

Mining Weighted Patterns from Time Series Databases Based on Sliding Window
Redwan Ahmed Rizvee1, Md Shahadat Hossain Shahin1, Chowdhury Farhan Ahmed1 * and Carson K. Leung2

1Department of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh
2Department of Computer Science, University of Manitoba, Manitoba, Canada

*Email: farhan@du.ac.bd

Received on 04 July 2023, Accepted for Publication on 25 January 2024

ABSTRACT

Data mining has traditionally relied heavily on sliding window-based challenges, which has sparked a variety of
studies. For each new window in time series mining, current literature mandates the rebuilding of the underlying
structure, Suffix Tree - A trie-based structure representing all the suffixes of a string. However, reconstruction
struggles when the window is wide or when sliding happens frequently. As a result, we provide a new technique
Dynamic Tree-Based Approach to handle Sliding Windows (DTSW) in time series in this study that dynamically
changes the representative suffix tree structure rather than reconstructing it after every alteration or sliding. In
addition, we also put forth a different approach to the issue of extracting weighted periodic patterns from time series.
To prevent testing pointless patterns, existing studies mostly rely on the weight of the database's highest-weighted
item. However, these methods continue to examine numerous patterns. These methods still examine numerous
patterns to see whether they can be candidates. Our proposed measure Maximum Possible Weighted Support
(MPWS) accelerates the candidate generation process by removing numerous unnecessary patterns in advance. The
novelty of MPWS is it considers the maximum weighted average over the maximum weighted item extension by
enforcing more constraints. The usefulness of our two techniques in handling sliding windows and trimming
redundant candidate patterns is demonstrated by experimental results using a variety of real-world datasets. Our
experiments state that our dynamic handling technique significantly improves runtime than the reconstruction in a
dynamic sliding window-based environment with simultaneous insertion and deletion actions and MPWS reduces
the number of tested patterns resulting in lesser mining time in weighted time series pattern mining.

Keywords: Time Series, Weighted Periodic Pattern Mining, Dynamic Database, Sliding Window, Pruning Strategies.

1. Introduction

Finding a practical method for mining common patterns has
always been crucial to knowledge discovery [15, 16, 17, 18,
19]. Over time, the concept of creating patterns has
developed and permeated a vast array of new disciplines.
Time series pattern mining is a well-known and widely
debated subject within sequential pattern mining, which is
one of the most renowned research domains in the field of
pattern mining.

The main source of data for time series databases is a stream
of events or other items found in relation to time. According
to existing literature, Suffix Trees, on which Frequent
Patterns are mined under various thresholds and conditions,
are the best structures to describe time series. In [1][2] two
crucial data stream concepts were covered. Data streams are
continuous, unbounded, and not always distributed evenly.
The result is the problem of dynamicity." The sliding window
[7] problem, which has many real-world applications, such
as - weather forecasting, natural disasters prediction, etc., is
likewise based on this property of dynamicity. Time series
[3] is also a fairly common application of the sliding window
problem. The available literature mandates reconstruction of
the data structure to reflect the updated window each time as
a solution to this issue. However, if the windows are huge or
slide frequently, this technique based on reconstruction is
highly expensive. We suggest DTSW (Dynamic Tree-based
approach to handling Sliding Windows in time series), which
focuses on dynamically updating the data structure and
maintaining a dynamic tree rather than reconstructing for

each changed window and keeps the tree suitable for any
kind of pattern mining. Our proposed solution can handle
dynamic window sizes for any problem related to sliding
windows. We focus on extracting weighted periodic patterns
from time series in our second contribution. Compared to its
unweighted sibling [7], the addition of weight to patterns
enables the discovery of more intriguing patterns. Time
series with weighted periodic patterns have weights that are
sufficient to reach the user-specified threshold and at least a
specific number of times per period. In order to find
interesting characteristics in time series, weighted pattern
mining can be quite helpful.

For instance, if we examine the transactions of a sports
equipment store, we will see that the sold products fluctuate
with many different criteria, such as time, event, etc. Every
four years, when the world cup is held, the sales rate of
football jerseys increases. To find these intriguing traits,
weighted time series mining might be quite helpful.

Another example can be considered by analyzing the movie
series' periodical patterns. We may understand that movies
are frequently released considering special occasions (e.g.,
Christmas, Thanksgiving, Independence Day, etc.), targeting
award ceremonies (e.g., Oscar, BAFTA, etc.), seasons, etc.
In these databases, the information may be kept with time
stamps which make them a time series database. Also, the
box office revenue calculation is also very relevant to the
time. For example, during the world cup season or any
worldwide sports event, new movies are not generally
released. But, we all know that, during the recent epidemic

https://doi.org/10.3329/dujase.v8i1.72984DUJASE Vol. 8 (1) 13-25, 2023 (January)

coronavirus, the OTT (over-the-top) platform business hit a
spark [20]. Because most of the people had to stay at home
and work from home. So, those content providers tried to
give their best efforts to bring a variety of content to the
audience to entertain them. So, in summary, there are some
events, when movies or specific types of movies get
patronized over normal times. But, also there are some
moments when they are slowed down. Weighted pattern
mining, keeps a great impact here, by enforcing weights to
extract specific types of patterns representing special nature
over generic support-based frameworks. Also, as these
databases are equipped with time information, periodical
statistics can be quite helpful in this regard to analyze the
general behavioral nature.

Since the downward closure property (DCP) cannot be
directly applied in weighted versions of pattern mining,
avoiding testing undesirable candidates to speed up the
candidate generation process is the key problem. Max
Weight principles are used in existing works to expedite
candidate creation. Existing works, however, still require
testing a sizable number of pointless patterns for candidacy,
which worsens performance. The MPWS Pruning method,
which is our second contribution to this paper, effectively
prunes patterns to minimize the number of candidates that
must be examined for candidacy. In this essay, we put
forward remedies to address these two issues. They are

1. DTSW, a dynamic tree-based approach to handle sliding
windows in time series (Section 3.4).

2. MPWS Pruning, an efficient approach to speed up the
candidate generation process in weighted periodic pattern
mining (Section 3.5).

This article is an extended version of our work [21]. In this
extended article, we provide more in-depth motivational
real-life application-based examples, a wide range of
background studies, a detailed discussion with examples of
our proposed methodologies along with the necessary
concepts, and a set of new extensive experimental
discussions to understand the solutions’ merits.

Our findings state that DTSW provides a novel generic
approach to capture simultaneous insertion and deletion in a
dynamic sliding widow-based scenario in a linear time.
DTSW focuses on adjusting the representative suffix tree
structure rather than reconstructing the complete structure
which overall reduces processed time. MPWS is a generic
pruning measure that can be applied in weighted time series
pattern mining problems. By applying MPWS, we stop the
generation of a good number of undesired candidates for a
weighted support threshold constraint, which overall
improves the mining runtime and does not add any severe
resource bottleneck.

Section 2 contains the background study and existing works
related to our domain. Section 3 consists of our proposed
solutions to the problems. Section 4 gives a comparative
analysis between our solutions and existing solutions, and
conclusions are drawn in Section 5.

2. Background and Related Works

Sequential Pattern mining considers the sequential
relationship among the elements of the database to discover
interesting patterns [22]. Time series pattern mining is a
subdomain under sequential pattern mining that addresses
the ordered relationship among the entities considering
timestamps [23, 24].

A wide range of literature has addressed different issues
related to time series pattern mining [23, 24, 25]. Some
notable key issues are, periodic pattern mining [6, 24],
multivariate time series [25], time series forecasting [3, 11],
weighted time series mining [7, 14, 21], etc. In this study,
we address the problem of efficient data representation in the
context of the sliding window problem in a time series
database. We also address the issue of designing a compacter
pruning strategy that the existing measures in the light of
weighted time series pattern mining.

We divided our contributions into two distinct modules. One
focuses on changing the data structure, while the other involves
efficient pruning. It has been demonstrated in [5] that the suffix
tree is the most effective data structure for representing time
series and for mining frequently occurring patterns. The suffix
tree has also been a potential candidate for our data structure,
and as of right now, Ukkonen's approach is the quickest way to
build one. The Ukkonen’s algorithm runs in linear time.
However, it's interesting to note that current time series research
offers no guidance on how to handle the data structure
dynamically. Because of this, existing approaches advise
creating the structure from scratch for each new window in order
to address the sliding window problem in the time series. To our
knowledge, no time series literature offers a single framework
that can handle both the addition and deletion of occurrences
simultaneously. DTSW, a framework to address this issue, is our
first contribution to this study. Our approach is based on
maintaining the consistency of the tree, allowing for the
insertion or deletion of events at any time. In DS Tree [1], the
notion of making a data structure consistent for batch events was
put forth. The main objective of this work was to maintain the
tree's consistency for updates in the future and to introduce only
the essential changes to reflect the data currently being taken
into account.

The addition of weight has been a key idea in pattern mining
since it aids in the discovery of patterns with more significant
properties, such as [7] and [4], and it is also widely used in
time series. Current research on periodic pattern mining from
time series [5][6] makes use of the downward closure
property to expedite candidate creation. In order to expedite
the candidate generation in this case, weighted versions of
related works [8] employ the weight of the highest weighted
character in the database. It aids in lowering the number of
pointless patterns tested. By utilizing a heuristic value for the
patterns, our proposed MPWS Pruning is a similar tool that
lowers the number of candidates to be assessed.

14 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

Time series-related literature has shaded up on various real-
life problems, such as [11] proposed an idea to integrate
sliding window and DTW distance to measure time-series
forecasting tasks, [12] suggested an approach to find
anomalies in time-stamped wireless sensor networks based
on sliding windows, [13] characterized non-linear time series
problem via sliding window amplitude based dispersion
entropy approach, [14] proposed techniques to introduce
weighted dynamic transfer network and spectral entropy for
weak and non-linear detection in time series, [27] added the
concept of the graph with temporal information to mine
patterns, mining relevant patterns from multi-source time
series database, etc.

So, the time series research domain is still very active.
Moreover, the addition of sliding windows has also found its
applications in numerous problems. Additionally, the
concept of weights has also opened new challenges are
problems that should be addressed. We believe our
contributions can greatly help improve the performance of
various solutions related to time series and its variations.
3. Proposed Approaches

In this section, we discuss our proposed strategies. In Section
3.1, we explain how a time series database is constructed.
Section 3.2 presents an idea about the problems that we have
approached in this paper. Section 3.3 contains a discussion
regarding suffix tree structure. Section 3.4 and Section 3.5
contain a detailed explanation of the techniques introduced.

3.1 Discretization
A method known as discretization allows a collection of data
to be represented by a single symbol. Information that has
been acquired over a period of time is referred to as a time
series. By discretizing the data, time series can be
represented as a string or series of characters from a
predetermined set. For instance, a discretized time series
sequence is “abcabababc$”.

3.2 Problem Definition
In this essay, we focused on two distinct issues. It is possible
to state the first problem using Fig. 1. A sliding window
problem in a time series is illustrated in Fig. 1, where the
window size is nine. The sequence “abcababab”' was found
in window 1. The window slides to reveal a new, changed
window after the arrival of the new discretized input
symbol “c”. To create the new window, we remove the
symbol “a” from the beginning of the previous window and
add the symbol “c” to the end. We've already mentioned that
the suffix tree [5] is the optimal structure for representing
time series. Therefore, the same issue that we addressed here
is,

Fig. 1. Sliding Window

“If we have a sequence called S and a suffix tree called T for
S, we need to update T efficiently in the event that new
symbols are added to S's end or removed from its beginning”.
Our suggested algorithm, DTSW, offers a comprehensive
framework to address this issue.

3.3 Tree Structure

The time series database is represented as a suffix tree.
Ukkonen [9] suggested a method for building a suffix tree
that was both the most effective and compact. We build our
initial suffix tree using Ukkonen's technique. We shall have
a quick overview of the key ideas in Ukkonen's algorithm in
this section. These ideas will make it easier to comprehend
the tree structure, which will help to understand the
comprehension of our dynamic tree solution (DTSW).

All of a string's suffixes are represented by a suffix tree. The
suffix tree is in the explicit form if all suffixes can be found
by traversing from root to leaf nodes. However, the tree is in
the implicit form if all of the suffixes do not finish in leaves
but rather are embedded in the paths. An explicit suffix tree
for the string “abcabababc$” is shown in Fig. 2, while an
implicit suffix tree for “abcabababc” is shown in Fig. 3.

Fig. 2. Explicit Suffix Tree for string “abcabababc$”

Fig. 3. Implicit Suffix Tree for string “abcabababc”.

A key idea in Ukkonen's technique is the “suffix link” which
facilitates swift tree traversal. Every internal node of the tree
will, in accordance with Ukkonen's idea, point to another
internal node or root as its suffix link. If and only if node B
has the route "𝛽𝛽�" from the root, the suffix link of node A
with the path “𝛼𝛼�𝛽𝛽�” from the root, where “𝛼𝛼�” is exactly one
symbol and "𝛽𝛽�" can contain zero or more symbols, will point
to node B as its suffix root. As an illustration, node 1 in the
explicit suffix tree in Fig. 2 points to node 8 as its suffix link.

15Mining Weighted Patterns from Time Series Databases Based on Sliding Window

 Ukkonen's approach for adding symbols begins each run at
the active point which is the location of the largest implicit
suffix in the tree at the time. The components of an active
point are as follows,
1. active node: It indicates the position of the node from

which a new pass will begin
2. active edge: It describes the edge of the active node

where suffix overlapping is occurring,
3. active length: It indicates the number of symbols that

have been overlapped in the direction of the active edge
from the active node.

Three rule extensions were suggested by Ukkonen for his
method. The extensions are described as follows,
- Rule 1 extension: This extension states that we do

not need to traverse all of the leaves in order to add a
new symbol to the end of all of the current suffixes in
the tree; rather, we can utilize a global reference.

- Rule 2 extension: This extension states that during
the extension for a particular symbol γ from the active
node if no branch exists, we create a new branch for γ
from the active node.

- Rule 3 extension: This extension ensures the
maximization of suffixes along the suffix tree edges.

By keeping merely pointers to the beginning and end of the
input sequence instead of the precise symbols for edge labels,
Ukkonen also employed edge label compression in his
technique. Every pass adds a fresh sign to the tree. Each
existing node must have a suffix link to another node before
each pass, and the active point must be kept correspondingly.

3.4 A Dynamic Tree-Based Approach to Handle Sliding
Window in Time Series, DTSW

The answer to the first issue raised in our paper's section 3.2
will be covered in this section. There will be two parts to the
debate. The Handling Deletion Events module will describe
how to update the suffix tree if certain symbols are removed
from the sequence's beginning, and the Handling Insertion
Events module will describe how to update the tree if new
symbols are added to the sequence's end.

3.4.1 Handling Deletion Events

Deleting the symbol from the beginning of a sequence
means, deleting the largest suffix from the sequence. For
instance, if the sequence is “abcabababc”, taking away the
initial "a" from the sequence entails taking away the greatest
suffix, “abcabababc” from the sequence, leaving us with
“bcabababc”. Therefore, the issue is how to remove a suffix
from the suffix tree, and this is why we define our Condition
1.
Condition 1: Before deleting any suffix from the suffix tree,
the tree must be in its explicit form.

The main justification for this is that, if the tree is represented
explicitly, it is always sufficient to remove a leaf node from
the tree in order to delete a suffix. For instance, removing
node 3 from the explicit tree of Fig. 2 is sufficient to remove

the suffix "abcabababc" from the tree. Another crucial point
to note is that, by definition, removing suffixes from a
sequence result in the deletion of larger to smaller suffixes.
We now talk about potential outcomes that could result from
deleting nodes and how to deal with them. We'll put them
forth as propositions.

Proposition 1 (Conversion from Internal to Leaf Node):
If, after removing a node V from an explicit suffix tree, V's
parent, U, loses all of its child nodes, U will be converted to
a leaf node from an internal node if it is not root, and if any
node W was pointing to U as their suffix link, then the
suffix link of W will be redirected to the root node.

The specification of suffix links, which point from one
internal node to another internal node, and the fact that path
symbols from the root to any node X are unique due to the
tree structure explain why this redirection is necessary.
Therefore, the suffix link for W must be directed to the suffix
tree root.

Proposition 2 (Merging a Split path): Assume we remove
a node V for deletion from an explicit suffix tree. Let the
parent node of V is U and the parent node of U is X. If, after
deletion, U becomes a single child node having W. Then, we
remove U and make a single path by merging the edges X to
U and U to W. If any node Y was pointing to U as its suffix
link will be redirected to the root of the suffix tree.

As seen in Fig. 3, for instance, node 2 will only have one
child node 4 when node 3 is removed. The path from node 1
to node 2 and node 2 to node 4 will then be combined when
node 2 is removed. Node 2 wasn't pointed to by any nodes as
its suffix link, but if it had, we would have been redirected to
the root. because the path substring “abc” (from the root to
the second node) would not have duplicated elsewhere in the
tree (from the root). To keep our Condition 1 and insertion
module operational, this notion is necessary.

3.4.2 Handling Insertion Events
A complete framework for maintaining a dynamic suffix tree
to handle sliding windows is provided by our suggested
method, DTSW, where our algorithm views Insertion and
Deletion as two separate modules. Our method may update
the suffix tree for any number of insertion or deletion events
while maintaining a consistent structure for upcoming
updates. Before detailing the process, first, we shall describe
how an implicit suffix tree is transformed into an explicit
suffix tree.

Converting an implicit suffix tree to an explicit suffix
tree: An exclusive symbol is included in the tree to change it
from an implicit suffix tree to an explicit suffix tree. A
symbol is deemed unique or exclusive if it does not appear
in the sequence (upon which the suffix tree is created). This
addition generates a large number of nodes, divides a large
number of pathways, and makes every implicit suffix
apparent. The explicit suffix tree of the string "abcabababc"
is shown in Fig. 2, where "abcabababc" is the main string and
"$" is the special symbol. Fig. 3 displays the implicit suffix
tree for the string ''abcabababc''. Both Fig. 2 and Fig. 3

16 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

represent identical suffixes, but Fig. 2. has the advantage of
ending all the suffixes in leaves so that we may extract the
primary suffixes to work with only by omitting the last
symbol from each suffix.

Insertion Module: Our insertion module's primary
objective is to transform the tree to the point where the
same Ukkonen's technique may be applied once more to
insert symbols into the tree. The steps are:
1. Conversion from explicit to implicit: First, we convert
the tree from explicit to implicit form, removing the special
symbol and all the impacts it had on the suffix tree.

2. Discovering a New Active Point: The Ukkonen’s method
begins each run at the tree's greatest implicit suffix.
Following the first phase, some explicit suffixes will change
to implicit ones. At this point, we must locate the largest
implicit suffix and update the active point for the new pass.

There are numerous justifications for step 1. The first reason
is that there is no unique symbol in the input. Therefore, this
symbol must be eliminated from the tree prior to any new
additions; otherwise, it will be expensive to extract the major
suffixes when we add additional input and preserve the
unique symbol. The inclusion of a distinctive symbol splits
pathways and adds some extra nodes to the tree, which is the
second reason. The maximization of overlapping suffixes
will not be guaranteed, and the compact character of the tree
will be broken, if we do not go back to the effect before the
new insertion. Let us use "$" as our special symbol. We will
now discuss the scenarios that can result from the insertion
of "$". We need to undo such impacts. The scenarios are as
follows,

Case 1 (Child node V formed from a "$" node that
already existed): In this instance, we must get rid of the
child node V. Let U be the parent node of V and after the
deletion of V, U loses all of its children and is not the root.
Then we must delete U and merge the path according to
propositions 1 and 2, respectively. If U has only one child
node left, then we must delete U and merge the path. The
example has already been stated in the definition of
Proposition 2.

Case 2 (Child node V produced by slicing an existing path
for '$'): Both the explicit and implicit suffix trees in Fig. 1
and Fig. 2 can be used to discuss this case. The path between
node 1 and node 3 splits as a result of the inclusion of "$".
Then node 4 is constructed for "$" and a new node 2 is added
between them. In order to reverse this situation, we will first
delete node V and then rejoin the split path by adhering to
proposition 2. In this example, we will first remove node 4,
then remove node 2, and then merge the paths from node 1
to node 2 and from node 2 to node 3. If any suffix links were
heading to node 2 instead of root, we would also have
redirected those links.
We will now discuss the second stage, which is how to locate
an active point for a fresh pass. The entire procedure and
justification can be given as follows.

1. We transform explicit suffixes into their implicit form in
step 1. Thus, we are able to determine how many suffixes
have been transformed. The greatest implicit suffix at the
time of conversion is indicated by this value. Let us say the
number is L. Due to the fact that a suffix becomes implicit
along with all of its smaller sub-suffixes, all of the suffixes
that were present at least a L distance from the end of the
sequence will now be implicit. Furthermore, suffix deletion
happens in a specific order; larger suffixes are deleted first,
followed by their smaller sub-suffixes.

2. What we shall do is undo the effects in the order that the
nodes were added or the pathways were split apart by the
inclusion of '$'. Therefore, if we come across a node that has
been changed while erasing the effects, we cease reverting
because all previous effects produced by the insertion of "$"
have been compromised. So, having identified the tree's
greatest implicit suffix, we can now traverse the tree to
determine its location and update the active point, also
known as the "active Node" with “active Edge", and "active
Length." While eliminating the impacts, some details can
still be saved. For instance, we would reverse the effects of
nodes 18, 15, and 2 in order to obtain the tree of Fig. 2 from
Fig. 3. Because it is a fake node, removing the child for "$"
from the root does not assist in identifying the greatest
implicit suffix.

We shall do a simulation of our algorithm right now. Imagine
that we have a window with the string “abcabababc” (the
explicit tree for this window is shown in Fig. 2) and that we
subsequently received the new symbol "b" causing our
window to slide. The stages are depicted in the following
figures: in Fig. 4, we show the status after the deletion of the
leftmost character “a”; in Fig. 5 we present the condition
after the conversion from explicit to implicit suffix tree with
the largest implicit suffix “bc” and in Fig. 6, we show the
resultant tree after adding the character “b” at the end of the
string. We also show another iteration of this simultaneous
deletion of the leftmost character “b” (Fig. 7), the
corresponding implicit tree after the removal of the unique
character “$“ (Fig. 8) and the insertion of a new character
“a” along with the unique character “$” at the end (Fig. 9).

Fig. 4. After deleting the leftmost character “a” from the
string.

17Mining Weighted Patterns from Time Series Databases Based on Sliding Window

Fig. 5. Conversion from explicit to implicit after the deletion
of Fig. 4.

Fig. 6. After Inserting “b” at the end of the string, status after
Fig. 5.

Fig. 7. After deleting the leftmost character “$” from the
string.

Fig 8. Conversion from explicit to implicit after the deletion
of Fig. 7.

Fig. 9: After Inserting “b” at the end of the string,
status after Fig. 8.

3.4.3 Pseudocodes
Now combining all the strategies, we present the pseudocode
to understand the chronological steps of simultaneous
insertion and deletion.

In Algorithm 1, we present the steps of our deletion module
keeping the discussion aligned with the propositions and
condition.

We maintained a similar set of variables used in Proposition
2 to understand the logical fragments. This function updates
the nodes in such a regard so that they can be consistent with
further insertion or deletion operations simultaneously. To
delete the leftmost character of the given string, this function
is called with the desired indexing. Though the asymptotic
complexity of the function is O(N) where N denotes the
number of nodes in the tree, the actual complexity is much
lesser, as we always travel the path of the largest suffix only
to delete it.

18 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

Similarly, in Algorithm 2, we present the logical statements
that maintain consistency in the suffix tree. For ease of
discussion, we used similar variables used in the discussion
of the cases in section 3.4.2. Here, we mainly simulate two
Cases and finally update the active point by traversing the
current largest implicit suffix. Based on this point,
Ukkonen’s algorithm starts trying to put a suffix in the tree
by ensuring the maximization of shared suffixes. This
function is called once before inserting one or more
characters in the tree to convert the tree from explicit to its
implicit form and to update the active point for the next
phase. The asymptotic complexity of the above function is
also O(N) where N denotes the number of nodes in the tree.
The actual complexity is much lesser, as we only traverse the
leaf nodes to remove its effect and to find the largest implicit
suffix, we need to traverse only a single path guided by the
value of the implicit variable over the given input time series
string.

3.5 Maximum Possible Weighted Support Pruning,
MPWS Pruning
It is not possible to check each pattern to see if it is a
weighted frequent (or weighted periodic) pattern. The
Downward Closure Property (DCP) is employed in the
unweighted variant of pattern mining. The most popular
strategy is to use the weight of the largest weighted character
(MaxW) of the database to decrease the number of patterns
tested because trivial DCP does not work in weighted pattern
mining. When a pattern is being tested, its potential as a
candidate pattern is being assessed. We recommend the
MPWS Pruning approach since it consistently outperforms
MaxW Pruning. We start by providing some definitions.
In this section, we consider 0.8, 0.1, 0.2 and 0 as the weight
of characters “a”, “b”, “c” and “$” respectively.

Definition 1. (sumW(N)):
sumW(N) stands for the total number of characters from the
root to node N. sumW(14) in Fig. 2 tree represents the sum
of the weight of the characters “b”, “a”, “b”, and “c”, which
is 1.2.
Definition 2. (weight (X)):

weight(X) denotes the average weight of all the characters of
pattern X. For example If X is “abac” then weight(X) is
(0.8+0.1+0.8+0.24)/4=0.475.

Definition 3. (minsup and σ):

minsup denotes a real number between 0 and 100. Let, the
maximum weight of a character observed in the sequence is
maxW. So, we can safely express that, no pattern can have a
weighted support of more than equation 1. Here |S| denotes
the length of the sequence.

Definition 4. (weightedSupport(X)):

A pattern X’s weightedSupport is denoted by the
multiplication of weight(X) and support(X). Here support(X)

denotes the actual periodicity of X. A pattern X is weighted
periodic if weightedSupport(X) ≥ 𝞼𝞼�.
Definition 5. (cnt(A, B)):

The total number of characters found on the path between
node A to node B is denoted by cnt(A,B). In Fig. 2, the value
of cnt(8, 13) is 6.

Definition 6. (maxW(A, B)):

The weight of the maximum weighted character on the path
between node A to node B is denoted by maxW(A, B). In Fig.
2, the value of maxW(8, 13) is 0.8.

Definition 7. (sizeV(N))):

The size of the occurrence vector of node N is represented by
sizeV(N). This presents the number of occurrences of the
patterns ending at node N.

Definition 8. (subStr(A,B)):

subStr(A, B) denotes the substring of the time series found
in the path between nodes A and B. In Fig. 2, the value of
subStr(8, 13) is “ababc$”.

Definition 9. (nodeW(N)):

Let node P be the parent of node N, E presents the edge
between nodes P and N and R denotes the root node of the
suffix tree. Then, we can establish the following argument,

Now, we present a Lemma based on nodeW(N). Let us
assume, s1 = subStr(R, P), s2=subStr(P, N) and s3 be any
nonempty prefix of s2 and we consider a string s = s1+s3.
Then, we can write,
Lemma 1. nodeW(N) ≥ weightedSupport(S)
Proof: As per definition 4, weightedSupport(S) = weight(S)
× support(S). max(A, B) is the maximum possible value of
weight S under any scenario which can be measured by
equations 1 and 2 respectively. Now, there can be two
possible cases,
1. Case 1. (weight(s1) > maxW(P, N)): In the first case, even
if all the characters in E have the same weight as maxW(P,
N), the weight of S will never be greater than A as shown in
equation 2. Because, if we increase the length of s3 by a
single character weight(S) will decrease. Here, A denotes the
maximum value possible for weight(X).
2. Case 2. (weight(s1) < maxW(P, N)): We can measure an
upper bound for weight(S). Let us consider all the characters
in E has a weight equal to the maxW(P, N). Then with the
gradual increase in length in s3, the weight of S starts to
decay. We can calculate the value of B using equation 3 by
estimating that s3 has the maximum possible length.

........... (1)

 (2)

............... (3)

...... (4)

19Mining Weighted Patterns from Time Series Databases Based on Sliding Window

3. Case 3. (weight(s) = maxW(P, N)): In this particular
scenario, the length of s3 does not bear any significance. So,
in summary,

→ max(A, B) ≥ weight(S)
→ sizeV(N) ≥ support(S)
→ max(A, B) × sizeV(N) ≥ weight(S) × support(S)
 ∴ nodeW(N) ≥ weightedSupport(S)

Definition 10. (MPWS(N)):
MPWS(N) represents the maximum value of nodeW among
all the nodes in the subtree of N including N.
As stated in definition 9, NodeW(N) expresses the maximum
possible weighted support that can be achieved in a pattern
S. MPWS holds the maximum value of nodeW found in the
subtree of N, it represents the maximum possible weighted
support achievable by any pattern that has prefix as s1. The
definition of s1 is stated in Lemma 1’s proof.
The candidate generation process is performed using a
breadth-first search (BFS) in the suffix tree using a level-by-
level pattern generation. In the breadth-first search, once we
reach node N, for every pattern S if we observe that
(weight(S) × sizeV(N)) ≥ 𝞂𝞂�, we consider S among the
candidate patterns.
There will be about N nodes in the suffix tree for a string of
length L. However, the total number of characters on the
edges can approach L2. As a result, the dataset may contain
L2 possible patterns.
Every pattern is tested as part of the aforementioned
candidate Generation process, and if it succeeds, it becomes
a candidate. However, examining each pattern takes time.
Therefore, we need to come up with a pruning condition that
lowers the number of patterns that are verified.
The most popular method is to use the database's maximum
weighted character (MaxW) weight. Any super pattern of P
cannot be a weighted frequent pattern if MaxW × support(P)
< 𝞂𝞂�. Therefore, those patterns cannot also be periodic
patterns.

Lemma2: If MPWS(C) < 𝞂𝞂� for any child C of node N, we
can disregard the entire subtree of C and proceed with other
branches of the tree.

The proof is very trivial because, by the definition of MPWS
stated in Definition 11, any node U in the subtree of C will
not satisfy nodeW(U) ≥ 𝞂𝞂�.

All of the candidate patterns are actually frequent weighted
subsequences of the current time series. Using well-known
periodicity detection algorithms, we can test the occurrence
vector of each potential pattern with various period values to
see if they are also periodic patterns [5].

To discuss our proposed pruning measure, we present Fig. 10
and Table 1. Fig. 10 represents the suffix tree of the string
“abcabababc$”. For visualization as minsup value, 10% was
chosen. Table 1 holds the detailed calculation of MPWS with
other associated values.

Fig. 10. An Example of MPWS Pruning.

To explain the colored nodes of Fig. 10, we note the
following points,
1. Any pattern that has a blue node in its underlying subtree
is tested. Here, patterns “a”, “ab”, “aba”, “abab”, “b”, “ba”
and “bab” are tested for candidacy.
2. Any green node denotes that, the complete subtree along
with this node can be ignored during the candidate generation
step.
3. Red node denotes that, these nodes are never evaluated.
All the red nodes have green nodes in their ancestors. When
a node is detected as its subtree should be ignored, it is
colored as green and all of its underlying subtree is colored
as red.

Table 1: Calculation of the Necessary Values for MPWS
Pruning of Fig. 10

N SizeV

A B NodeW MPWS

1 1 0.48 0.68 0.68 0.68

2 1 0.37 0.67 0.67 0.67

3 1 0.5 0.73 0.73 0.73

4 4 0.8 0.8 3.2 3.2

5 1 0.52 0.62 0.62 0.62

6 4 0.1 0.1 0.4 1.13

7 1 0.45 0.6 0.6 0.60

8 2 0.57 0.62 1.25 1.25

9 1 0.4 0.37 0.4 0.4

10 2 0.45 0.57 1.13 1.13

11 1 0.3 0.28 0.3 0.3

12 2 0.37 0.37 0.73 0.73

20 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

13 1 0.28 0.28 0.28 0.28

14 2 0.15 0.15 0.3 0.67

15 1 0.10 0.10 0.10 0.10

16 2 0.2 0.2 0.4 0.73

17 1 0.1 0.1 0.1 0.1

18 1 0.00 0.00 0.00 0.00

In this illustration, MPWS Pruning states that only 7 patterns
are evaluated for candidacy. Five of these ultimately develop
into candidate patterns. If we did not utilize any pruning, we
have to test 50 patterns in total. If we used only MaxW
Pruning, we had to test 10 different patterns.

Additional Difficulty in Pruning: The maximum number
of nodes in a suffix tree that we construct for a string of
length L is 2 × L. We first calculate the MPWS value for each
node during candidate generation, which can be
done by a depth-first traversal on the tree. For that traversal,
we need the MaxW value for each edge. We calculate it by
applying a range minimum query strategy to the static data.
Given that each edge's query complexity is O(1), the
complexity added by MPWS pruning is O(L).

4. Experimental Results

To contrast our strategy with the existing strategies, we
employed a number of data sets from the UCI Machine
Learning Repository [10]. We present the outcomes of the
following four data sets because they are all comparable
in terms of their findings. To create a string of characters,
the datasets were discretized. The complexity to
discretize the dataset was O(N) where N denotes the total
number of elements in the dataset.
1. Individual household electric power consumption Data Set
2. Absenteeism at Work Data Set
3. Appliances energy prediction Data Set
4. Diabetes Data Set

To generate weights of the items we drew the weight values
from a normal distribution over the frequency of the items
keeping the mean and standard deviation to 0 and 0.1
respectively.

4.1 Runtime Performance of DTSW

Existing time series research offers no guidance on how to
approach sliding window-based issues. For each window, the
data structure must be created from scratch. But this strategy
is ineffective. We will present a contrast of the experimental
findings between DTSW and tree reconstruction for each

window. When the window size or number is enormous,
building the tree from scratch for each new window performs
poorly. DTSW is highly helpful in those situations.

For four distinct window widths, we have four graphs in Fig.
11, where the x-axis represents the number of windows
traversed and the y-axis represents the total time taken from
the start. It is clear that as window size increases,
reconstruction performance degrades, but DTSW continues
to function consistently with low runtime costs.

Data from the Individual Household Electric Power
Consumption Data Set was used to create the graphs. Similar
results are observed in the graphs for the other three datasets,
so we have omitted to present them here to avoid repetition.

Fig. 11. Sliding Window with Window Size 100, 1000,
10000 and 30000

An important novelty of DTSW is, it is applicable to any time
series pattern mining problem that uses a suffix tree as the
underlying representative data structure and works in the
data stream or sliding window alike environments. It is quite
generic because it only focuses on how to efficiently update
the data structure so that based on Ukkonen’s algorithm
simultaneous insertion (at the end) and deletion (from the
start) can be done. As an example, we can cite [29], where
the authors use our proposed strategy to update the data
structure rather than reconstruction. This also supports our
statement that, our proposed solution is quite flexible to be
bundled within other problems.
Analytically, we can also discuss how reconstruction
operation will always be costlier compared to tree
modification. In the tree reconstruction, we again need to
scan and generate a set of nodes to represent all the suffixes,
whereas in the tree modification we need to revert a subset
of such nodes. So, intuitively, though both approaches need
a linear time complexity but the tree modification approach
will require lesser number of operations resulting in
improved runtime.

21Mining Weighted Patterns from Time Series Databases Based on Sliding Window

4.2 Pruning Performance of MPWS
We measure the performance of MPWS Pruning strategy
over various metrics. In this section, we present our findings
in brief.

4.2.1 Number of Patterns Tested with Varying minsup
Every pattern must be examined in a candidate generation
process without pruning to see if it qualifies as a candidate.
However, this is unacceptable because there may be
numerous pointless patterns. Avoiding testing patterns that
won't eventually become candidate patterns was our key
objective when developing MPWS Pruning.

We discretized all of the datasets and gave each unique
character a weight that fits a normal distribution (µ = 0.5 and
σ = 0.2). We have contrasted MPWS and MaxW pruning for
various weighted support thresholds across all databases.
According to Fig. 12-15, MPWS pruning tests a lot fewer
patterns than MaxW pruning. We showed our results for each
of the experimented datasets for different weighted support
thresholds. The x-axis present the weighted support
thresholds and the y-axis represents the number of patterns
based on three criteria, the number of patterns tested by
MaxW Pruning, the number of patterns tested by MPWS
Pruning and the actual number of candidates. For instance,
if we try to optimize the candidate generation process in the
Individual Household Electric Power Consumption Data Set
using simply MaxW in the database, it tests 63490 patterns
whereas MPWS Pruning checks 21592 patterns only. 21408
patterns eventually turn into candidate patterns. The testing
of practically all superfluous patterns is pruned by MPWS
Pruning. We can observe from the findings that MaxW
Pruning tests more patterns than MPWS Pruning. MPWS
Pruning will not ever try more patterns than MaxW Pruning,
in actuality.

Fig. 12. Number of Patterns Tested with Varying minsup in
Individual Household Electric Power Consumption Data Set.

Fig. 13. Number of Patterns Tested with Varying minsup in
Absenteeism at Work Data Set.

Fig. 14. Number of Patterns Tested with Varying minsup in
Appliances Energy Prediction Data Set.

Fig. 15. Number of Patterns Tested with Varying minsup in
Diabetes Data Set.

4.2.2 Runtime With Varying minsup
In lower minsup values, we need to generate more patterns.
So, with the increasing minsup value, the runtime will
decrease. This also becomes evident through our
experimentation with various datasets.

In Fig. 16 and Fig. 17 we present the results for the
individual household electric power consumption dataset and
Absenteeism at Work dataset. If we analyze the charts’
behavior, we can observe that, there are some in-between
spikes, but overall, with the decrease in minsup value, the
total runtime increases. Some anomalies in spikes can be
observed due to the weight distribution and the window size.

22 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

Fig. 16. Runtime with Varying minsup in Individual
Household Electric Power Consumption Data Set.

Fig. 17. Runtime with Varying minsup in Absenteeism at
Work Data Set.

The underlying reasoning can also be stated numerically
based on Fig. 13 over the Individual Household Electric
Power Consumption Dataset. In Fig. 9-12, we have shown
how the number of tested patterns fluctuates by varying
minsup values. In our experiments, for this dataset, we saw
that, when the minsup value is 0.005% we needed to test
21408 candidates in this dataset. But when the minsup value
was increased to 0.01%, the number of tested patterns
became only 9523. This variation controls the change in the
total runtime. As a similar pattern was observed in other
datasets, we omitted the figures here.

4.2.3 Memory Usage with varying minsup

To understand the memory usage of MPWS Pruning, we
conducted experiments with MaxW Pruning. Here, for
varying minsup, we record the amount of maximum memory
used by the programs from start to completion.

Fig. 18. Memory Usage with Varying minsup in Absenteeism
at Work Data Set.

Fig. 19. Memory Usage with Varying minsup in Individual
Household Electric Power Consumption Data Set.

In Fig. 18, and 19, we present the results for the Absenteeism
at Work dataset and Individual Household Electric Power
Consumption dataset. The other datasets exhibited similar
characteristics. So, we did not show the results here. The data
indicate that both methods use approximately identical
amounts of memory. MPWS works slightly better than
MaxW Pruning when minsup is low. The largest factor in this
situation is the maximum size of the queue because we have
used a breadth-first approach to construct the patterns.
Increases in minsup result in fewer patterns being tried,
which uses less memory. MaxW Pruning tests more patterns
than MPWS Pruning. As a result, the queue requires more
space, which uses more RAM.

4.2.4 Extendibility of MPWS to Other Problems
An important point to note is that MPWS is a generic pruning
measure to reduce the number of candidate patterns that can
be applied in any weighted time series pattern mining.
Periodical time series pattern mining is a very common
concept in the addressed domain. During designing MPWS,

23Mining Weighted Patterns from Time Series Databases Based on Sliding Window

any such constraint has not been imposed, so MPWS can
easily be extended to weighted periodical time series pattern
mining problems.

To have a comparison with recent one of studies, we have
chosen a very relevant work HOVA-FPPM [30]. This study
uses a hash-based data structure and Apriori based algorithm
to mine periodical patterns from a time series database. To
make a fairground comparison we first apply weights over
the items of the database drawing and assigning the values
from normal distribution. Then we apply HOVA-FPPM
algorithm with MaxW measure and our suffix tree-based
solution with MPWS measure and track the performance.
HOVA-FPPM algorithm was not specifically designed to
handle weights, so we brought the traditional strategies
applied to MaxW measure into HOVA-FPPM to mine all
periodical patterns.

In Fig. 20. We present the result found from the individual
household electric power consumption dataset for various
minimum support thresholds. We can easily see that, MPWS
measure has considered lesser number of patterns than
MaxW embedded HOVA-FPPM algorithm. As the
underlying strategy we can easily state the tighter
approximation property of MPWS measure.

Fig. 20. Number of Patterns tested in HOVA-FPPM with
MaxW and Suffix Tree with MPWS in weighted time series
pattern mining.

4.3 Feasibility Analysis of the Framework
To determine whether DWTS is feasible, it is sufficient to be
able to construct the suffix tree for the window currently
under examination. A suffix tree uses only O(L) memory,
where L is the window's length. This is obviously preferable
to creating the entire tree from scratch for each window, and
memory use of DWTS is also O(N), as the complexity of
deleting the first P characters is O(P) and inserting P new
characters at the end is also O(P). Therefore, neither runtime
nor memory is growing exponentially.
With the help of a preliminary computation, MPWS prunes
as many subtrees as possible. A depth-first search is
necessary to determine the values required for the pruning. A
query for the maximum weight on some edge is made in the
depth-first search. The complexity of each response is O(1).
For practical use of the entire structure, the update of the data
structure for edge weight queries only requires O(log(L))
time.

4.4 Summary
The discussion of the entire section leads to the conclusion
that DTWS consistently outperforms the reconstruction
approach. DWTS can be helpful, particularly when mining
significant patterns from time series with large window sizes
and frequent alterations.
Weighted pattern mining lacks the trivial downward closure
property. Candidate generation is optimized with MaxW
Pruning. Our suggested MPWS Pruning technique, which is
also time and memory efficient, tests fewer patterns overall
than MaxW Pruning.
5. Conclusion
In this study, we address two time series pattern mining-
related problems and provide our algorithms. Our first
contribution, DTSW algorithm, addresses dynamic suffix
tree handling issues and our second contribution, MPWS
pruning strategy, provides a new measure to approximate the
maximum possible weighted support for an extended pattern
which can be used as a downward closure property to reduce
the number of candidates during weighted time series pattern
mining. Both of our contributions are independent in manner
and can be used separately in different relevant problems.
DTSW’s dynamically updating strategies are applicable for
both weighted and unweighted frameworks and can be
adapted to run-time dynamic window sizes. Thus, this
method can be used to address numerous problems that deal
with dynamical suffix tree updates focusing on data stream
behavior. MPWS measure, due to its distinct method of
approximating the upper bound, can be employed in various
forms of weighted pattern mining-related problems in place
of conventional MaxW measure which may reduce the
number of generated candidates resulting in improved
mining runtime. Through analytically analyzing and
experimenting with various real-life datasets, we also
showed the efficiency and extendibility of our proposals with
respect to the recent relevant works. As an ongoing work, we
have plans to investigate our proposed strategies’
performance and applicability in other time series pattern
mining-related problems. We also intend to introduce the
idea of dynamic weights in time series weighted pattern
mining and examine the performance of our proposals in the
future.

Acknowledgements
We would like to thank all the reviewers for their valuable
time and suggestions to improve this article. We sincerely
believe that the quality of this work has reached a new peak
due to their valuable efforts.

References
1. C. K. S. Leung and Q. I. Khan, “DSTree: a tree structure for the

mining of frequent sets from data streams”. In Sixth
International Conference on Data Mining (ICDM'06) (pp. 928-
932). IEEE, 2006.

2. N. Almusallam, Z. Tari, J. Chan and A. AlHarthi, “Ufssf-an
efficient unsupervised feature selection for streaming features”.
In Advances in Knowledge Discovery and Data Mining: 22nd

24 Redwan Ahmed Rizvee, Md Shahadat Hossain Shahin, Chowdhury Farhan Ahmed and Carson K. Leung

Pacific-Asia Conference, PAKDD 2018, Melbourne, VIC,
Australia, June 3-6, 2018, Proceedings, Part II 22 (pp. 495-
507). Springer International Publishing, 2018.

3. X. B. Yan, Z. Wang, S. H. Yu and Y. J. Li, “Time series
forecasting with RBF neural network”. In 2005 International
Conference on Machine Learning and Cybernetics (Vol. 8, pp.
4680-4683). IEEE, 2005.

4. C. F. Ahmed, S. K. Tanbeer, B. S. Jeong and Y. K. Lee,
“Handling dynamic weights in weighted frequent pattern
mining”. IEICE TRANSACTIONS on Information and Systems,
91(11), 2578-2588, 2008.

5. F. Rasheed, M. Alshalalfa, and R. Alhajj, “Efficient periodicity
mining in time series databases using suffix trees”, IEEE
Transactions on Knowledge and Data Engineering, 23(1), 79-
94, 2010.

6. A. K. Chanda, S. Saha, M. A. Nishi, M. Samiullah, and C. F.
Ahmed, “An efficient approach to mine flexible periodic
patterns in time series databases”, Engineering Applications of
Artificial Intelligence, 44, 46-63, 2015.

7. C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee, “An
efficient algorithm for sliding window-based weighted frequent
pattern mining over data streams”, IEICE TRANSACTIONS on
Information and Systems, 92(7), 1369-1381, 2009.

8. E. Ukkonen, On-line construction of suffix trees. Algorithmica,
14(3), 249-260, 1995.

9. A. K. Chanda, C. F. Ahmed, M. Samiullah, and C. K. Leung, “A
new framework for mining weighted periodic patterns in time
series databases”, Expert Systems with Applications, 79, 207-
224, 2017.

10. E. D. Dua, and T. Karra, “UCI (University of California Irvine)
Machine Learning Repository,” Repository, 2017

11. Z. Tao, Q. Xu, X. Liu, and J. Liu, “An integrated approach
implementing sliding window and DTW distance for time series
forecasting tasks”, Applied Intelligence, 1-12, 2023.

12. Z. Wang, Y. Wang, C. Gao, et al., “An adaptive sliding window
for anomaly detection of time series in wireless sensor
networks”, Wireless Network 28, 393–411, 2022.
https://doi.org/10.1007/s11276-021-02852-3

13. S. Li, and P. Shang, “Characterizing Nonlinear Time Series via
Sliding-Window Amplitude-Based Dispersion Entropy”,
Fluctuation and Noise Letters, 2350023, 2023.

14. H. Zhang, H. Wang, Y. Yan, et al., “Weighted dynamic transfer
network and spectral entropy for weak nonlinear time series
detection”, Nonlinear Dyn 111, 9345–9359, 2023.
https://doi.org/10.1007/s11071-023-08310-3

15. P. Braun, A. Cuzzocrea, C. K. Leung, A. G. Pazdor, and J.
Souza, “Item-centric mining of frequent patterns from big
uncertain data”. Procedia Computer Science, 126, 1875-1884,
2018.

16. C. K. Leung, C. S. Hoi, A. G. Pazdor, B. H. Wodi, and A.
Cuzzocrea, “Privacy-preserving frequent pattern mining from
big uncertain data”. In 2018 IEEE international conference on
big data (big data) (pp. 5101-5110). IEEE, 2018.

17. C. K. Leung, H. Zhang, J. Souza, and W. Lee, “Scalable vertical
mining for big data analytics of frequent itemsets”. In Database
and Expert Systems Applications: 29th International

Conference, DEXA 2018, Regensburg, Germany, September 3–
6, 2018, Proceedings, Part I 29 (pp. 3-17). Springer
International Publishing.

18. A. Mantuan, and L. Fernandes, “Spatial contextualization for
closed itemset mining”. In 2018 IEEE International Conference
on Data Mining (ICDM) (pp. 1176-1181). IEEE, 2018.

19. H. Phan, and B. Le, “A novel parallel algorithm for frequent
itemsets mining in large transactional databases”. In Advances
in Data Mining. Applications and Theoretical Aspects: 18th
Industrial Conference, ICDM 2018, New York, NY, USA, July
11-12, 2018, Proceedings 18 (pp. 272-287). Springer
International Publishing.

20. K. Sharma, and E. E. Lulandala, “OTT platforms resilience to
COVID-19–a study of business strategies and consumer media
consumption in India”, International Journal of Organizational
Analysis, 31(1), 63-90, 2023.

21. R.A Rizvee, M.S.H. Shahin, C.F. Ahmed, C.K. Leung, D.
Deng, J.J. Mai, “Sliding window based weighted periodic
pattern mining over time series data”. In: ICDM 2019, pp. 118-
132 (2019)

22. R.A. Rizvee, M.F. Arefin, C.F. Ahmed, “Tree-Miner: Mining
Sequential Patterns from SP-Tree”. In: Lauw, H., Wong, RW.,
Ntoulas, A., Lim, EP., Ng, SK., Pan, S. (eds) Advances in
Knowledge Discovery and Data Mining. PAKDD 2020. Lecture
Notes in Computer Science(), vol 12085. Springer, Cham.
https://doi.org/10.1007/978-3-030-47436-2_4

23. X. Wang, J. Lin, P. Senin, T. Oates, S. Gandhi, A. P.
Boedihardjo, and S. Frankenstein, “RPM: Representative
Pattern Mining for Efficient Time Series Classification”. In
EDBT (pp. 185-196), 2016.

24. M. A. Nishi, C. F. Ahmed, M. Samiullah, and B. S. Jeong,
“Effective periodic pattern mining in time series databases”.
Expert Systems with Applications, 40(8), 3015-3027, 2013.

25. M. Karaca, M. M. Alvarado, M. R. Gahrooei, A. Bihorac, and
P. M. Pardalos, “Frequent pattern mining from multivariate
time series data”. Expert Systems with Applications, 194,
116435, 2022.

26. Y. S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted
dynamic time warping for time series classification”, Pattern
recognition, 44(9), 2231-2240, 2011.

27. K. Mishra, S. Basu, and U. Maulik, “Graft: A graph based time
series data mining framework”, Engineering Applications of
Artificial Intelligence, 110, 104695, 2022.

28. Y. Xun, L. Wang, H. Yang, and J. Cai, “Mining relevant partial
periodic pattern of multi-source time series data”. Information
Sciences, 615, 638-656, 2022.

29. E. W. Madill, C. K. Leung, and J. M. Gouge, "Enhanced sliding
window-based periodic pattern mining from dynamic streams."
International Conference on Big Data Analytics and Knowledge
Discovery. Cham: Springer International Publishing, 2022.

30. J. Qu, et al, "Time series forecasting method based on frequent
pattern mining." Journal of Physics: Conference Series. Vol.
1682. No. 1. IOP Publishing, 2020.

25Mining Weighted Patterns from Time Series Databases Based on Sliding Window

