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ABSTRACT 

Data mining has traditionally relied heavily on sliding window-based challenges, which has sparked a variety of 
studies. For each new window in time series mining, current literature mandates the rebuilding of the underlying 
structure, Suffix Tree - A trie-based structure representing all the suffixes of a string. However, reconstruction 
struggles when the window is wide or when sliding happens frequently. As a result, we provide a new technique 
Dynamic Tree-Based Approach to handle Sliding Windows (DTSW) in time series in this study that dynamically 
changes the representative suffix tree structure rather than reconstructing it after every alteration or sliding. In 
addition, we also put forth a different approach to the issue of extracting weighted periodic patterns from time series. 
To prevent testing pointless patterns, existing studies mostly rely on the weight of the database's highest-weighted 
item. However, these methods continue to examine numerous patterns. These methods still examine numerous 
patterns to see whether they can be candidates. Our proposed measure Maximum Possible Weighted Support 
(MPWS) accelerates the candidate generation process by removing numerous unnecessary patterns in advance. The 
novelty of MPWS is it considers the maximum weighted average over the maximum weighted item extension by 
enforcing more constraints. The usefulness of our two techniques in handling sliding windows and trimming 
redundant candidate patterns is demonstrated by experimental results using a variety of real-world datasets. Our 
experiments state that our dynamic handling technique significantly improves runtime than the reconstruction in a 
dynamic sliding window-based environment with simultaneous insertion and deletion actions and MPWS reduces 
the number of tested patterns resulting in lesser mining time in weighted time series pattern mining.  

Keywords: Time Series, Weighted Periodic Pattern Mining, Dynamic Database, Sliding Window, Pruning Strategies. 

1.  Introduction 

Finding a practical method for mining common patterns has 
always been crucial to knowledge discovery [15, 16, 17, 18, 
19]. Over time, the concept of creating patterns has 
developed and permeated a vast array of new disciplines. 
Time series pattern mining is a well-known and widely 
debated subject within sequential pattern mining, which is 
one of the most renowned research domains in the field of 
pattern mining.  

The main source of data for time series databases is a stream 
of events or other items found in relation to time. According 
to existing literature, Suffix Trees, on which Frequent 
Patterns are mined under various thresholds and conditions, 
are the best structures to describe time series. In [1][2] two 
crucial data stream concepts were covered. Data streams are 
continuous, unbounded, and not always distributed evenly. 
The result is the problem of dynamicity." The sliding window 
[7] problem, which has many real-world applications, such 
as - weather forecasting, natural disasters prediction, etc., is 
likewise based on this property of dynamicity. Time series 
[3] is also a fairly common application of the sliding window 
problem. The available literature mandates reconstruction of 
the data structure to reflect the updated window each time as 
a solution to this issue. However, if the windows are huge or 
slide frequently, this technique based on reconstruction is 
highly expensive. We suggest DTSW (Dynamic Tree-based 
approach to handling Sliding Windows in time series), which 
focuses on dynamically updating the data structure and 
maintaining a dynamic tree rather than reconstructing for 

each changed window and keeps the tree suitable for any 
kind of pattern mining. Our proposed solution can handle 
dynamic window sizes for any problem related to sliding 
windows. We focus on extracting weighted periodic patterns 
from time series in our second contribution. Compared to its 
unweighted sibling [7], the addition of weight to patterns 
enables the discovery of more intriguing patterns. Time 
series with weighted periodic patterns have weights that are 
sufficient to reach the user-specified threshold and at least a 
specific number of times per period. In order to find 
interesting characteristics in time series, weighted pattern 
mining can be quite helpful.  

For instance, if we examine the transactions of a sports 
equipment store, we will see that the sold products fluctuate 
with many different criteria, such as time, event, etc. Every 
four years, when the world cup is held, the sales rate of 
football jerseys increases. To find these intriguing traits, 
weighted time series mining might be quite helpful.  

Another example can be considered by analyzing the movie 
series' periodical patterns. We may understand that movies 
are frequently released considering special occasions (e.g., 
Christmas, Thanksgiving, Independence Day, etc.), targeting 
award ceremonies (e.g., Oscar, BAFTA, etc.), seasons, etc. 
In these databases, the information may be kept with time 
stamps which make them a time series database. Also, the 
box office revenue calculation is also very relevant to the 
time. For example, during the world cup season or any 
worldwide sports event, new movies are not generally 
released. But, we all know that, during the recent epidemic 
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coronavirus, the OTT (over-the-top) platform business hit a 
spark [20]. Because most of the people had to stay at home 
and work from home. So, those content providers tried to 
give their best efforts to bring a variety of content to the 
audience to entertain them. So, in summary, there are some 
events, when movies or specific types of movies get 
patronized over normal times. But, also there are some 
moments when they are slowed down. Weighted pattern 
mining, keeps a great impact here, by enforcing weights to 
extract specific types of patterns representing special nature 
over generic support-based frameworks. Also, as these 
databases are equipped with time information, periodical 
statistics can be quite helpful in this regard to analyze the 
general behavioral nature. 

Since the downward closure property (DCP) cannot be 
directly applied in weighted versions of pattern mining, 
avoiding testing undesirable candidates to speed up the 
candidate generation process is the key problem. Max 
Weight principles are used in existing works to expedite 
candidate creation. Existing works, however, still require 
testing a sizable number of pointless patterns for candidacy, 
which worsens performance. The MPWS Pruning method, 
which is our second contribution to this paper, effectively 
prunes patterns to minimize the number of candidates that 
must be examined for candidacy. In this essay, we put 
forward remedies to address these two issues. They are  

1. DTSW, a dynamic tree-based approach to handle sliding 
windows in time series (Section 3.4). 

2. MPWS Pruning, an efficient approach to speed up the 
candidate generation process in weighted periodic pattern 
mining (Section 3.5).   

This article is an extended version of our work  [21]. In this 
extended article, we provide more in-depth motivational 
real-life application-based examples, a wide range of 
background studies, a detailed discussion with examples of 
our proposed methodologies along with the necessary 
concepts, and a set of new extensive experimental 
discussions to understand the solutions’ merits.  

Our findings state that DTSW provides a novel generic 
approach to capture simultaneous insertion and deletion in a 
dynamic sliding widow-based scenario in a linear time. 
DTSW focuses on adjusting the representative suffix tree 
structure rather than reconstructing the complete structure 
which overall reduces processed time. MPWS is a generic 
pruning measure that can be applied in weighted time series 
pattern mining problems. By applying MPWS, we stop the 
generation of a good number of undesired candidates for a 
weighted support threshold constraint, which overall 
improves the mining runtime and does not add any severe 
resource bottleneck.  

Section 2 contains the background study and existing works 
related to our domain. Section 3 consists of our proposed 
solutions to the problems. Section 4 gives a comparative 
analysis between our solutions and existing solutions, and 
conclusions are drawn in Section 5. 

2. Background and Related Works 

Sequential Pattern mining considers the sequential 
relationship among the elements of the database to discover 
interesting patterns [22]. Time series pattern mining is a 
subdomain under sequential pattern mining that addresses 
the ordered relationship among the entities considering 
timestamps [23, 24].   

A wide range of literature has addressed different issues 
related to time series pattern mining [23, 24, 25].  Some 
notable key issues are, periodic pattern mining [6, 24], 
multivariate time series [25], time series forecasting [3, 11], 
weighted time series mining [7, 14, 21], etc.  In this study, 
we address the problem of efficient data representation in the 
context of the sliding window problem in a time series 
database. We also address the issue of designing a compacter 
pruning strategy that the existing measures in the light of 
weighted time series pattern mining.  

We divided our contributions into two distinct modules. One 
focuses on changing the data structure, while the other involves 
efficient pruning. It has been demonstrated in [5] that the suffix 
tree is the most effective data structure for representing time 
series and for mining frequently occurring patterns. The suffix 
tree has also been a potential candidate for our data structure, 
and as of right now, Ukkonen's approach is the quickest way to 
build one. The Ukkonen’s algorithm runs in linear time. 
However, it's interesting to note that current time series research 
offers no guidance on how to handle the data structure 
dynamically. Because of this, existing approaches advise 
creating the structure from scratch for each new window in order 
to address the sliding window problem in the time series. To our 
knowledge, no time series literature offers a single framework 
that can handle both the addition and deletion of occurrences 
simultaneously. DTSW, a framework to address this issue, is our 
first contribution to this study. Our approach is based on 
maintaining the consistency of the tree, allowing for the 
insertion or deletion of events at any time. In DS Tree [1], the 
notion of making a data structure consistent for batch events was 
put forth. The main objective of this work was to maintain the 
tree's consistency for updates in the future and to introduce only 
the essential changes to reflect the data currently being taken 
into account. 

The addition of weight has been a key idea in pattern mining 
since it aids in the discovery of patterns with more significant 
properties, such as [7] and [4], and it is also widely used in 
time series. Current research on periodic pattern mining from 
time series [5][6] makes use of the downward closure 
property to expedite candidate creation. In order to expedite 
the candidate generation in this case, weighted versions of 
related works [8] employ the weight of the highest weighted 
character in the database. It aids in lowering the number of 
pointless patterns tested. By utilizing a heuristic value for the 
patterns, our proposed MPWS Pruning is a similar tool that 
lowers the number of candidates to be assessed.
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Time series-related literature has shaded up on various real-
life problems, such as [11] proposed an idea to integrate 
sliding window and DTW distance to measure time-series 
forecasting tasks,   [12] suggested an approach to find 
anomalies in time-stamped wireless sensor networks based 
on sliding windows, [13] characterized non-linear time series 
problem via sliding window amplitude based dispersion 
entropy approach, [14] proposed techniques to introduce 
weighted dynamic transfer network and spectral entropy for 
weak and non-linear detection in time series,  [27] added the 
concept of the graph with temporal information to mine 
patterns, mining relevant patterns from multi-source time 
series database, etc.  

So, the time series research domain is still very active. 
Moreover, the addition of sliding windows has also found its 
applications in numerous problems. Additionally, the 
concept of weights has also opened new challenges are 
problems that should be addressed.  We believe our 
contributions can greatly help improve the performance of 
various solutions related to time series and its variations. 
3. Proposed Approaches 

In this section, we discuss our proposed strategies. In Section 
3.1, we explain how a time series database is constructed. 
Section 3.2 presents an idea about the problems that we have 
approached in this paper. Section 3.3 contains a discussion 
regarding suffix tree structure. Section 3.4 and Section 3.5 
contain a detailed explanation of the techniques introduced.  

3.1 Discretization  
A method known as discretization allows a collection of data 
to be represented by a single symbol. Information that has 
been acquired over a period of time is referred to as a time 
series. By discretizing the data, time series can be 
represented as a string or series of characters from a 
predetermined set. For instance, a discretized time series 
sequence is “abcabababc$”. 

3.2 Problem Definition  
In this essay, we focused on two distinct issues. It is possible 
to state the first problem using Fig. 1. A sliding window 
problem in a time series is illustrated in Fig. 1, where the 
window size is nine. The sequence “abcababab”' was found 
in window 1. The window slides to reveal a new, changed 
window after the arrival of the new discretized input 
symbol “c”. To create the new window, we remove the 
symbol “a” from the beginning of the previous window and 
add the symbol “c” to the end. We've already mentioned that 
the suffix tree [5] is the optimal structure for representing 
time series. Therefore, the same issue that we addressed here 
is,  

 

Fig. 1. Sliding Window 

“If we have a sequence called S and a suffix tree called T for 
S, we need to update T efficiently in the event that new 
symbols are added to S's end or removed from its beginning”. 
Our suggested algorithm, DTSW, offers a comprehensive 
framework to address this issue. 
 
3.3 Tree Structure  

The time series database is represented as a suffix tree. 
Ukkonen [9]  suggested a method for building a suffix tree 
that was both the most effective and compact. We build our 
initial suffix tree using Ukkonen's technique. We shall have 
a quick overview of the key ideas in Ukkonen's algorithm in 
this section. These ideas will make it easier to comprehend 
the tree structure, which will help to understand the 
comprehension of our dynamic tree solution (DTSW). 

All of a string's suffixes are represented by a suffix tree. The 
suffix tree is in the explicit form if all suffixes can be found 
by traversing from root to leaf nodes. However, the tree is in 
the implicit form if all of the suffixes do not finish in leaves 
but rather are embedded in the paths. An explicit suffix tree 
for the string “abcabababc$” is shown in Fig. 2, while an 
implicit suffix tree for “abcabababc” is shown in Fig. 3.   

 

Fig. 2. Explicit Suffix Tree for string  “abcabababc$” 
 

 

Fig. 3. Implicit Suffix Tree for string “abcabababc”.  

A key idea in Ukkonen's technique is the “suffix link” which 
facilitates swift tree traversal. Every internal node of the tree 
will, in accordance with Ukkonen's idea, point to another 
internal node or root as its suffix link. If and only if node B 
has the route "𝛽𝛽�" from the root, the suffix link of node A 
with the path “𝛼𝛼�𝛽𝛽�” from the root, where “𝛼𝛼�” is exactly one 
symbol and "𝛽𝛽�" can contain zero or more symbols, will point 
to node B as its suffix root. As an illustration, node 1 in the 
explicit suffix tree in Fig. 2 points to node 8 as its suffix link.  
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 Ukkonen's approach for adding symbols begins each run at 
the active point which is the location of the largest implicit 
suffix in the tree at the time. The components of an active 
point are as follows,  
1. active node:  It indicates the position of the node from 

which a new pass will begin 
2. active edge: It describes the edge of the active node 

where suffix overlapping is occurring, 
3. active length: It indicates the number of symbols that 

have been overlapped in the direction of the active edge 
from the active node.  

Three rule extensions were suggested by Ukkonen for his 
method. The extensions are described as follows, 
- Rule 1 extension:  This extension states that we do 

not need to traverse all of the leaves in order to add a 
new symbol to the end of all of the current suffixes in 
the tree; rather, we can utilize a global reference.  

- Rule 2 extension: This extension states that during 
the extension for a particular symbol γ from the active 
node if no branch exists, we create a new branch for γ 
from the active node.  

- Rule 3 extension: This extension ensures the 
maximization of suffixes along the suffix tree edges.  

By keeping merely pointers to the beginning and end of the 
input sequence instead of the precise symbols for edge labels, 
Ukkonen also employed edge label compression in his 
technique. Every pass adds a fresh sign to the tree. Each 
existing node must have a suffix link to another node before 
each pass, and the active point must be kept correspondingly.  

3.4 A Dynamic Tree-Based Approach to Handle Sliding 
Window in Time Series, DTSW 

The answer to the first issue raised in our paper's section 3.2 
will be covered in this section. There will be two parts to the 
debate. The Handling Deletion Events module will describe 
how to update the suffix tree if certain symbols are removed 
from the sequence's beginning, and the Handling Insertion 
Events module will describe how to update the tree if new 
symbols are added to the sequence's end.   
 
3.4.1 Handling Deletion Events 

Deleting the symbol from the beginning of a sequence 
means, deleting the largest suffix from the sequence. For 
instance, if the sequence is “abcabababc”, taking away the 
initial "a" from the sequence entails taking away the greatest 
suffix, “abcabababc” from the sequence, leaving us with 
“bcabababc”. Therefore, the issue is how to remove a suffix 
from the suffix tree, and this is why we define our Condition 
1.  
Condition 1: Before deleting any suffix from the suffix tree, 
the tree must be in its explicit form.  

The main justification for this is that, if the tree is represented 
explicitly, it is always sufficient to remove a leaf node from 
the tree in order to delete a suffix. For instance, removing 
node 3 from the explicit tree of Fig. 2 is sufficient to remove 

the suffix "abcabababc" from the tree. Another crucial point 
to note is that, by definition, removing suffixes from a 
sequence result in the deletion of larger to smaller suffixes. 
We now talk about potential outcomes that could result from 
deleting nodes and how to deal with them. We'll put them 
forth as propositions. 

Proposition 1 (Conversion from Internal to Leaf Node): 
If, after removing a node V from an explicit suffix tree, V's 
parent, U, loses all of its child nodes, U will be converted to 
a leaf node from an internal node if it is not root, and if any 
node W was pointing to U as their suffix link, then the 
suffix link of W will be redirected to the root node.  

The specification of suffix links, which point from one 
internal node to another internal node, and the fact that path 
symbols from the root to any node X are unique due to the 
tree structure explain why this redirection is necessary. 
Therefore, the suffix link for W must be directed to the suffix 
tree root.  

Proposition 2 (Merging a Split path): Assume we remove 
a node V for deletion from an explicit suffix tree. Let the 
parent node of V is U and the parent node of U is X. If, after 
deletion, U becomes a single child node having W. Then, we 
remove U and make a single path by merging the edges X to 
U and U to W. If any node Y was pointing to U as its suffix 
link will be redirected to the root of the suffix tree. 

As seen in Fig. 3, for instance, node 2 will only have one 
child node 4 when node 3 is removed. The path from node 1 
to node 2 and node 2 to node 4 will then be combined when 
node 2 is removed. Node 2 wasn't pointed to by any nodes as 
its suffix link, but if it had, we would have been redirected to 
the root. because the path substring “abc” (from the root to 
the second node) would not have duplicated elsewhere in the 
tree (from the root). To keep our Condition 1 and insertion 
module operational, this notion is necessary.   

3.4.2 Handling Insertion Events 
A complete framework for maintaining a dynamic suffix tree 
to handle sliding windows is provided by our suggested 
method, DTSW, where our algorithm views Insertion and 
Deletion as two separate modules. Our method may update 
the suffix tree for any number of insertion or deletion events 
while maintaining a consistent structure for upcoming 
updates. Before detailing the process, first, we shall describe 
how an implicit suffix tree is transformed into an explicit 
suffix tree.  

Converting an implicit suffix tree to an explicit suffix 
tree: An exclusive symbol is included in the tree to change it 
from an implicit suffix tree to an explicit suffix tree. A 
symbol is deemed unique or exclusive if it does not appear 
in the sequence (upon which the suffix tree is created). This 
addition generates a large number of nodes, divides a large 
number of pathways, and makes every implicit suffix 
apparent. The explicit suffix tree of the string "abcabababc" 
is shown in Fig. 2, where "abcabababc" is the main string and 
"$" is the special symbol. Fig. 3 displays the implicit suffix 
tree for the string ''abcabababc''. Both Fig. 2 and Fig. 3 
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represent identical suffixes, but Fig. 2.  has the advantage of 
ending all the suffixes in leaves so that we may extract the 
primary suffixes to work with only by omitting the last 
symbol from each suffix.  

Insertion Module: Our insertion module's primary 
objective is to transform the tree to the point where the 
same Ukkonen's technique may be applied once more to 
insert symbols into the tree. The steps are:  
1. Conversion from explicit to implicit: First, we convert 
the tree from explicit to implicit form, removing the special 
symbol and all the impacts it had on the suffix tree.  

2. Discovering a New Active Point: The Ukkonen’s method 
begins each run at the tree's greatest implicit suffix. 
Following the first phase, some explicit suffixes will change 
to implicit ones. At this point, we must locate the largest 
implicit suffix and update the active point for the new pass. 

There are numerous justifications for step 1. The first reason 
is that there is no unique symbol in the input. Therefore, this 
symbol must be eliminated from the tree prior to any new 
additions; otherwise, it will be expensive to extract the major 
suffixes when we add additional input and preserve the 
unique symbol. The inclusion of a distinctive symbol splits 
pathways and adds some extra nodes to the tree, which is the 
second reason. The maximization of overlapping suffixes 
will not be guaranteed, and the compact character of the tree 
will be broken, if we do not go back to the effect before the 
new insertion. Let us use "$" as our special symbol. We will 
now discuss the scenarios that can result from the insertion 
of "$". We need to undo such impacts.  The scenarios are as 
follows,  
 
Case 1 (Child node V formed from a "$" node that 
already existed): In this instance, we must get rid of the 
child node V. Let U be the parent node of V and after the 
deletion of V, U loses all of its children and is not the root. 
Then we must delete U and merge the path according to 
propositions 1 and 2, respectively. If U has only one child 
node left, then we must delete U and merge the path. The 
example has already been stated in the definition of 
Proposition 2.    
 
Case 2 (Child node V produced by slicing an existing path 
for '$'): Both the explicit and implicit suffix trees in Fig. 1 
and Fig. 2 can be used to discuss this case. The path between 
node 1 and node 3 splits as a result of the inclusion of "$". 
Then node 4 is constructed for "$" and a new node 2 is added 
between them. In order to reverse this situation, we will first 
delete node V and then rejoin the split path by adhering to 
proposition 2. In this example, we will first remove node 4, 
then remove node 2, and then merge the paths from node 1 
to node 2 and from node 2 to node 3. If any suffix links were 
heading to node 2 instead of root, we would also have 
redirected those links. 
We will now discuss the second stage, which is how to locate 
an active point for a fresh pass. The entire procedure and 
justification can be given as follows.  

1. We transform explicit suffixes into their implicit form in 
step 1. Thus, we are able to determine how many suffixes 
have been transformed. The greatest implicit suffix at the 
time of conversion is indicated by this value. Let us say the 
number is L. Due to the fact that a suffix becomes implicit 
along with all of its smaller sub-suffixes, all of the suffixes 
that were present at least a L distance from the end of the 
sequence will now be implicit. Furthermore, suffix deletion 
happens in a specific order; larger suffixes are deleted first, 
followed by their smaller sub-suffixes.  

2. What we shall do is undo the effects in the order that the 
nodes were added or the pathways were split apart by the 
inclusion of '$'. Therefore, if we come across a node that has 
been changed while erasing the effects, we cease reverting 
because all previous effects produced by the insertion of "$" 
have been compromised. So, having identified the tree's 
greatest implicit suffix, we can now traverse the tree to 
determine its location and update the active point, also 
known as the "active Node" with “active Edge", and "active 
Length." While eliminating the impacts, some details can 
still be saved. For instance, we would reverse the effects of 
nodes 18, 15, and 2 in order to obtain the tree of Fig. 2 from 
Fig. 3. Because it is a fake node, removing the child for "$" 
from the root does not assist in identifying the greatest 
implicit suffix. 

We shall do a simulation of our algorithm right now. Imagine 
that we have a window with the string “abcabababc” (the 
explicit tree for this window is shown in Fig. 2) and that we 
subsequently received the new symbol "b" causing our 
window to slide. The stages are depicted in the following 
figures: in Fig. 4, we show the status after the deletion of the 
leftmost character “a”; in Fig. 5 we present the condition 
after the conversion from explicit to implicit suffix tree with 
the largest implicit suffix “bc” and in Fig. 6, we show the 
resultant tree after adding the character “b” at the end of the 
string. We also show another iteration of this simultaneous 
deletion of the leftmost character “b” (Fig. 7), the 
corresponding implicit tree after the removal of the unique 
character  “$“ (Fig. 8) and the insertion of a new character 
“a” along with the unique character “$” at the end (Fig. 9).  

 

Fig. 4. After deleting the leftmost character “a” from the 
string.   
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Fig. 5. Conversion from explicit to implicit after the deletion 
of Fig. 4.  
 

 

Fig. 6. After Inserting “b” at the end of the string, status after 
Fig. 5.  

   

Fig. 7. After deleting the leftmost character “$” from the 
string.   

 

Fig 8. Conversion from explicit to implicit after the deletion 
of Fig. 7.  

 

Fig. 9: After Inserting “b” at the end of the string, 
status after Fig. 8.  

3.4.3 Pseudocodes  
Now combining all the strategies, we present the pseudocode 
to understand the chronological steps of simultaneous 
insertion and deletion.  

In Algorithm 1, we present the steps of our deletion module 
keeping the discussion aligned with the propositions and 
condition.   

 

We maintained a similar set of variables used in Proposition 
2 to understand the logical fragments. This function updates 
the nodes in such a regard so that they can be consistent with 
further insertion or deletion operations simultaneously. To 
delete the leftmost character of the given string, this function 
is called with the desired indexing. Though the asymptotic 
complexity of the function is O(N) where N denotes the 
number of nodes in the tree, the actual complexity is much 
lesser, as we always travel the path of the largest suffix only 
to delete it.  
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Similarly, in Algorithm 2, we present the logical statements 
that maintain consistency in the suffix tree.  For ease of 
discussion, we used similar variables used in the discussion 
of the cases in section 3.4.2. Here, we mainly simulate two 
Cases and finally update the active point by traversing the 
current largest implicit suffix. Based on this point, 
Ukkonen’s algorithm starts trying to put a suffix in the tree 
by ensuring the maximization of shared suffixes. This 
function is called once before inserting one or more 
characters in the tree to convert the tree from explicit to its 
implicit form and to update the active point for the next 
phase. The asymptotic complexity of the above function is 
also O(N) where N denotes the number of nodes in the tree. 
The actual complexity is much lesser, as we only traverse the 
leaf nodes to remove its effect and to find the largest implicit 
suffix, we need to traverse only a single path guided by the 
value of the implicit variable over the given input time series 
string.     

3.5 Maximum Possible Weighted Support Pruning, 
MPWS Pruning  
It is not possible to check each pattern to see if it is a 
weighted frequent (or weighted periodic) pattern. The 
Downward Closure Property (DCP) is employed in the 
unweighted variant of pattern mining. The most popular 
strategy is to use the weight of the largest weighted character 
(MaxW) of the database to decrease the number of patterns 
tested because trivial DCP does not work in weighted pattern 
mining. When a pattern is being tested, its potential as a 
candidate pattern is being assessed. We recommend the 
MPWS Pruning approach since it consistently outperforms 
MaxW Pruning. We start by providing some definitions.  
In this section, we consider 0.8, 0.1, 0.2 and 0 as the weight 
of characters “a”, “b”, “c” and “$” respectively. 
 
Definition 1. (sumW(N)):  
sumW(N) stands for the total number of characters from the 
root to node N. sumW(14) in Fig. 2 tree represents the sum 
of the weight of the characters “b”, “a”, “b”, and “c”, which 
is 1.2.  
Definition 2. (weight (X)): 

weight(X) denotes the average weight of all the characters of 
pattern X. For example If X is “abac” then weight(X) is 
(0.8+0.1+0.8+0.24)/4=0.475. 

Definition 3. (minsup and σ): 

minsup denotes a real number between 0 and 100. Let, the 
maximum weight of a character observed in the sequence is 
maxW. So, we can safely express that, no pattern can have a 
weighted support of more than equation 1. Here |S| denotes 
the length of the sequence.  

 

Definition 4. (weightedSupport(X)): 

A pattern X’s weightedSupport is denoted by the 
multiplication of weight(X) and support(X). Here support(X) 

denotes the actual periodicity of X. A pattern X is weighted 
periodic if weightedSupport(X) ≥ 𝞼𝞼�.  
Definition 5. (cnt(A, B)): 

The total number of characters found on the path between 
node A to node B is denoted by cnt(A,B). In Fig. 2, the value 
of  cnt(8, 13) is 6.  

Definition 6. (maxW(A, B)): 

The weight of the maximum weighted character on the path 
between node A to node B is denoted by maxW(A, B). In Fig. 
2, the value of maxW(8, 13) is 0.8.  

Definition 7. (sizeV(N))): 

The size of the occurrence vector of node N is represented by 
sizeV(N). This presents the number of occurrences of the 
patterns ending at node N.  

Definition 8. (subStr(A,B)): 

subStr(A, B) denotes the substring of the time series found 
in the path between nodes A and B. In Fig. 2, the value of 
subStr(8, 13) is  “ababc$”.  

Definition 9. (nodeW(N)): 

Let node P be the parent of node N, E presents the edge 
between nodes P and N and R denotes the root node of the 
suffix tree. Then, we can establish the following argument,  

 

 

 

Now, we present a Lemma based on nodeW(N).  Let us 
assume, s1 = subStr(R, P), s2=subStr(P, N) and s3 be any 
nonempty prefix of s2 and we consider a string s = s1+s3. 
Then, we can write,  
Lemma 1. nodeW(N) ≥ weightedSupport(S)   
Proof:  As per definition 4, weightedSupport(S) = weight(S) 
× support(S). max(A, B) is the maximum possible value of 
weight S under any scenario which can be measured by 
equations 1 and 2 respectively. Now, there can be two 
possible cases,  
1. Case 1. (weight(s1) > maxW(P, N)): In the first case, even 
if all the characters in E have the same weight as maxW(P, 
N), the weight of S will never be greater than A as shown in 
equation 2. Because, if we increase the length of s3 by a 
single character weight(S) will decrease. Here, A denotes the 
maximum value possible for weight(X).  
2. Case 2. (weight(s1) < maxW(P, N)): We can measure an 
upper bound for weight(S). Let us consider all the characters 
in E has a weight equal to the maxW(P, N). Then with the 
gradual increase in length in s3, the weight of S starts to 
decay. We can calculate the value of B using equation 3 by 
estimating that s3 has the maximum possible length. 
    

........... (1) 

       ................ (2) 

............... (3) 

...... (4) 
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3. Case 3. (weight(s) = maxW(P, N)): In this particular 
scenario, the length of s3 does not bear any significance. So, 
in summary,   
 
→ max(A, B) ≥ weight(S) 
→ sizeV(N) ≥ support(S)  
→ max(A, B) × sizeV(N) ≥ weight(S) × support(S) 
 ∴ nodeW(N) ≥ weightedSupport(S)   
 
Definition 10. (MPWS(N)): 
MPWS(N) represents the maximum value of nodeW among 
all the nodes in the subtree of N including N.  
As stated in definition 9, NodeW(N) expresses the maximum 
possible weighted support that can be achieved in a pattern 
S. MPWS holds the maximum value of nodeW found in the 
subtree of N, it represents the maximum possible weighted 
support achievable by any pattern that has prefix as s1. The 
definition of s1 is stated in Lemma 1’s proof.   
The candidate generation process is performed using a 
breadth-first search (BFS) in the suffix tree using a level-by-
level pattern generation. In the breadth-first search, once we 
reach node N, for every pattern S if we observe that 
(weight(S) × sizeV(N)) ≥ 𝞂𝞂�, we consider S among the 
candidate patterns.    
There will be about N nodes in the suffix tree for a string of 
length L. However, the total number of characters on the 
edges can approach L2. As a result, the dataset may contain 
L2 possible patterns.    
Every pattern is tested as part of the aforementioned 
candidate Generation process, and if it succeeds, it becomes 
a candidate. However, examining each pattern takes time. 
Therefore, we need to come up with a pruning condition that 
lowers the number of patterns that are verified.  
The most popular method is to use the database's maximum 
weighted character (MaxW) weight. Any super pattern of P 
cannot be a weighted frequent pattern if MaxW × support(P) 
< 𝞂𝞂�. Therefore, those patterns cannot also be periodic 
patterns.   
 
Lemma2: If MPWS(C) < 𝞂𝞂� for any child C of node N, we 
can disregard the entire subtree of C and proceed with other 
branches of the tree.   
 
The proof is very trivial because, by the definition of MPWS 
stated in Definition 11, any node U in the subtree of C will 
not satisfy nodeW(U) ≥ 𝞂𝞂�.  
 
All of the candidate patterns are actually frequent weighted 
subsequences of the current time series. Using well-known 
periodicity detection algorithms, we can test the occurrence 
vector of each potential pattern with various period values to 
see if they are also periodic patterns [5].  
 
To discuss our proposed pruning measure, we present Fig. 10 
and Table 1. Fig. 10 represents the suffix tree of the string 
“abcabababc$”. For visualization as minsup value, 10% was 
chosen. Table 1 holds the detailed calculation of MPWS with 
other associated values.  

 

Fig. 10. An Example of MPWS Pruning.   
 
To explain the colored nodes of Fig. 10, we note the 
following points,  
1. Any pattern that has a blue node in its underlying subtree 
is tested. Here, patterns “a”, “ab”, “aba”, “abab”, “b”, “ba” 
and “bab” are tested for candidacy.  
2. Any green node denotes that, the complete subtree along 
with this node can be ignored during the candidate generation 
step.    
3. Red node denotes that, these nodes are never evaluated. 
All the red nodes have green nodes in their ancestors. When 
a node is detected as its subtree should be ignored, it is 
colored as green and all of its underlying subtree is colored 
as red.   
 
Table 1: Calculation of the Necessary Values for MPWS 
Pruning of Fig. 10 
 

N SizeV
  

A  B  NodeW  MPWS 

1 1 0.48  0.68  0.68  0.68 

2 1 0.37  0.67  0.67  0.67 

3 1 0.5  0.73  0.73  0.73 

4 4 0.8  0.8  3.2  3.2 

5 1 0.52  0.62  0.62  0.62 

6 4 0.1  0.1  0.4  1.13 

7 1 0.45  0.6  0.6  0.60 

8 2 0.57  0.62  1.25  1.25 

9 1 0.4  0.37  0.4  0.4 

10 2 0.45  0.57  1.13  1.13 

11 1 0.3  0.28  0.3  0.3 

12 2 0.37  0.37  0.73  0.73 
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13 1 0.28  0.28  0.28  0.28 

14 2 0.15  0.15  0.3  0.67 

15 1 0.10  0.10  0.10  0.10 

16 2 0.2  0.2  0.4  0.73 

17 1 0.1  0.1  0.1  0.1 

18 1 0.00  0.00  0.00  0.00 

 
In this illustration, MPWS Pruning states that only 7 patterns 
are evaluated for candidacy. Five of these ultimately develop 
into candidate patterns. If we did not utilize any pruning, we 
have to test 50 patterns in total. If we used only MaxW 
Pruning, we had to test 10 different patterns.  
 
Additional Difficulty in Pruning:  The maximum number 
of nodes in a suffix tree that we construct for a string of 
length L is 2 × L. We first calculate the MPWS value for each 
node during candidate generation, which can be  
done by a depth-first traversal on the tree. For that traversal, 
we need the MaxW value for each edge. We calculate it by 
applying a range minimum query strategy to the static data. 
Given that each edge's query complexity is O(1), the 
complexity added by MPWS pruning is O(L).  
 
4. Experimental Results  

To contrast our strategy with the existing strategies, we 
employed a number of data sets from the UCI Machine 
Learning Repository [10]. We present the outcomes of the 
following four data sets because they are all comparable 
in terms of their findings. To create a string of characters, 
the datasets were discretized.  The complexity to 
discretize the dataset was O(N) where N denotes the total 
number of elements in the dataset.  
1. Individual household electric power consumption Data Set 
2. Absenteeism at Work Data Set  
3. Appliances energy prediction Data Set 
4. Diabetes Data Set  
 
To generate weights of the items we drew the weight values 
from a normal distribution over the frequency of the items 
keeping the mean and standard deviation to 0 and 0.1 
respectively.  
 
4.1 Runtime Performance of DTSW   

Existing time series research offers no guidance on how to 
approach sliding window-based issues. For each window, the 
data structure must be created from scratch. But this strategy 
is ineffective. We will present a contrast of the experimental 
findings between DTSW and tree reconstruction for each 

window. When the window size or number is enormous, 
building the tree from scratch for each new window performs 
poorly. DTSW is highly helpful in those situations.  

For four distinct window widths, we have four graphs in Fig. 
11, where the x-axis represents the number of windows 
traversed and the y-axis represents the total time taken from 
the start. It is clear that as window size increases, 
reconstruction performance degrades, but DTSW continues 
to function consistently with low runtime costs.  

Data from the Individual Household Electric Power 
Consumption Data Set was used to create the graphs. Similar 
results are observed in the graphs for the other three datasets, 
so we have omitted to present them here to avoid repetition. 

 

Fig. 11. Sliding Window with Window Size 100, 1000, 
10000 and 30000  

An important novelty of DTSW is, it is applicable to any time 
series pattern mining problem that uses a suffix tree as the 
underlying representative data structure and works in the 
data stream or sliding window alike environments. It is quite 
generic because it only focuses on how to efficiently update 
the data structure so that based on Ukkonen’s algorithm 
simultaneous insertion (at the end) and deletion (from the 
start) can be done.  As an example, we can cite [29], where 
the authors use our proposed strategy to update the data 
structure rather than reconstruction. This also supports our 
statement that, our proposed solution is quite flexible to be 
bundled within other problems.  
Analytically, we can also discuss how reconstruction 
operation will always be costlier compared to tree 
modification. In the tree reconstruction, we again need to 
scan and generate a set of nodes to represent all the suffixes, 
whereas in the tree modification we need to revert a subset 
of such nodes. So, intuitively, though both approaches need 
a linear time complexity but the tree modification approach 
will require lesser number of operations resulting in 
improved runtime.  
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4.2 Pruning Performance of MPWS 
We measure the performance of MPWS Pruning strategy 
over various metrics. In this section, we present our findings 
in brief.  

4.2.1 Number of Patterns Tested with Varying minsup  
Every pattern must be examined in a candidate generation 
process without pruning to see if it qualifies as a candidate. 
However, this is unacceptable because there may be 
numerous pointless patterns. Avoiding testing patterns that 
won't eventually become candidate patterns was our key 
objective when developing MPWS Pruning. 

We discretized all of the datasets and gave each unique 
character a weight that fits a normal distribution (µ = 0.5 and 
σ = 0.2). We have contrasted MPWS and MaxW pruning for 
various weighted support thresholds across all databases. 
According to Fig. 12-15, MPWS pruning tests a lot fewer 
patterns than MaxW pruning. We showed our results for each 
of the experimented datasets for different weighted support 
thresholds. The x-axis present the weighted support 
thresholds and the y-axis represents the number of patterns 
based on three criteria, the number of patterns tested by 
MaxW Pruning, the number of patterns tested by MPWS 
Pruning and the actual number of candidates.  For instance, 
if we try to optimize the candidate generation process in the 
Individual Household Electric Power Consumption Data Set 
using simply MaxW in the database, it tests 63490 patterns 
whereas MPWS Pruning checks 21592 patterns only. 21408 
patterns eventually turn into candidate patterns. The testing 
of practically all superfluous patterns is pruned by MPWS 
Pruning. We can observe from the findings that MaxW 
Pruning tests more patterns than MPWS Pruning. MPWS 
Pruning will not ever try more patterns than MaxW Pruning, 
in actuality.  
 

 

 
Fig. 12. Number of Patterns Tested with Varying minsup in 
Individual Household Electric Power Consumption Data Set. 
 

 

Fig. 13. Number of Patterns Tested with Varying minsup in 
Absenteeism at Work Data Set. 

 

Fig. 14. Number of Patterns Tested with Varying minsup in 
Appliances Energy Prediction Data Set. 

 

Fig. 15. Number of Patterns Tested with Varying minsup in 
Diabetes Data Set. 

4.2.2 Runtime With Varying minsup   
In lower minsup values, we need to generate more patterns. 
So, with the increasing minsup value, the runtime will 
decrease. This also becomes evident through our 
experimentation with various datasets.  

In Fig.  16 and Fig. 17 we present the results for the 
individual household electric power consumption dataset and 
Absenteeism at Work dataset. If we analyze the charts’ 
behavior, we can observe that, there are some in-between 
spikes, but overall, with the decrease in minsup value, the 
total runtime increases. Some anomalies in spikes can be 
observed due to the weight distribution and the window size.   
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Fig. 16. Runtime with Varying minsup in Individual 
Household Electric Power Consumption Data Set.  

 

Fig. 17. Runtime with Varying minsup in Absenteeism at 
Work Data Set.  

The underlying reasoning can also be stated numerically 
based on Fig. 13 over the Individual Household Electric 
Power Consumption Dataset. In Fig. 9-12, we have shown 
how the number of tested patterns fluctuates by varying 
minsup values. In our experiments, for this dataset, we saw 
that, when the minsup value is 0.005% we needed to test 
21408 candidates in this dataset. But when the minsup value 
was increased to 0.01%, the number of tested patterns 
became only 9523. This variation controls the change in the 
total runtime.  As a similar pattern was observed in other 
datasets, we omitted the figures here.  

4.2.3 Memory Usage with varying minsup  

To understand the memory usage of MPWS Pruning, we 
conducted experiments with MaxW Pruning. Here, for 
varying minsup, we record the amount of maximum memory 
used by the programs from start to completion.   
 

 

Fig. 18. Memory Usage with Varying minsup in Absenteeism 
at Work Data Set. 
 

 

Fig. 19. Memory Usage with Varying minsup in Individual 
Household Electric Power Consumption Data Set. 

In Fig. 18, and 19, we present the results for the Absenteeism 
at Work dataset and Individual Household Electric Power 
Consumption dataset. The other datasets exhibited similar 
characteristics. So, we did not show the results here. The data 
indicate that both methods use approximately identical 
amounts of memory. MPWS works slightly better than 
MaxW Pruning when minsup is low. The largest factor in this 
situation is the maximum size of the queue because we have 
used a breadth-first approach to construct the patterns. 
Increases in minsup result in fewer patterns being tried, 
which uses less memory. MaxW Pruning tests more patterns 
than MPWS Pruning. As a result, the queue requires more 
space, which uses more RAM.   

 
4.2.4 Extendibility of MPWS to Other Problems  
An important point to note is that MPWS is a generic pruning 
measure to reduce the number of candidate patterns that can 
be applied in any weighted time series pattern mining. 
Periodical time series pattern mining is a very common 
concept in the addressed domain. During designing MPWS, 
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any such constraint has not been imposed, so MPWS can 
easily be extended to weighted periodical time series pattern 
mining problems.  

To have a comparison with recent one of studies, we have 
chosen a very relevant work HOVA-FPPM [30]. This study 
uses a hash-based data structure and Apriori based algorithm 
to mine periodical patterns from a time series database. To 
make a fairground comparison we first apply weights over 
the items of the database drawing and assigning the values 
from normal distribution. Then we apply HOVA-FPPM 
algorithm with MaxW measure and our suffix tree-based 
solution with MPWS measure and track the performance. 
HOVA-FPPM algorithm was not specifically designed to 
handle weights, so we brought the traditional strategies 
applied to MaxW measure into HOVA-FPPM to mine all 
periodical patterns.  

In Fig. 20. We present the result found from the individual 
household electric power consumption dataset for various 
minimum support thresholds. We can easily see that, MPWS 
measure has considered lesser number of patterns than 
MaxW embedded HOVA-FPPM algorithm. As the 
underlying strategy we can easily state the tighter 
approximation property of MPWS measure.  

 

Fig. 20. Number of Patterns tested in HOVA-FPPM with 
MaxW and Suffix Tree with MPWS in weighted time series 
pattern mining.  

4.3 Feasibility Analysis of the Framework  
To determine whether DWTS is feasible, it is sufficient to be 
able to construct the suffix tree for the window currently 
under examination. A suffix tree uses only O(L) memory, 
where L is the window's length. This is obviously preferable 
to creating the entire tree from scratch for each window, and 
memory use of DWTS is also O(N), as the complexity of 
deleting the first P characters is O(P) and inserting P new 
characters at the end is also O(P). Therefore, neither runtime 
nor memory is growing exponentially.  
With the help of a preliminary computation, MPWS prunes 
as many subtrees as possible. A depth-first search is 
necessary to determine the values required for the pruning. A 
query for the maximum weight on some edge is made in the 
depth-first search. The complexity of each response is O(1). 
For practical use of the entire structure, the update of the data 
structure for edge weight queries only requires O(log(L)) 
time.   

4.4 Summary  
The discussion of the entire section leads to the conclusion 
that DTWS consistently outperforms the reconstruction 
approach. DWTS can be helpful, particularly when mining 
significant patterns from time series with large window sizes 
and frequent alterations.  
Weighted pattern mining lacks the trivial downward closure 
property. Candidate generation is optimized with MaxW 
Pruning. Our suggested MPWS Pruning technique, which is 
also time and memory efficient, tests fewer patterns overall 
than MaxW Pruning.  
5. Conclusion 
In this study, we address two time series pattern mining-
related problems and provide our algorithms. Our first 
contribution, DTSW algorithm, addresses dynamic suffix 
tree handling issues and our second contribution, MPWS 
pruning strategy, provides a new measure to approximate the 
maximum possible weighted support for an extended pattern 
which can be used as a downward closure property to reduce 
the number of candidates during weighted time series pattern 
mining. Both of our contributions are independent in manner 
and can be used separately in different relevant problems. 
DTSW’s dynamically updating strategies are applicable for 
both weighted and unweighted frameworks and can be 
adapted to run-time dynamic window sizes. Thus, this 
method can be used to address numerous problems that deal 
with dynamical suffix tree updates focusing on data stream 
behavior. MPWS measure, due to its distinct method of 
approximating the upper bound, can be employed in various 
forms of weighted pattern mining-related problems in place 
of conventional MaxW measure which may reduce the 
number of generated candidates resulting in improved 
mining runtime. Through analytically analyzing and 
experimenting with various real-life datasets, we also 
showed the efficiency and extendibility of our proposals with 
respect to the recent relevant works. As an ongoing work, we 
have plans to investigate our proposed strategies’ 
performance and applicability in other time series pattern 
mining-related problems. We also intend to introduce the 
idea of dynamic weights in time series weighted pattern 
mining and examine the performance of our proposals in the 
future.  
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