-9].

However, the existing frequent pattern mining frameworks 
have a significant limitation. It builds patterns following 
the edge-growth approach. A pattern is extended by adding 
an edge with both vertices already determined. This results 
in the loss of many interesting patterns and restricts the 
performance of many applications. To demonstrate the 
limitation, we can consider a motivational example based 
on knowledge graphs [10], [11], [12]. A knowledge graph 
is a special kind of graph where each edge encodes facts 
by representing a relationship between the data entities 
represented by the corresponding vertices. For example, in 
Fig. 1, we present two example knowledge graphs, G1 and 
G2. The knowledge graph G1 states the facts that “Pei is an 
actor who owns a cat” and “cat eats fish.”

Similarly, in G2, the stated facts are “Han is a clerk who 
owns a cat” and “the cat eats fish”. In Fig. 2, we present 
three subgraphs, g1, g2, and g3, from the knowledge graphs 
presented in Fig. 1. Here, g1 represents “Pei owns a cat”, 

and g2 represents “Han owns a cat”. Now, the subgraph g3 
represents the fact “Someone owns a cat”. According to 
the existing graph mining frameworks, both g1 and g2 are 
considered as patterns mined from the collection of graphs 
containing G1 and G2 but not g3. However, the fact that 
someone owns a cat expressed by g3 is present in both G1 
and G2. Thus g3 is more frequent than g1 and g2. Ignoring 
patterns like g3 can be crucial in many real-life applications. 
For example, we can use frequent subgraphs as features for 
fake news article detection by representing the articles as 
knowledge graphs. In our example, feature patterns like g3 
will increase the probability of authenticity of a new fact that 
Chen owns a cat which is not possible with feature patterns 
g1 or g2 as they specify the persons to be Han and Pei exactly. 

To solve the problem, in this paper, we propose a new flexible 
framework for frequent subgraph mining. In our framework, 
we build patterns by adding a vertex or an edge only in each 
extension. It results in mining a higher number of interesting 
patterns, as we have described earlier. We also propose a 
novel algorithm for mining frequent subgraphs according to 
our modified framework.

Fig. 1. Knowledge graphs.
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The major challenge in graph mining is dealing with the 
exploding search space. We need to generate candidate 
patterns in such a way that the number of false candidates is 
minimized. For each candidate in the search space, we need 
to check for subgraph isomorphisms in all of the graphs. 
Subgraph isomorphism checking is an NP-hard problem. A 
higher number of false candidates involves more subgraph 
isomorphism checking and slows down the mining process 
significantly. To deal with this problem, we employ downward 
closure property and avoid extending any infrequent 
candidates as all of them will also be infrequent. To skip 
testing and extending isomorphic candidates, we introduce a 
canonical labeling technique for all the isomorphism classes, 
and we prune all the non-canonical candidates. Both of the 
pruning methods help to reduce the runtime significantly. 
To prove the efficiency of our proposed algorithm, we have 
conducted experiments on real-life graph databases.

Our key contributions are to:

• tailor a novel flexible framework for frequent subgraph 
mining motivated by real-life applications,

• devise a complete algorithm for mining frequent subgraph 
patterns as defined in our framework,

• develop a canonical labeling technique for pruning 
isomorphic candidates.

• perform extensive empirical analysis over real-life graph 
databases.

In the rest of this paper, Section 2 discusses the related works. 
Then, in Section 3, we present our proposed framework 
and algorithms. Next, experimental results and analysis are 
presented in Section 4. Finally, we conclude the paper in 
Section 5.

Fig. 2. Example subgraphs. 

2. Background and Related Works

Frequent pattern mining problem was first introduced to mine 
association rules from itemset data [13], [3]. Frequent itemset 
mining extracts frequent patterns from a set of transactions, 
D = {T1, T2, ..., Tn}. Let I be the set of all items. A transaction 
Ti is a subset of I. An example transaction database is shown 
in Table 1. The database contains four transactions T1, T2, 
T3, and T4. Here, I = {p, q, r}. The transaction T1 consists 
of items p, q, and r. Similarly, T2 consists of p and r. The 

support of an itemset pattern P ⊆ I in a transaction database 
D can be defined as,

For example, the support of the itemset P = {p, q} in 
the database D of Table I is two because P is a subset of 
transactions T1 and T4. Frequent itemset mining from a 
transaction database D discovers itemsets P, such that sup(P, 
D) ≥ minsup where minsup = |D|×δ. Here, δ is a user-defined 
threshold. If we take δ = 0.50, then minsup = 4×0.50 = 2 for 
the example database D. Now, as the support of the pattern P 
= {p, q} is 2, it is a frequent pattern.

Apriori [13] is a frequent itemset mining algorithm following 
level-wise candidate generation and testing. It uses frequent 
itemsets with n items to generate candidates containing n+1 
items. Then candidates with n + 1 items are pruned with 
infrequent itemsets as a subset using the downward closure 
property. According to the downward closure property, 
itemsets containing infrequent itemsets as a subset will not 
be frequent. Finally, the Apriori algorithm finds the frequent 
patterns by checking the candidates. However, the Apriori 
algorithm has some significant limitations. The amount of 
false candidates generated is high, which turns out to be 
computationally costly. Besides, if the longest frequent 
pattern contains n items, it requires n database scans. FP-
growth [3] has been proposed to address and resolve this 
problem, requiring only two database scans.

Frequent graph pattern mining algorithms from graph 
databases mine frequent subgraphs from a collection of 
graphs. For example, AGM [14] is an Apriori-based frequent 
subgraph mining algorithm. It generates subgraph candidates 
of size k + 1 from frequent subgraphs of size k. Here, a 
subgraph of size k contains k vertices. FSG [8] is a similar 
approach, but it defines the subgraph sizes by the number 
of edges. Both the algorithms employ downward closure 
property to prune candidates. However, in both approaches, 
duplicate isomorphic candidates are generated. This problem 
has been addressed by gSpan [7] algorithm. Following the 
edge-growth approach, it starts from an empty subgraph and 
extends each candidate by adding an edge to it. It represents 
each candidate subgraph using a sequence of extensions 
named DFS code. An order is defined among the DFS codes 
of all the isomorphic forms of a subgraph. By extending 
only the canonical DFS codes, gSpan avoids testing and 
extending duplicate isomorphic subgraphs. GASTON [20] is 
another frequent subgraph mining algorithm that introduces 
the “quickstart principle”. It divides the mining process 
into multiple phases. The algorithm finds frequent paths 
first, and then it finds the frequent trees and cyclic graphs. 
PMFS-IB [21] introduces parallel processing for faster 
frequent subgraph mining. The algorithm adapts gSpan 
for large databases with parallel computing. GE-FSG [22] 
utilizes frequent subgraphs for entire graph classification. 
However, regardless of the methods, all these existing works 
define subgraphs or build patterns where all the vertices are 
determined. As a result, many interesting associations are 
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ignored in the mining process. The missing patterns due to 
rigidness in the definition of subgraph can be crucial to many 
real-life applications such as classification, clustering, and etc.

Table 1: A Transaction Database

Transaction Id Transaction

T1 p, q, r

T2 p, r

T3 q, r

T4 p, q

3. Proposed Method

Let D be a set of labeled graphs and L be the set of vertex and 
edge labels. A graph G can be denoted as a 3-tuple, <VG, EG, lG>, 
where VG is a set of vertices, EG ⊆ V x V is a set of edges, lG: 
VG ∪ EG → L is a function that defines the labels of the vertices 
and edges. In Fig. 3, we present an example graph database 
consisting of three graphs G1, G2, and G3. All the vertices and 
edges are labeled. For example, the vertex v1 in G1 is labeled as 
“a” and the edge e1 is labeled as “q” respectively. Let g = <Vg, 
Eg, lg> be a subgraph where Vg is a set of vertices, Eg ⊆ V ∪ V 
x V is a set of edges, lg:Vg ∪ EG → L is the labeling function. A 
subgraph isomorphism from g to a graph G holds if there exists 
a function ϕ: Vg ∪ Eg → VG ∪ EG, such that,

•	 ∀v ∈ Vg, lg(v) = lG(ϕ(v)).
•	 ∀e ∈ Eg, lg(e) = lG(ϕ(e)).
•	 ∀e ∈ Eh, {ϕ(v) : v ∈ e} ⊆ ϕ(e).

Table 2: Subgraph Isomorphisms

Vertex/Edge ϕ1(in G1) ϕ2 (in G2)

v1 v1 v1

v2 v2 v2

e1 e1 e1

e2 e4 e2

Fig. 3. A graph database D

Fig. 4. A subgraph g

We present an example subgraph in Fig. 4. Here, the edge e1 
is labeled as q. The other edge, e2 represents an association 
between v2 and any other vertex where the edge label is 
p. Table 2 presents the subgraph isomorphism from the 
subgraph g of Fig. 4 to the graphs in the database D of Fig. 
3. ϕ1 represents a subgraph isomorphism from g to G1 and 
ϕ2 represents a subgraph isomorphism from g to G2. For G3, 
there is no subgraph isomorphism from g.

Let us denote the set of all subgraph isomorphism from a 
subgraph g to a graph G as Φ(g, G). Now, we can define the 
frequency support of g in a G as,
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In database D of Fig. 3, we find a subgraph isomorphism 
from the subgraph g of Fig. 4 to graph G1, as shown in Table 
1. So, the frequency support of g in G1, sup(g, G1) = 1. For 
the same reason, sup(g, G2) = 1. However, sup(g, G3) = 0 as, 
from g to G3, we find no subgraph isomorphism. We define the 
frequency support of a subgraph g in a graph database D as,

In our example database D of Fig. 3, we calculate the 
frequency support of the subgraph g of Fig. 4 as, sup (g, D) 
= sup(g, G1) + sup(g, G2) + sup(g, G3) = 1 + 1 + 0 = 2.

Frequent subgraph Mining: Given a graph database D and 
a frequency threshold δ, frequent subgraph mining extracts 
the subgraphs g where sup(g, D) >= minsup. Here, minsup = 

|D| x δ. For database D of Fig. 3, let δ = 2

3
. Now, minsup = 

2

3
. x 3 = 2. We find that sup(g, D) = 2. That is sup(g, D) >= 

minsup. So, g is a frequent subgraph in D.

Now, we present our proposed algorithm for the frequent 
subgraph mining problem as defined in Section 2. Our 
objective is to mine patterns so that no frequent subgraph 
is missed and the number of candidates is minimized. Our 
algorithm starts from an empty subgraph candidate and 
extends the candidates in each step like a depth-first search 
instead of Apriori [13] based level-wise candidate generation. 
We assign all the vertices and edges in a candidate subgraph 
with a unique identification number following the order of 
them being included in the corresponding candidate.

For example, let the vertex added last to the candidate g 
be lastv(g). Similarly, let laste(g) be the edge that has been 
added last. In our algorithm, we extend each candidate by 
employing any of the following strategies:

•	 Vertex-append: Adding an existing or new vertex to the 
edge that has been added last.

•	 Edge-append: Adding a new edge with precisely one 
existing vertex.

Extending candidates in this manner reduces the search 
space compared to the brute force approach. However, still, 
many isomorphic candidates will be generated. Testing 
and extending these isomorphic candidates is redundant 
and costly. We propose a canonical labeling technique for 
isomorphic candidates to deal with this challenge. The idea 
is to define an order among all the isomorphic forms of a 
candidate subgraph. Whenever a candidate is generated, 
we can determine if it is the minimum one among all the 
isomorphic forms of the candidate according to the defined 
order. If it is the minimum one, we call it a canonical 
candidate. Our algorithm only avoids redundant and costly 

subgraph isomorphism checking by testing and extending 
the canonical candidates only.

Now, we formally define our proposed canonical labeling 
technique. We represent each subgraph candidate as an 
ordered sequence of extensions. Let us denote an extension 
using a tuple <type, vertex, vertex label, edge label>. For 
example, a Vertex-append extension by appending a vertex 
with identification number 2 and label b is represented as <v, 
2, b, ->. An Edge-append extension that adds an edge with 
label p containing a vertex with identification number 1 and 
label c is denoted as <e, 1, c, p>. Let ext1 = <t1, d1, lv1, le_1> 
and ext2 = <t2, d2, lv2, le2> be two extensions. We define the 
order among extensions such that ext1 < ext2 if and only if 
one of the following holds true.

•	 t1 = v, t2 = e.

•	 t1 = v, t, = v, d1 < d2.

•	 t1 = v, t2 = v, d1 = d2, lv1 < lv2.

•	 t1 = e, t2 = e, d1 < d2.

•	 t1 = e, t2 = e, d1 = d2, le1 < le2.

•	 t1 = e, t2 = e, d1 = d2, le1 = le2, lv1 < lv2.

Finally, by comparing extension tuples, we define the order 
among candidate subgraphs, and the minimum candidate, 
according to the order, is canonical. Besides canonical-
labeling-based pruning, our algorithm also utilizes the 
downward closure property of frequent patterns. According 
to the property, patterns extended from an infrequent pattern 
will always be infrequent. By using this property, our 
algorithm only extends frequent candidates.

In Algorithm 3, we present the pseudocode of our frequent 
subgraph mining algorithm. We find all the possible 
extensions of a given candidate first (line 2). Then, for each 
extension in Algorithm 3, we check if the extended candidate 
is canonical or not and if it is a frequent pattern (line 5).

Given that both conditions are satisfied, we output the 
candidate as a frequent pattern and mine further extended 
patterns recursively (lines 6-7). The procedure for finding the 
extensions is presented in Algorithm 1. It takes a candidate 
subgraph and the graph database as input. All the graphs in the 
database are considered to generate extensions (line 3). If the 
candidate subgraph is empty, all the vertices in the edges are 
considered, and an edge-append extension is generated for 
the vertex in the edge (lines 4-7). Otherwise, all the subgraph 
isomorphism are considered to find extensions (lines 9-24). 
The pseudocode for determining whether a candidate is 
canonical or not is shown in Algorithm 2. It starts with an 
empty subgraph and keeps extending it in the input graph. 
If any sequence of extension tuple representation is found 
lower according to the defined order, it outputs the candidate 
to be non-canonical.

Runtime Complexity Analysis: In our algorithm, for each 
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candidates generated, the support count and canonicity is 
checked, and the set of possible extensions is found. Let 
Nv and Ne be the highest number of vertices and edges in 
any graph in the database. For finding the support count, we 
need to find subgraph isomorphisms from the candidate to 
each graph in the database, which costs O(|D|(Nv + Ne)^(Nv 
+ Ne)). Now, the cost of each extension finding process is 
O(Ne(Nv + Ne)^(Nv + Ne)) as all the edges are considered for 

all the subgraph isomorphisms (Algorithm 1, line 9-24). 
For checking canonicity, we need to find extensions in the 
candidate Nv + Ne times (Algorithm 2, line 4) which costs 
O(Ne(Nv + Ne)^(Nv + Ne + 1)). Let Nc be the number of 
candidates generated. So, the overall runtime complexity 
of the algorithm is O(Nc|D|(Nv + Ne)^(Nv + Ne) + NcNe(Nv + 
Ne)^(Nv + Ne + 1)).
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4. Experiments

In this section, we present the experiment details that 
we have performed to demonstrate the efficiency of our 
proposed algorithm. Next, section 4.1 contains the details of 
the datasets we have used. Finally, Section 4.2 presents the 
experimental setup and performance analysis.

4.1 Dataset Description

In our experiments, we have used six real-life graph datasets 
namely Nci1 [15], Enzymes [16], IMDB-B [17], Mutag [18], 
Proteins [16], and PTC [19]. D&D, Enzymes, and Proteins 
are protein structure graph datasets. IMDB-B is a graph 
dataset from the social network domain. Mutag and PTC 
contain chemical compounds presented as graphs. In Table 
3, we present the statistical description of the databases.

Table 3: Statistical Description of Datasets

Dataset No. of 
graphs

Average no. 
of vertices

Average no. 
of edges

NCi1 4,110 29.87 32.30

Enzymes 600 32.63 62.14

IMDB-B 1,000 19.77 96.53

Mutag 188 17.93 19.79

Proteins 1,113 39.06 72.82

PTC 344 14.29 14.69

Fig. 5. Runtime Analysis.

4.2 Results and Discussions

Here we present the experiment settings and presents 
the performance analysis. To prove the efficiency of our 
algorithm, we have run our algorithm on real-life datasets as 
presented in Section 4.1. We have implemented our algorithm 
using the Python 3.7 programming language. We have run all 
the experiments on an Intel Core i7-6700k CPU @ 4.00GHz 
with 16GB RAM. Due to differences in the definition of 

the subgraph, we could not perform a comparative analysis 
against existing graph mining algorithms. So, as a baseline, 
we have taken a relatively naive version of our proposed 
algorithm that does not prune the search space using 
canonical labeling. 
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Instead, we consider runtime and the number of candidates 
as performance metrics. The number of candidates generated 
indicates the pruning capability of the algorithm. The fewer 
the candidates generated, the faster the mining will be.

In Fig. 5, we show the runtime analysis. We present our 
algorithm’s runtime and that of the naive algorithm on all 
the six datasets we have collected. We have reported the 
runtime for different frequency thresholds. We observe 
that our algorithm with canonical labeling technique mines 
frequent patterns faster. For example, on dataset Nci1, from 
Fig. 5-a, we observe that the runtime of our algorithm is 
67.87 seconds with δ = 0.996, whereas the runtime without 
pruning is 320.34 seconds. That is, without pruning, it took 
4.71 times more runtime. The reason behind lower runtime is 
that duplicate isomorphic candidates are not processed in our 
algorithm. The difference in runtime is more significant for 
lower frequency thresholds. For example, on dataset Nci1 
(Fig. 5-a), the difference in runtime for δ = 0.999 is only 
1.18 seconds whereas for δ = 0.996, it is 252.47 seconds. 
Note that pattern mining with a lower threshold is more 
challenging for any kind of pattern. We can also observe that 
the runtime increases with decreasing frequency threshold. 
For example, on dataset Nci1, the runtime rises from 16.21 
seconds to 67.87 seconds from δ = 0.999 to δ = 0.996. As 
the frequency threshold decreases, more patterns are mined, 
and the search space gets larger. As a result, the runtime 
increases. Our proposed canonical labeling technique results 
in faster mining by avoiding extending duplicate isomorphic 
candidates.

5. Conclusion

This paper proposes a new framework for mining frequent 
subgraphs motivated by real-life problems. We devise an 
efficient algorithm that mines frequent subgraphs from 
graph databases defined in our proposed framework. To deal 
with isomorphic candidates, we employ a canonical labeling 
technique in our algorithm. By defining a representative 
of the whole isomorphic class of a candidate, called the 
canonical candidate, we avoid testing and extending any 
duplicate isomorphic subgraphs. We have conducted 
experiments to demonstrate the effectiveness and efficiency 
of our algorithm on real-life databases. Significantly reduced 
runtime and search space prove the effectiveness of our 
canonical labeling technique. We can consider incorporating 
weight into the new framework and introducing parallel 
processing for faster mining as a future research direction.
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