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ABSTRACT
Change-proneness is an important quality attribute that can help developers to maintain source code more effectively. 
Change-prone classes refer to those classes which are more likely to change across releases. Existing approaches have used 
object-oriented metrics to predict change-prone classes. However, community smells related information, which represents 
the communication issues among developers’ community, has not yet been considered to predict change-prone classes. This 
study investigates the impact of including community smells-related information with existing Object Oriented (OO) metrics 
to predict a class to be change-prone in future software releases. It aims to understand the extent to which the addition of 
community smell-related information can contribute to the performance of change prediction models. To perform analysis, 
317 releases of 14 open-source Java projects were selected from GitHub. The resulting dataset is used to predict change-prone 
classes with five different popular and widely used machine learning algorithms, namely K-nearest neighbor (KNN), Random 
Forest (RF), Naive Bayes (NB), Logistic Regression (LR) and Multilayer Perceptron (MLP). To evaluate the performance of 
the classifiers, accuracy, and F1-measure are used. The experimental results suggest that including community smell metrics 
along with the existing OO metrics gives better performance in predicting change-prone classes. Moreover, MLP and LR 
algorithms, which are both parametric models, are found to predict change-prone classes better when Community 
Smell(CMS) related features are incorporated, in comparison with other non-parametric models. By including CMS along 
with OO metrics, 1.51% increase in average accuracy and 3.52% increase in average F1 score for Logistic Regression, and 
1.69% increase in average accuracy and 3.26% increase in average F1 score for Multi-layer Perceptron have been found. 
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1. Introduction 

Change-proneness refers to the extent of change carried out 
on a software artifact across different releases of the system. 
It is an important quality attribute of a class that defines how 
likely a class will change in the future. Prediction of such 
change-prone classes can help practitioners take preventive 
measures to reduce maintenance costs and to allocate 
resources more effectively [1]. Thus, the maintenance team 
can optimize and use their testing resources on the classes 
that have a higher likelihood of change.  
Existing studies have investigated the ability of 
objectoriented metrics to predict change-prone classes [1], 
[2]. However, recent studies show that developers’ 
interaction with source code is not only dependent on 
technical factors but also on community-related aspects [3]–
[6]. Community-related circumstances can affect the way 
developers act in the source code [3]. Therefore, social 
aspects of the software development community need to be 
considered with technical factors while studying the 
underlying dynamics of the software system like change-
proneness. 
Under this context, this paper investigates the impact of 
including community smell, which denotes the 
organizational and social anti-patterns in the software 
development community that may lead to unforeseen project 
costs [7], to predict change-prone classes. In particular, this 
study aims to understand to what extent the addition of 
information related to community smells can contribute to 

the performance of change prediction models. Further, the 
usability and credibility of using community smell features 
to predict change-proneness are verified using multiple 
evaluation approaches. To predict change-prone class, this 
study considers three community smells, namely 
Organizational Silo Effect, Lone Wolf Effect, and Radio 
Silence Effect with existing object-oriented ( OO ) metrics. 
Five different popular and widely used machine learning 
algorithms, namely K-nearest neighbor (KNN), Random 
Forest (RF), Naive Bayes (NB), Logistic Regression (LR), 
and Multi-layer Perceptron (MLP), are used for prediction. 
For experimentation, a dataset is prepared from 317 releases 
of 14 open-source Java projects such as Apache Ant, Eclipse- 
CDT, OpenNLP, Tomcat, etc. To evaluate the models, 
performance metrics namely Accuracy and F1-measure are 
used in this study. The result of the study suggests that 
including community smells with existing OO metrics 
achieves better performance in predicting a change-prone 
class with LR and MLP classifiers. 
The rest of the paper is organized as follows: Section II 
discusses the literature related to the prediction of 
changeprone classes while Section III describes the 
methodology of the study. Section IV presents and discusses 
the experimental results. Threats to the validity of the study 
are discussed in Section V. Finally, Section VI concludes the 
paper and outlines the future direction.
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2. Related Work  

Multiple factors can impact the change-proneness of the 
class. In [8], the authors empirically investigate the 
changeproneness of design patterns and the types of changes 
that occur to classes that play a role in some design patterns 
in contrast to the software evolution. It switches the focus 
from design patterns as a whole to design pattern roles at a 
more finer level to 12 different design patterns. 

In [9], the anti-patterns are analyzed to find their impacts 
on the change-proneness of the classes. The authors answer 
several research questions related to the research topic by 
analyzing 54 releases of 4 different projects, i.e. ArgoUML, 
Eclipse, Mylyn, and Rhino which include 13 anti-patterns. 
They also show that class size alone cannot explain how 
classes with anti-patterns have a higher chance of undergoing 
a (fault-fixing) change than other classes. Finally, they show 
that structural changes have a greater impact on anti-pattern 
classes than on other classes. They concluded that when code 
smells are present, affected classes are more prone to change 
than non-smelly classes. This conclusion is also later 
confirmed by [10] [11]. So different software 
artifacts/metrics related to code smells can be useful to detect 
the change-proneness of classes. 
Different source code metrics can impact the 
changeproneness [12] [13]. In [14], They present a technique 
for estimating change-prone classes that use both CK and 
QMOOD measures. Another research [15] proposed that 
process metrics can be useful in change predictions. In [16], 
The researchers examine the role of developer-related factors 
in change prediction using empirical evidence, such as, 
entropy of development process [17], number of developers 
working on a certain class [18], structural and semantic 
scattering of changes [13]. 
In [19], the authors argue that the code smells are affected by 
the community smells. To show the relation between the two 
types of smell, they surveyed 162 developers of nine 
opensource systems. They also make a deep analysis by 
examining an empirical study of 117 releases from these 
systems. According to their findings, most developers 
intuitively see community-elated aspects as sources of code 

smell persistence. They considered four different community 
smells to show this relation: Organisational Silo Effect, 
Black-cloud Effect, Lone-wolf Effect, and Bottleneck Effect 
[7]. In this paper, we argue that community smells also play 
a valid role in changeproneness detection similar to code 
smells. 

3. Methodology 

This study aims to understand the impact of including 
community smell-related information with object-oriented 
(OO) metrics to predict change-prone classes. For this 
purpose, a dataset is prepared from 14 open-source Java 
projects of Github1. First, community smells are detected to 
identify whether a class is affected by any community smell. 
Next, OO metrics are computed using a static code analysis 
tool. The change-proneness of classes is calculated by 
analyzing the change history from the repository. Fig. 1 
describes the process of data collection. 
Finally, the resulting dataset is used to predict change-prone 
classes with five popular and widely used machine learning 
algorithms. To evaluate the performance of the classifiers, 
accuracy, and F1-measure are considered. The process of 
model building and analysis is shown in Fig. 2. The following 
subsections describe the methodology in detail. 

A. Project Selection 

To perform the analysis, 317 releases of 14 open-source Java 
projects are selected from Github. The selection of projects 
is driven by the factors of considering projects of different 
codebase size, longevity, and activity. Projects are selected 
that have the number of classes greater than 500, have a 
change history of at least 5 years, and have the number of 
commits higher than 1000. This project selection process is 
similar to [19]. The details of the selected projects are 
provided in Table I with the project name, the link to the 
source code repository, the number of considered releases, 
and the number of analyzed classes. For example, 28 releases 
of ActiveMQ, a Java message broker system, are considered 
for analysis which covers about 14 years of lifetime and 9086 
commits of this project.  

 

 
1 https://github.com  
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The source code of selected projects is available on Github. 
The selected projects have 317 releases and the change 
history of 130,736 commits in total. 

B. Community Smells Detection 

To detect community smells, the state-of-the-art tool 
Codeface4Smells [20] is used. This tool is publicly available 
and widely used by most of the studies related to community 
smells [3], [21]–[23]. Using this tool three community smells 
were detected which are Organizational Silo, Lone Wolf, and 
Radio Silence. Community smells are detected according to 
the identification pattern given by Tamburri et al. [21]. The 
description of three community smells, considered in this 
study, is given below. 

1) Organizational Silo (OS): the presence of siloed areas of 
the software developer community that do not 
communicate within the defined communication channel 
such as mailing list [21]. 

2) Lone Wolf (LW) or Missing Link: refers to the situation 
where developers collaborate among themselves but do not 
communicate with each other [21]. 

3) Bottleneck or Radio Silence (RS): the presence of one 
member in every formal interaction across two or more 
sub-communities. Thus, there is little or no flexibility to 
introduce other parallel communication channels between 
the remaining members of the sub-communities [3]. 

A temporal window must be set to detect community smells 
because the software development community changes from 
time to time. In this study, release is chosen because the 
change-prone class will be identified at the release interval. 

 
2 https://www.scitools.com/  

After detecting community smells, developers in a release are 
divided into two categories - smelly developers and non- 
 
smelly developers. A developer involved in any kind of  
community smell is considered a smelly developer for that 
release. Otherwise the developer is considered as non-smelly. 
Next, the involvement of classes in any kind of community 
smell is identified. A class is said to be affected by 
community smells if the class has been modified by a smelly 
developer. For example, if a class Ci is modified by a smelly 
developer in between two consecutive releases rj−1 and rj, 
class Ci is considered smelly, otherwise it is non-smelly. 
Thus, three boolean values are computed representing the 
involvement of class Ci in any of the three community smells 
considered. 

C. Object-oriented Metrics Calculation 

The list of 15 object-oriented metrics [24] considered in this 
study is given below. The investigated metrics cover different 
object-oriented dimensions including size, complexity, 
coupling, cohesion, abstraction, encapsulation, and 
documentation. In this study, a static code analysis tool, 
Understand2 
(version:5.1, Build:1029), is used to compute these metrics. 
Thus, the values of these metrics are calculated for each class 
Ci in a release rj. 

– LOC: Class Lines of Code 
– NOM: Number of local Methods [25] 
– NIM: Number of Instance Methods 
– NIV: Number of Instance Variables 

Table 1: List of Analyzed Projects 

Project Source Code 
#Analysed 

Releases 
#Analysed 

Commits 
#Classes 

ActiveMQ github.com/apache/activemq 24 9086 4673 
Ant github.com/apache/ant 33 11797 1446 
Cassandra github.com/apache/cassandra 18 10102 2694 
Cayenne github.com/apache/cayenne 17 6569 5409 
CXF github.com/apache/cxf 16 14988 7495 
Drill github.com/apache/drill 24 3842 4267 
Eclipse-
CDT 

github.com/eclipse-cdt/cdt 38 21818 9615 

Jackrabbit github.com/apache/jackrabbit 28 7060 3462 
Jena github.com/apache/jena 30 7911 9637 
Mahout github.com/apache/mahout 12 4026 1803 
OpenNLP github.com/apache/opennlp 8 1871 893 
Pig github.com/apache/pig 15 3476 2105 
POI github.com/apache/poi 19 8820 4406 
Tomcat github.com/apache/tomcat 35 19370 1883 
Total  317 130736 59788 
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– WMC: Weighted Methods per Class [26] 
– CBO: Coupling Between Objects [26] 
– RFC: Response For a Class [26] 
– LCOM: Lack of Cohesion in Methods [26] 
– IFANIN: Number of Immediate Base Classes 
– NOC: Number of Immediate Sub-classes [26] 
– DIT: Depth of Inheritance Tree [26] 
– RPM: Ratio of Public Methods 
– RSM: Ratio of Static Methods 
– CLOC: Comment of Lines per Class 
– RCC: Ratio Comments to Codes per Class 

D. Change-prone Class Identification 

In this study, a class is defined as change-prone class if it 
is changed in the subsequent release of the system, otherwise 
it is not change-prone [1]. To identify change-prone classes, 
two consecutive releases are compared using git command3to 
check whether a class is changed in between two releases. 
Then, if a class has at least one change, it is called a 
changeprone class. Change-proneness of a class Ci is 
computed as a binary value between two consecutive releases 
rj and rj+1. 

After collecting all data, five different popular and widely 
used machine learning algorithms such as K-nearest neighbor 
(KNN), Random Forest (RF), Naive Bayes (NB), Logistic 
Regression (LR), and Multi-layer Perceptron (MLP) are used 
for the prediction of change-prone classes. To evaluate the 
performance of these models in predicting change-prone 
classes, Accuracy and F1-measure are used as performance 
metrics. For further explanation, the pairwise correlation and 
variance of variables are explored using Principal 
Component Analysis (PCA). Univariate Logistic Regression 
(ULR) is used to evaluate the relationship and individual 
effect of the metrics. 

 
3 git diff rj..rj –numstats  

 

Fig. 1. Methodology of Data Collection. 

In the following section (Section IV), the details of these 
approaches are discussed. 

4. Experiment and Result Analysis 

In this section, we have discussed the implementation details 
and the results of the selected software projects. 

A. Implementation Details 

In this experiment, we have analyzed five classifiers namely 
K-nearest neighbor (KNN) with k = 3, Random Forest (RF), 
Naive Bayes (NB), Logistic Regression (LR), and Multi-
layer Perceptron (MLP) to understand the effect of 
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Community smell (CMS) metrics to predict change-
proneness of a class 

 

Fig. 2. Methodology of Model Building and Analysis. 

incorporating with existing Object Oriented (OO) metrics. 
For a fair comparison of the results, we have performed a 10- 
fold cross-validation (10-CV) technique to evaluate the 
results. To measure the superiority of the classifiers, accuracy 
and F1measure metrics are used. 

Before proceeding to the Accuracy and F1-measure [27] , we 
need to explain some complementary metrics such as True 
Positives(TP), True Negatives(TN), False Positives(FP), 
False Negative(FP), etc. 

• True Positives (TP): It indicates correctly predicted 
positive values which means that both the value of the 
actual class and predicted class is positive. 

True Negatives (TN): It indicates correctly predicted 
negative values which means that both the value of the 
actual class and predicted class is negative. 

• False Positives (FP): It indicates that the value of the 
actual class is negative and the predicted class is 
positive. 

• False Negatives (FN): It indicates that the value of the 
actual class is positive and the predicted class is 
negative. 

Here Accuracy and F1-measure are presented regarding 
explaining the model’s evaluation. 

• Accuracy: Accuracy is the proportion of the correctly 
predicted sample(CP) and total number of samples (TS). 

  (1) 

• F1-measure: To explain uneven class distribution 
indicating the uneven cost of Precision and Recall, the 
F1measure is more suitable than the Accuracy. the 
Precision is the ratio of the correctly predicted positive 
sample and the total predicted positive sample. the 
Recall is the ratio of correctly predicted positive 
samples and the total observations in the actual positive 
class. 

  (2) 

B. Result and Discussion 

Table 2 presents the accuracy results of the 
aforementioned five classifiers result with Object 
Oriented (OO) metrics and Object Oriented metrics 
along with Community Smell (OO+CMS) metrics. 
The last row of this table indicates the number of 
Win/Tie/Loss (W/T/L) comparing OO+CMS metrics 
with OO metrics results. This table shows that with 
OO+CMS metrics data LR and MLP classifiers 
perform better than other classification algorithms to 
predict the class most likely to be changed in future 
software releases. Overall, OO+CMS metrics tend to 
outperform OO metrics in terms of accuracy, with 
variations across datasets and algorithms. In Fig. 4, 
we can see the difference occurred in accuracy after 
incorporating the CMS metrics with OO metrics in 
Cayenne project. 
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Fig. 3. Accuracy comparison between OO and OO+CMS 
features. 

From Table 1, we can notice that the number of classes, 
commits and releases vary on different projects. Hence, we 
have calculated another evaluation metric F1-measure 
formulated as Eq. (2). Due to the imbalanced properties of 
the projects, F1-measure is more appropriate as an 
evaluation metric because it incorporates both precision and 
recall measures discussed in the above section. Table 3 
presents the F1-measure results. From the last row of the 
table, we can see that LR and MLP classifiers outperform 
other classifiers’ prediction performance. The reason behind 
this is due to the inclusion of CMS metrics to the existing OO 
metrics. Although NB performs well however LR and MLP 
perform better in predicting a class to be change-prone in 
future releases. 

 
 
 
 

Table 2: Accuracy Comparison Between Oo+Cms Metrics And Oo Metrics With Different Machine Learning Algorithms 

Dataset 
KNN RF NB LR MLP 

OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO 
ActiveMQ 84.86 85.15 84.58 84.50 81.34 82.40 85.99 85.84 86.08 85.94 
Ant 72.54 72.80 72.75 74.08 70.91 72.15 75.83 75.64 75.68 75.63 
Cassandra 77.71 79.15 78.77 79.82 74.44 69.79 77.01 71.17 77.90 72.75 
Cayenne 73.17 67.59 73.76 68.57 74.48 69.55 78.81 72.53 79.27 72.63 
CXF 70.56 71.56 73.08 73.44 72.56 73.14 75.27 74.99 75.57 75.28 
Drill 71.08 70.98 72.12 73.07 72.35 71.63 74.05 73.07 74.24 73.51 
Eclipse-CDT 86.56 85.66 85.52 85.65 83.23 84.47 87.76 87.75 87.78 87.78 
Jackrabbit 87.76 88.41 87.89 88.41 83.05 83.49 88.37 87.82 88.64 88.05 
Jena 85.54 85.67 87.08 86.96 82.89 84.02 88.31 87.88 88.43 87.92 
Mahout 62.53 61.08 63.39 62.16 61.07 57.95 62.31 58.70 64.49 59.40 
OpenNLP 76.67 78.16 74.81 79.23 74.48 73.44 79.18 76.78 79.49 76.63 
Pig 82.65 81.85 82.14 81.84 78.55 81.16 83.62 83.58 83.97 83.83 
POI 66.47 65.12 66.16 66.12 65.76 66.52 67.38 67.30 69.27 67.88 
Tomcat 85.16 85.35 84.87 85.18 81.60 82.69 86.55 86.25 86.57 86.46 
Win/Tie/Loss 6/0/8 6/0/8 5/0/9 14/0/0 13/1/0 

 
Table 3: F1-Measure Comparison Between Oo+Cms Metrics and Oo Metrics With Different Machine Learning Algorithms 

Dataset 
KNN RF NB  LR  MLP 

OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO 
ActiveMQ 82.29 82.36 82.06 81.74 80.45 80.55 80.59 80.16 81.33 80.56 
Ant 70.24 71.00 69.94 71.75 68.93 69.18 67.21 66.15 67.57 66.14 
Cassandra 77.02 78.09 78.26 78.94 73.74 64.62 75.45 64.03 76.49 68.66 
Cayenne 72.01 65.15 72.13 65.59 73.20 65.61 75.66 62.15 76.55 64.46 
CXF 68.92 69.49 70.45 70.51 71.01 70.27 69.08 68.24 70.86 69.81 
Drill 69.50 69.37 70.38 70.90 68.04 65.75 69.37 66.88 70.73 68.46 
Eclipse-CDT 82.55 82.17 82.00 81.96 81.78 82.28 82.33 82.31 82.32 82.25 
Jackrabbit 86.17 86.84 86.30 86.81 83.81 82.33 84.84 82.53 85.65 83.07 
Jena 83.46 83.00 84.31 83.51 82.57 82.14 84.16 82.45 84.23 82.43 
Mahout 60.86 59.11 62.13 60.35 59.55 53.5 60.60 54.12 61.95 56.69 
OpenNLP 74.31 74.46 72.71 76.80 74.46 70.92 75.55 68.24 76.17 68.57 
Pig 80.20 79.87 79.94 79.58 78.24 79.48 78.33 78.16 79.30 79.00 
POI 64.57 63.31 64.61 64.16 62.16 61.06 62.12 61.07 66.28 64.15 
Tomcat 82.07 82.50 82.06 82.32 81.31 81.73 81.96 81.46 82.07 81.67 
Win/Tie/Loss 7/0/7 7/0/7 9/0/ 5  14 /0/ 0 14/0/0 
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As shown in Fig. 3 and Fig. 6, non-parametric algorithms like 
KNN almost show balanced results (similar number of wins 
and losses) after inserting the community smells data. 

Fig. 4. Comparison of accuracy between OO and OO+CMS 
for different models in Cayenne project 

This is likely due to the fact that non-parametric models do 
not consider feature importance in their models, and also 
because Boolean data have less significance in distance 
measurement. Parametric models, on the other hand, learn 
from the CMS features and show the significance of the CMS 
metrics as additional features to OO metrics. In Fig. 5, the 
difference is shown in F1 score after incorporating the CMS 
metrics with OO metrics in Cayenne project. 

Fig. 5. Comparison of F1 score between OO and OO+CMS 
for different models in Cayenne project 

To get better insight from the results, we have also presented 
the receiver operating characteristic curve (ROC) [28] shown 
in Fig. 7. The ROC curve is plotted by placing a false positive 
rate (1–specificity) on the x-axis and a true positive rate 
(sensitivity) on the y-axis. The area under the ROC curve 
(AUC) helps to visualize how well a machine learning 
classifier is performing. An AUC value of 0.50 indicates that 
the classifier has no distinguishing ability (i.e., no better than 

chance) and a value of 1.0 indicates perfect distinguishability. 
From Fig 7, we can observe that the performance of MLP and 

 

Fig. 6. F1 score comparison between OO and OO+CMS 
features. 

LR classifiers is better than other classifiers which reflects 
the previously described accuracy and F1− measures results. 
Moreover, in terms of AUC score NB classifier also performs 
well with CMS metrics. 

 

Fig. 7. AUC-ROC curve of Cayenne project 

Table 4: Experimental Results of PCA For Cayenne Project 

PC Eigenvalue Variance 
(%) 

Cumulative Correlated Metrics 

PC-1 5.73 36.37 36.37 LOC, NOM, NIM, 
WMC,CBO 

PC-2 1.75 11.13 47.5 OS, LW, RS 
PC-3 1.59 10.11 57.61 DIT, RPM, RCC 
PC-4 1.21 7.71 65.32 NIV, RFC, IFANIN 
PC-5 1.09 6.91 72.23 DIT, RSM 
PC-6 1.02 6.50 78.73 IFANIN, NOC, 

RSM 
 

Therefore, LR and MLP classifiers achieve better 
performance including CMS metrics to the existing OO 
metrics to predict a change-prone class in future releases. 
1) Principal Component Analysis (PCA): PCA is used for 
the purpose of dimensionality reduction based on variable 
pairwise correlation and variance for interpretation as well as 
further explanation [2]. PCA with 1 to 6 components is taken 
into consideration where the eigenvalue is larger than 1.0. 
Table 4 also shows the correlation between 6 principal 
components and the metrics. PCA provides guidance to the 

0.0 0.2 0.4 0.6 0.8 1.0  
False  Positive Rate  

0.0  

0.2 

0.4 

0.6 

0.8 

1.0 

Logistic Regression (area = 0.64) 
KNN (area = 0.63) 
Random Forest (area = 0.62) 
Naive Bayes (area = 0.64) 
MLP (area = 0.68) 
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dimensionality reduction, metric selection, and detection of 
dependent variables for model building. The analysis for 
project Cayenne shows that PC-1, with the highest 
eigenvalue, explains 36.37% of the variance and is correlated 
with metrics such as LOC, NOM, NIM, WMC, and CBO. It 
also shows that DIT and RSM change together. Also, the 
community metrics OS, LW, RS are changing together. 
Therefore OS, LW, and RS are strongly related to PC-2. 
Other projects also show the same kind of properties. 
Therefore it can be said that the community smell metrics are 
strongly correlated. 

2) Univariate Logistic Regression (ULR): The Univariate 
Logistic Regression analysis is conducted on our dataset to 
evaluate the relationship and individual effect of our metrics. 
The objective of this analysis is to explain the extent of 
variance in the dependent variable defined by the 
independent variables. In [2], this type of analysis proved to 
be significant in exploring the importance of the features. For 
project Cayenne as showed in Table 5, the value of NOM, 
NIV, WMC, IFANIN, NOC, and RSM do not pass the test 
with an alpha threshold of 0.05 which indicate their 
usefulness in the change-prone estimator. The community 
smell metrics all pass the test. Therefore NIM, CBO, CLOC, 
RCC, OS, LW, and 

Table 5. Univariate Logistic Regression Experimental 
Results for Cayenne Project 
 

Metric Coefficient p-
value 

LOC 0.0469 0.019 
NOM -0.089 0.867 
NIM 0.1815 0.003 
NIV -0.0186 0.259 
WMC -0.089 0.892 
CBO 0.1775 <0.01 
RFC 0.0334 0.003 
LCOM -0.0456 0.005 
IFANIN 0.0088 0.508 
NOC 0.017 0.162 
DIT 0.067 0.01 
RPM -0.0333 0.013 
RSM 0.0133 0.282 
CLOC 0.1135 <0.01 
RCC -0.1462 <0.01 
OS 0.0952 <0.01 
LW -0.4754 <0.01 
RS 0.8132 <0.01 

 

RS show a good significance with relatively high regression 
coefficients which means that the mean change in the 
response variable is high for single unit change in the relevant 
dependent variable. Other projects also show the same kind 
of trends 

5. Threats to Validity 

This section discusses potential aspects that may threaten the 
validity of the study: 

– Threats to External Validity: Threats to external validity 
deal with the generalization of the results. In this study, 
317 releases of 14 open-source projects are analysed to 
understand the impact of including community smells 
related information on change-prone class prediction. 
To mitigate the threat of generalization, the projects 
having different codebase sizes (ranges from 3,476 to 
21,818 commits), different age (ranges from 9 years to 
18 years), and belonging to different application 
domains ( DBMS, IDE, Web Framework, Data 
Analyzer etc.) are selected. 

– Threats to Internal Validity: In this study, an opensource 
tool, Codeface4Smells, is used to detect community 
smells. The identified smells are directly included in the 
analysis of this study without further verification. 
However, this tool is commonly used to detect 
community smell in related studies [3], [22], [23], [29], 
[30]. This tool uses developer mailing list archives as 
the communication source and does not consider other 
communication channels, for example, Skype, Slack 
[31], etc. However, mailing list is the primary 
communication channel in the analysed communities 
according to contribution guidelines of evaluated 
projects. Moreover, object-oriented metrics are 
calculated using a static code analysis tool named 
Understand and the values are directly included in the 
dataset. 

6. Conclusion 

Community smells implies poor social and organizational 
phenomena that can lead to the emergence of social debt. 
Previous studies suggest that community related aspects 
should be considered while studying the evolution of source 
code. In this study, we have performed rigorous experiment 
on fourteen java projects with five different machine learning 
algorithms to evaluate the impact of community smells in 
predicting a class to be change-prone in future software 
release. The experimental results suggest that including 
community metrics to the the existing OO metrics give us 
better change-prone class prediction result. Moreover, MLP 
and LR machine learning algorithms have better prediction 
ability than others. Further experiment on other programming 
languages with more open source projects can be performed 
to understand the impact of community metrics to predict 
change-prone classes in future releases. 
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