
https://doi.org/10.3329/dujase.v7i1.62887DUJASE Vol. 7 (1) 58-65, 2022 (January)

A Vertex-extension based Algorithm for Frequent Pattern Mining from Graph Databases
Md. Tanvir Alam, Chowdhury Farhan Ahmed* and Md. Samiullah

Department of Computer Science and Engineering, University of Dhaka, Bangladesh
*E-mail: farhan@du.ac.bd

Received on 30 November 2021, Accepted for publication on 17 May 2022

ABSTRACT

Frequent pattern mining is a core problem in data mining. Algorithms for frequent pattern mining have been proposed
for itemsets, sequences, and graphs. However, existing graph mining frameworks follow an edge-growth approach to
building patterns which limits many applications. Motivated by real-life problems, in this work, we define a novel graph
mining framework that incorporates vertex-based extensions along with the edge-growth approach. We also propose an
efficient algorithm for mining frequent subgraphs. To deal with the exploding search space, we introduce a canonical
labeling technique for isomorphic candidates as well as downward closure property-based search space pruning. We
present an experimental analysis of our algorithm on real-life benchmark graph datasets to demonstrate the performance
in terms of runtime.

Keywords: Graph mining, Knowledge graphs.

1. Introduction

Frequent pattern mining from a given collection of data is one
of the core problems of data mining. Frequent patterns can be
used for classification [1-2], clustering, data summarization,
outlier analysis, etc. Research has been conducted on
developing methods for mining frequent itemsets [3],
sequences [4]. Frequent itemset mining algorithms take a
collection of unordered itemsets as input and extract itemsets
that co-appear frequently. These algorithms are useful for
market basket analysis, recommendation systems, etc.
Frequent pattern mining algorithms for sequential data such
as DNA sequences, protein sequences take a collection of
sequences as input and find frequent subsequences from those.

A graph is a data structure that can represent more complex
associations than itemsets and sequences. Graphs are useful
for encoding information such as web data [5], social
network data [6], protein structures, chemical compounds,
etc. Analogous to frequent itemset and subsequence
mining, algorithms have been proposed for mining frequent
subgraphs from a collection of graphs [7-9].

However, the existing frequent pattern mining frameworks
have a significant limitation. It builds patterns following
the edge-growth approach. A pattern is extended by adding
an edge with both vertices already determined. This results
in the loss of many interesting patterns and restricts the
performance of many applications. To demonstrate the
limitation, we can consider a motivational example based
on knowledge graphs [10], [11], [12]. A knowledge graph
is a special kind of graph where each edge encodes facts
by representing a relationship between the data entities
represented by the corresponding vertices. For example, in
Fig. 1, we present two example knowledge graphs, G1 and
G2. The knowledge graph G1 states the facts that “Pei is an
actor who owns a cat” and “cat eats fish.”

Similarly, in G2, the stated facts are “Han is a clerk who
owns a cat” and “the cat eats fish”. In Fig. 2, we present
three subgraphs, g1, g2, and g3, from the knowledge graphs
presented in Fig. 1. Here, g1 represents “Pei owns a cat”,

and g2 represents “Han owns a cat”. Now, the subgraph g3
represents the fact “Someone owns a cat”. According to
the existing graph mining frameworks, both g1 and g2 are
considered as patterns mined from the collection of graphs
containing G1 and G2 but not g3. However, the fact that
someone owns a cat expressed by g3 is present in both G1
and G2. Thus g3 is more frequent than g1 and g2. Ignoring
patterns like g3 can be crucial in many real-life applications.
For example, we can use frequent subgraphs as features for
fake news article detection by representing the articles as
knowledge graphs. In our example, feature patterns like g3
will increase the probability of authenticity of a new fact that
Chen owns a cat which is not possible with feature patterns
g1 or g2 as they specify the persons to be Han and Pei exactly.

To solve the problem, in this paper, we propose a new flexible
framework for frequent subgraph mining. In our framework,
we build patterns by adding a vertex or an edge only in each
extension. It results in mining a higher number of interesting
patterns, as we have described earlier. We also propose a
novel algorithm for mining frequent subgraphs according to
our modified framework.

Fig. 1. Knowledge graphs.

59A Vertex-extension based Algorithm for Frequent Pattern Mining from Graph Databases

The major challenge in graph mining is dealing with the
exploding search space. We need to generate candidate
patterns in such a way that the number of false candidates is
minimized. For each candidate in the search space, we need
to check for subgraph isomorphisms in all of the graphs.
Subgraph isomorphism checking is an NP-hard problem. A
higher number of false candidates involves more subgraph
isomorphism checking and slows down the mining process
significantly. To deal with this problem, we employ downward
closure property and avoid extending any infrequent
candidates as all of them will also be infrequent. To skip
testing and extending isomorphic candidates, we introduce a
canonical labeling technique for all the isomorphism classes,
and we prune all the non-canonical candidates. Both of the
pruning methods help to reduce the runtime significantly.
To prove the efficiency of our proposed algorithm, we have
conducted experiments on real-life graph databases.

Our key contributions are to:

• tailor a novel flexible framework for frequent subgraph
mining motivated by real-life applications,

• devise a complete algorithm for mining frequent subgraph
patterns as defined in our framework,

• develop a canonical labeling technique for pruning
isomorphic candidates.

• perform extensive empirical analysis over real-life graph
databases.

In the rest of this paper, Section 2 discusses the related works.
Then, in Section 3, we present our proposed framework
and algorithms. Next, experimental results and analysis are
presented in Section 4. Finally, we conclude the paper in
Section 5.

Fig. 2. Example subgraphs.

2. Background and Related Works

Frequent pattern mining problem was first introduced to mine
association rules from itemset data [13], [3]. Frequent itemset
mining extracts frequent patterns from a set of transactions,
D = {T1, T2, ..., Tn}. Let I be the set of all items. A transaction
Ti is a subset of I. An example transaction database is shown
in Table 1. The database contains four transactions T1, T2,
T3, and T4. Here, I = {p, q, r}. The transaction T1 consists
of items p, q, and r. Similarly, T2 consists of p and r. The

support of an itemset pattern P ⊆ I in a transaction database
D can be defined as,

For example, the support of the itemset P = {p, q} in
the database D of Table I is two because P is a subset of
transactions T1 and T4. Frequent itemset mining from a
transaction database D discovers itemsets P, such that sup(P,
D) ≥ minsup where minsup = |D|×δ. Here, δ is a user-defined
threshold. If we take δ = 0.50, then minsup = 4×0.50 = 2 for
the example database D. Now, as the support of the pattern P
= {p, q} is 2, it is a frequent pattern.

Apriori [13] is a frequent itemset mining algorithm following
level-wise candidate generation and testing. It uses frequent
itemsets with n items to generate candidates containing n+1
items. Then candidates with n + 1 items are pruned with
infrequent itemsets as a subset using the downward closure
property. According to the downward closure property,
itemsets containing infrequent itemsets as a subset will not
be frequent. Finally, the Apriori algorithm finds the frequent
patterns by checking the candidates. However, the Apriori
algorithm has some significant limitations. The amount of
false candidates generated is high, which turns out to be
computationally costly. Besides, if the longest frequent
pattern contains n items, it requires n database scans. FP-
growth [3] has been proposed to address and resolve this
problem, requiring only two database scans.

Frequent graph pattern mining algorithms from graph
databases mine frequent subgraphs from a collection of
graphs. For example, AGM [14] is an Apriori-based frequent
subgraph mining algorithm. It generates subgraph candidates
of size k + 1 from frequent subgraphs of size k. Here, a
subgraph of size k contains k vertices. FSG [8] is a similar
approach, but it defines the subgraph sizes by the number
of edges. Both the algorithms employ downward closure
property to prune candidates. However, in both approaches,
duplicate isomorphic candidates are generated. This problem
has been addressed by gSpan [7] algorithm. Following the
edge-growth approach, it starts from an empty subgraph and
extends each candidate by adding an edge to it. It represents
each candidate subgraph using a sequence of extensions
named DFS code. An order is defined among the DFS codes
of all the isomorphic forms of a subgraph. By extending
only the canonical DFS codes, gSpan avoids testing and
extending duplicate isomorphic subgraphs. GASTON [20] is
another frequent subgraph mining algorithm that introduces
the “quickstart principle”. It divides the mining process
into multiple phases. The algorithm finds frequent paths
first, and then it finds the frequent trees and cyclic graphs.
PMFS-IB [21] introduces parallel processing for faster
frequent subgraph mining. The algorithm adapts gSpan
for large databases with parallel computing. GE-FSG [22]
utilizes frequent subgraphs for entire graph classification.
However, regardless of the methods, all these existing works
define subgraphs or build patterns where all the vertices are
determined. As a result, many interesting associations are

60 Md. Tanvir Alam, Chowdhury Farhan Ahmed, and Md. Samiullah

ignored in the mining process. The missing patterns due to
rigidness in the definition of subgraph can be crucial to many
real-life applications such as classification, clustering, and etc.

Table 1: A Transaction Database

Transaction Id Transaction

T1 p, q, r

T2 p, r

T3 q, r

T4 p, q

3. Proposed Method

Let D be a set of labeled graphs and L be the set of vertex and
edge labels. A graph G can be denoted as a 3-tuple, <VG, EG, lG>,
where VG is a set of vertices, EG ⊆ V x V is a set of edges, lG:
VG ∪ EG → L is a function that defines the labels of the vertices
and edges. In Fig. 3, we present an example graph database
consisting of three graphs G1, G2, and G3. All the vertices and
edges are labeled. For example, the vertex v1 in G1 is labeled as
“a” and the edge e1 is labeled as “q” respectively. Let g = <Vg,
Eg, lg> be a subgraph where Vg is a set of vertices, Eg ⊆ V ∪ V
x V is a set of edges, lg:Vg ∪ EG → L is the labeling function. A
subgraph isomorphism from g to a graph G holds if there exists
a function ϕ: Vg ∪ Eg → VG ∪ EG, such that,

•	 ∀v ∈ Vg, lg(v) = lG(ϕ(v)).
•	 ∀e ∈ Eg, lg(e) = lG(ϕ(e)).
•	 ∀e ∈ Eh, {ϕ(v) : v ∈ e} ⊆ ϕ(e).

Table 2: Subgraph Isomorphisms

Vertex/Edge ϕ1(in G1) ϕ2 (in G2)

v1 v1 v1

v2 v2 v2

e1 e1 e1

e2 e4 e2

Fig. 3. A graph database D

Fig. 4. A subgraph g

We present an example subgraph in Fig. 4. Here, the edge e1
is labeled as q. The other edge, e2 represents an association
between v2 and any other vertex where the edge label is
p. Table 2 presents the subgraph isomorphism from the
subgraph g of Fig. 4 to the graphs in the database D of Fig.
3. ϕ1 represents a subgraph isomorphism from g to G1 and
ϕ2 represents a subgraph isomorphism from g to G2. For G3,
there is no subgraph isomorphism from g.

Let us denote the set of all subgraph isomorphism from a
subgraph g to a graph G as Φ(g, G). Now, we can define the
frequency support of g in a G as,

61A Vertex-extension based Algorithm for Frequent Pattern Mining from Graph Databases

In database D of Fig. 3, we find a subgraph isomorphism
from the subgraph g of Fig. 4 to graph G1, as shown in Table
1. So, the frequency support of g in G1, sup(g, G1) = 1. For
the same reason, sup(g, G2) = 1. However, sup(g, G3) = 0 as,
from g to G3, we find no subgraph isomorphism. We define the
frequency support of a subgraph g in a graph database D as,

In our example database D of Fig. 3, we calculate the
frequency support of the subgraph g of Fig. 4 as, sup (g, D)
= sup(g, G1) + sup(g, G2) + sup(g, G3) = 1 + 1 + 0 = 2.

Frequent subgraph Mining: Given a graph database D and
a frequency threshold δ, frequent subgraph mining extracts
the subgraphs g where sup(g, D) >= minsup. Here, minsup =

|D| x δ. For database D of Fig. 3, let δ = 2

3
. Now, minsup =

2

3
. x 3 = 2. We find that sup(g, D) = 2. That is sup(g, D) >=

minsup. So, g is a frequent subgraph in D.

Now, we present our proposed algorithm for the frequent
subgraph mining problem as defined in Section 2. Our
objective is to mine patterns so that no frequent subgraph
is missed and the number of candidates is minimized. Our
algorithm starts from an empty subgraph candidate and
extends the candidates in each step like a depth-first search
instead of Apriori [13] based level-wise candidate generation.
We assign all the vertices and edges in a candidate subgraph
with a unique identification number following the order of
them being included in the corresponding candidate.

For example, let the vertex added last to the candidate g
be lastv(g). Similarly, let laste(g) be the edge that has been
added last. In our algorithm, we extend each candidate by
employing any of the following strategies:

•	 Vertex-append: Adding an existing or new vertex to the
edge that has been added last.

•	 Edge-append: Adding a new edge with precisely one
existing vertex.

Extending candidates in this manner reduces the search
space compared to the brute force approach. However, still,
many isomorphic candidates will be generated. Testing
and extending these isomorphic candidates is redundant
and costly. We propose a canonical labeling technique for
isomorphic candidates to deal with this challenge. The idea
is to define an order among all the isomorphic forms of a
candidate subgraph. Whenever a candidate is generated,
we can determine if it is the minimum one among all the
isomorphic forms of the candidate according to the defined
order. If it is the minimum one, we call it a canonical
candidate. Our algorithm only avoids redundant and costly

subgraph isomorphism checking by testing and extending
the canonical candidates only.

Now, we formally define our proposed canonical labeling
technique. We represent each subgraph candidate as an
ordered sequence of extensions. Let us denote an extension
using a tuple <type, vertex, vertex label, edge label>. For
example, a Vertex-append extension by appending a vertex
with identification number 2 and label b is represented as <v,
2, b, ->. An Edge-append extension that adds an edge with
label p containing a vertex with identification number 1 and
label c is denoted as <e, 1, c, p>. Let ext1 = <t1, d1, lv1, le_1>
and ext2 = <t2, d2, lv2, le2> be two extensions. We define the
order among extensions such that ext1 < ext2 if and only if
one of the following holds true.

•	 t1 = v, t2 = e.

•	 t1 = v, t, = v, d1 < d2.

•	 t1 = v, t2 = v, d1 = d2, lv1 < lv2.

•	 t1 = e, t2 = e, d1 < d2.

•	 t1 = e, t2 = e, d1 = d2, le1 < le2.

•	 t1 = e, t2 = e, d1 = d2, le1 = le2, lv1 < lv2.

Finally, by comparing extension tuples, we define the order
among candidate subgraphs, and the minimum candidate,
according to the order, is canonical. Besides canonical-
labeling-based pruning, our algorithm also utilizes the
downward closure property of frequent patterns. According
to the property, patterns extended from an infrequent pattern
will always be infrequent. By using this property, our
algorithm only extends frequent candidates.

In Algorithm 3, we present the pseudocode of our frequent
subgraph mining algorithm. We find all the possible
extensions of a given candidate first (line 2). Then, for each
extension in Algorithm 3, we check if the extended candidate
is canonical or not and if it is a frequent pattern (line 5).

Given that both conditions are satisfied, we output the
candidate as a frequent pattern and mine further extended
patterns recursively (lines 6-7). The procedure for finding the
extensions is presented in Algorithm 1. It takes a candidate
subgraph and the graph database as input. All the graphs in the
database are considered to generate extensions (line 3). If the
candidate subgraph is empty, all the vertices in the edges are
considered, and an edge-append extension is generated for
the vertex in the edge (lines 4-7). Otherwise, all the subgraph
isomorphism are considered to find extensions (lines 9-24).
The pseudocode for determining whether a candidate is
canonical or not is shown in Algorithm 2. It starts with an
empty subgraph and keeps extending it in the input graph.
If any sequence of extension tuple representation is found
lower according to the defined order, it outputs the candidate
to be non-canonical.

Runtime Complexity Analysis: In our algorithm, for each

62 Md. Tanvir Alam, Chowdhury Farhan Ahmed, and Md. Samiullah

candidates generated, the support count and canonicity is
checked, and the set of possible extensions is found. Let
Nv and Ne be the highest number of vertices and edges in
any graph in the database. For finding the support count, we
need to find subgraph isomorphisms from the candidate to
each graph in the database, which costs O(|D|(Nv + Ne)^(Nv
+ Ne)). Now, the cost of each extension finding process is
O(Ne(Nv + Ne)^(Nv + Ne)) as all the edges are considered for

all the subgraph isomorphisms (Algorithm 1, line 9-24).
For checking canonicity, we need to find extensions in the
candidate Nv + Ne times (Algorithm 2, line 4) which costs
O(Ne(Nv + Ne)^(Nv + Ne + 1)). Let Nc be the number of
candidates generated. So, the overall runtime complexity
of the algorithm is O(Nc|D|(Nv + Ne)^(Nv + Ne) + NcNe(Nv +
Ne)^(Nv + Ne + 1)).

63A Vertex-extension based Algorithm for Frequent Pattern Mining from Graph Databases

4. Experiments

In this section, we present the experiment details that
we have performed to demonstrate the efficiency of our
proposed algorithm. Next, section 4.1 contains the details of
the datasets we have used. Finally, Section 4.2 presents the
experimental setup and performance analysis.

4.1 Dataset Description

In our experiments, we have used six real-life graph datasets
namely Nci1 [15], Enzymes [16], IMDB-B [17], Mutag [18],
Proteins [16], and PTC [19]. D&D, Enzymes, and Proteins
are protein structure graph datasets. IMDB-B is a graph
dataset from the social network domain. Mutag and PTC
contain chemical compounds presented as graphs. In Table
3, we present the statistical description of the databases.

Table 3: Statistical Description of Datasets

Dataset No. of
graphs

Average no.
of vertices

Average no.
of edges

NCi1 4,110 29.87 32.30

Enzymes 600 32.63 62.14

IMDB-B 1,000 19.77 96.53

Mutag 188 17.93 19.79

Proteins 1,113 39.06 72.82

PTC 344 14.29 14.69

Fig. 5. Runtime Analysis.

4.2 Results and Discussions

Here we present the experiment settings and presents
the performance analysis. To prove the efficiency of our
algorithm, we have run our algorithm on real-life datasets as
presented in Section 4.1. We have implemented our algorithm
using the Python 3.7 programming language. We have run all
the experiments on an Intel Core i7-6700k CPU @ 4.00GHz
with 16GB RAM. Due to differences in the definition of

the subgraph, we could not perform a comparative analysis
against existing graph mining algorithms. So, as a baseline,
we have taken a relatively naive version of our proposed
algorithm that does not prune the search space using
canonical labeling.

64 Md. Tanvir Alam, Chowdhury Farhan Ahmed, and Md. Samiullah

Instead, we consider runtime and the number of candidates
as performance metrics. The number of candidates generated
indicates the pruning capability of the algorithm. The fewer
the candidates generated, the faster the mining will be.

In Fig. 5, we show the runtime analysis. We present our
algorithm’s runtime and that of the naive algorithm on all
the six datasets we have collected. We have reported the
runtime for different frequency thresholds. We observe
that our algorithm with canonical labeling technique mines
frequent patterns faster. For example, on dataset Nci1, from
Fig. 5-a, we observe that the runtime of our algorithm is
67.87 seconds with δ = 0.996, whereas the runtime without
pruning is 320.34 seconds. That is, without pruning, it took
4.71 times more runtime. The reason behind lower runtime is
that duplicate isomorphic candidates are not processed in our
algorithm. The difference in runtime is more significant for
lower frequency thresholds. For example, on dataset Nci1
(Fig. 5-a), the difference in runtime for δ = 0.999 is only
1.18 seconds whereas for δ = 0.996, it is 252.47 seconds.
Note that pattern mining with a lower threshold is more
challenging for any kind of pattern. We can also observe that
the runtime increases with decreasing frequency threshold.
For example, on dataset Nci1, the runtime rises from 16.21
seconds to 67.87 seconds from δ = 0.999 to δ = 0.996. As
the frequency threshold decreases, more patterns are mined,
and the search space gets larger. As a result, the runtime
increases. Our proposed canonical labeling technique results
in faster mining by avoiding extending duplicate isomorphic
candidates.

5. Conclusion

This paper proposes a new framework for mining frequent
subgraphs motivated by real-life problems. We devise an
efficient algorithm that mines frequent subgraphs from
graph databases defined in our proposed framework. To deal
with isomorphic candidates, we employ a canonical labeling
technique in our algorithm. By defining a representative
of the whole isomorphic class of a candidate, called the
canonical candidate, we avoid testing and extending any
duplicate isomorphic subgraphs. We have conducted
experiments to demonstrate the effectiveness and efficiency
of our algorithm on real-life databases. Significantly reduced
runtime and search space prove the effectiveness of our
canonical labeling technique. We can consider incorporating
weight into the new framework and introducing parallel
processing for faster mining as a future research direction.

Acknowledgement

This work is funded by the centennial research grant of the
University of Dhaka.

References
1. H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative

frequent pattern analysis for effective classification,” in 2007
IEEE 23rd international conference on data engineering. IEEE,
pp. 716–725, 2007.

2. M. T. Alam, C. F. Ahmed, M. Samiullah, and C. K. Leung,

“Discriminating frequent pattern based supervised graph
embedding for classification,” in Advances in Knowledge
Discovery and Data Mining, pp. 16–28, 2021.

3. J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” vol. 29, no. 2. ACM, pp. 1–12, 2000.

4. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.-C. Hsu, “Prefixspan: Mining sequential patterns efficiently
by prefixprojected pattern growth,” in ICDE. IEEE, 2001.

5. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A.
Tompkins, and E. Upfal, “The web as a graph,” in Proceedings of
the nineteenth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pp. 1–10, 2000,

6. L. Tang and H. Liu, “Graph mining applications to social
network analysis,” in Managing and Mining Graph Data.
Springer, pp. 487–513, 2010.

7. X. Yan and J. Han, “gspan: graph-based substructure pattern
mining,” in ICDM, 2002.

8. M. Kuramochi and G. Karypis, “Frequent subgraph discovery,”
in ICDM. IEEE, 2001.

9. M. T. Alam, C. F. Ahmed, M. Samiullah, and C. K. Leung,
“Mining frequent patterns from hypergraph databases,” in
Advances in Knowledge Discovery and Data Mining, pp. 3–15,
2021.

10. Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph
embedding: A survey of approaches and applications,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no.
12, pp. 2724–2743, 2017.

11. J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in International Semantic Web Conference.
Springer, pp. 542–557, 2013.

12. X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning
over knowledge graph,” Expert Systems with Applications, vol.
141, p. 112948, 2020.

13. R. Srikant, Q. Vu, and R. Agrawal, “Mining association rules
with item constraints.” in KDD, vol. 97, pp. 67–73, 1997.

14. A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based
algorithm for mining frequent substructures from graph data,”
in European conference on principles of data mining and
knowledge discovery. Springer, 2000.

15. N. Wale, I. A. Watson, and G. Karypis, “Comparison of
descriptor spaces for chemical compound retrieval and
classification,” Knowledge and Information Systems, vol. 14,
no. 3, pp. 347–375, 2008.

16. K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan,
A. J. Smola, and H.-P. Kriegel, “Protein function prediction via
graph kernels,” Bioinformatics, vol. 21, no. suppl_1, pp. i47–
i56, 2005.

17. P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in
ACM SIGKDD, pp. 1365–1374, 2015.

18. A. K. Debnath, R. L. Lopez de Compadre, G. Debnath,
A. J. Shusterman, and C. Hansch, “Structure-activity
relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and
hydrophobicity,” Journal of medicinal chemistry, vol. 34, no.
2, pp. 786–797, 1991.

65A Vertex-extension based Algorithm for Frequent Pattern Mining from Graph Databases

19. H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C.
Helma, “Statistical evaluation of the predictive toxicology
challenge 2000–2001,” Bioinformatics, vol. 19, no. 10, pp.
1183–1193, 2003.

20. S. Nijssen and J. N. Kok, “A quickstart in frequent structure
mining can make a difference,” in Proceedings of the tenth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 647–652, 2004.

21. B. Vo, D. Nguyen, and T.-L. Nguyen, “A parallel algorithm
for frequent subgraph mining,” in Advanced Computational
Methods for Knowledge Engineering. Springer, pp. 163–173,
2015.

22. D. Nguyen, W. Luo, T. D. Nguyen, S. Venkatesh, and D. Phung,
“Learning graph representation via frequent subgraphs,” in
Proceedings of the 2018 SIAM International Conference on
Data Mining. SIAM, pp. 306–314, 2018.

