
Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict
Change-Prone Classes

Toukir Ahammed1, Mahir Mahbub2, Md. Hasan Tarek3 and Ahmedul Kabir1
1Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

2Department of IoT and Robotics Engineering, Bangabandhu Sheikh Mujibur Rahman Digital University, Gazipur, Bangladesh
3Department of Computer Science and Engineering, Begum Rokeya University, Rangpur, Bangladesh

*E-mail: kabir@iit.du.ac.bd
Received on 14 September 2023, Accepted for Publication on 25 January 2024

ABSTRACT
Change-proneness is an important quality attribute that can help developers to maintain source code more effectively.
Change-prone classes refer to those classes which are more likely to change across releases. Existing approaches have used
object-oriented metrics to predict change-prone classes. However, community smells related information, which represents
the communication issues among developers’ community, has not yet been considered to predict change-prone classes. This
study investigates the impact of including community smells-related information with existing Object Oriented (OO) metrics
to predict a class to be change-prone in future software releases. It aims to understand the extent to which the addition of
community smell-related information can contribute to the performance of change prediction models. To perform analysis,
317 releases of 14 open-source Java projects were selected from GitHub. The resulting dataset is used to predict change-prone
classes with five different popular and widely used machine learning algorithms, namely K-nearest neighbor (KNN), Random
Forest (RF), Naive Bayes (NB), Logistic Regression (LR) and Multilayer Perceptron (MLP). To evaluate the performance of
the classifiers, accuracy, and F1-measure are used. The experimental results suggest that including community smell metrics
along with the existing OO metrics gives better performance in predicting change-prone classes. Moreover, MLP and LR
algorithms, which are both parametric models, are found to predict change-prone classes better when Community
Smell(CMS) related features are incorporated, in comparison with other non-parametric models. By including CMS along
with OO metrics, 1.51% increase in average accuracy and 3.52% increase in average F1 score for Logistic Regression, and
1.69% increase in average accuracy and 3.26% increase in average F1 score for Multi-layer Perceptron have been found.

Keywords: Change-proneness, Change prediction, Community smell, Object-oriented metrics

1. Introduction

Change-proneness refers to the extent of change carried out
on a software artifact across different releases of the system.
It is an important quality attribute of a class that defines how
likely a class will change in the future. Prediction of such
change-prone classes can help practitioners take preventive
measures to reduce maintenance costs and to allocate
resources more effectively [1]. Thus, the maintenance team
can optimize and use their testing resources on the classes
that have a higher likelihood of change.
Existing studies have investigated the ability of
objectoriented metrics to predict change-prone classes [1],
[2]. However, recent studies show that developers’
interaction with source code is not only dependent on
technical factors but also on community-related aspects [3]–
[6]. Community-related circumstances can affect the way
developers act in the source code [3]. Therefore, social
aspects of the software development community need to be
considered with technical factors while studying the
underlying dynamics of the software system like change-
proneness.
Under this context, this paper investigates the impact of
including community smell, which denotes the
organizational and social anti-patterns in the software
development community that may lead to unforeseen project
costs [7], to predict change-prone classes. In particular, this
study aims to understand to what extent the addition of
information related to community smells can contribute to

the performance of change prediction models. Further, the
usability and credibility of using community smell features
to predict change-proneness are verified using multiple
evaluation approaches. To predict change-prone class, this
study considers three community smells, namely
Organizational Silo Effect, Lone Wolf Effect, and Radio
Silence Effect with existing object-oriented (OO) metrics.
Five different popular and widely used machine learning
algorithms, namely K-nearest neighbor (KNN), Random
Forest (RF), Naive Bayes (NB), Logistic Regression (LR),
and Multi-layer Perceptron (MLP), are used for prediction.
For experimentation, a dataset is prepared from 317 releases
of 14 open-source Java projects such as Apache Ant, Eclipse-
CDT, OpenNLP, Tomcat, etc. To evaluate the models,
performance metrics namely Accuracy and F1-measure are
used in this study. The result of the study suggests that
including community smells with existing OO metrics
achieves better performance in predicting a change-prone
class with LR and MLP classifiers.
The rest of the paper is organized as follows: Section II
discusses the literature related to the prediction of
changeprone classes while Section III describes the
methodology of the study. Section IV presents and discusses
the experimental results. Threats to the validity of the study
are discussed in Section V. Finally, Section VI concludes the
paper and outlines the future direction.

https://doi.org/10.3329/dujase.v8i1.72991DUJASE Vol. 8 (1) 32-41, 2023 (January)

2. Related Work

Multiple factors can impact the change-proneness of the
class. In [8], the authors empirically investigate the
changeproneness of design patterns and the types of changes
that occur to classes that play a role in some design patterns
in contrast to the software evolution. It switches the focus
from design patterns as a whole to design pattern roles at a
more finer level to 12 different design patterns.

In [9], the anti-patterns are analyzed to find their impacts
on the change-proneness of the classes. The authors answer
several research questions related to the research topic by
analyzing 54 releases of 4 different projects, i.e. ArgoUML,
Eclipse, Mylyn, and Rhino which include 13 anti-patterns.
They also show that class size alone cannot explain how
classes with anti-patterns have a higher chance of undergoing
a (fault-fixing) change than other classes. Finally, they show
that structural changes have a greater impact on anti-pattern
classes than on other classes. They concluded that when code
smells are present, affected classes are more prone to change
than non-smelly classes. This conclusion is also later
confirmed by [10] [11]. So different software
artifacts/metrics related to code smells can be useful to detect
the change-proneness of classes.
Different source code metrics can impact the
changeproneness [12] [13]. In [14], They present a technique
for estimating change-prone classes that use both CK and
QMOOD measures. Another research [15] proposed that
process metrics can be useful in change predictions. In [16],
The researchers examine the role of developer-related factors
in change prediction using empirical evidence, such as,
entropy of development process [17], number of developers
working on a certain class [18], structural and semantic
scattering of changes [13].
In [19], the authors argue that the code smells are affected by
the community smells. To show the relation between the two
types of smell, they surveyed 162 developers of nine
opensource systems. They also make a deep analysis by
examining an empirical study of 117 releases from these
systems. According to their findings, most developers
intuitively see community-elated aspects as sources of code

smell persistence. They considered four different community
smells to show this relation: Organisational Silo Effect,
Black-cloud Effect, Lone-wolf Effect, and Bottleneck Effect
[7]. In this paper, we argue that community smells also play
a valid role in changeproneness detection similar to code
smells.

3. Methodology

This study aims to understand the impact of including
community smell-related information with object-oriented
(OO) metrics to predict change-prone classes. For this
purpose, a dataset is prepared from 14 open-source Java
projects of Github1. First, community smells are detected to
identify whether a class is affected by any community smell.
Next, OO metrics are computed using a static code analysis
tool. The change-proneness of classes is calculated by
analyzing the change history from the repository. Fig. 1
describes the process of data collection.
Finally, the resulting dataset is used to predict change-prone
classes with five popular and widely used machine learning
algorithms. To evaluate the performance of the classifiers,
accuracy, and F1-measure are considered. The process of
model building and analysis is shown in Fig. 2. The following
subsections describe the methodology in detail.

A. Project Selection

To perform the analysis, 317 releases of 14 open-source Java
projects are selected from Github. The selection of projects
is driven by the factors of considering projects of different
codebase size, longevity, and activity. Projects are selected
that have the number of classes greater than 500, have a
change history of at least 5 years, and have the number of
commits higher than 1000. This project selection process is
similar to [19]. The details of the selected projects are
provided in Table I with the project name, the link to the
source code repository, the number of considered releases,
and the number of analyzed classes. For example, 28 releases
of ActiveMQ, a Java message broker system, are considered
for analysis which covers about 14 years of lifetime and 9086
commits of this project.

1 https://github.com

33Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict Change-Prone Classes

The source code of selected projects is available on Github.
The selected projects have 317 releases and the change
history of 130,736 commits in total.

B. Community Smells Detection

To detect community smells, the state-of-the-art tool
Codeface4Smells [20] is used. This tool is publicly available
and widely used by most of the studies related to community
smells [3], [21]–[23]. Using this tool three community smells
were detected which are Organizational Silo, Lone Wolf, and
Radio Silence. Community smells are detected according to
the identification pattern given by Tamburri et al. [21]. The
description of three community smells, considered in this
study, is given below.

1) Organizational Silo (OS): the presence of siloed areas of
the software developer community that do not
communicate within the defined communication channel
such as mailing list [21].

2) Lone Wolf (LW) or Missing Link: refers to the situation
where developers collaborate among themselves but do not
communicate with each other [21].

3) Bottleneck or Radio Silence (RS): the presence of one
member in every formal interaction across two or more
sub-communities. Thus, there is little or no flexibility to
introduce other parallel communication channels between
the remaining members of the sub-communities [3].

A temporal window must be set to detect community smells
because the software development community changes from
time to time. In this study, release is chosen because the
change-prone class will be identified at the release interval.

2 https://www.scitools.com/

After detecting community smells, developers in a release are
divided into two categories - smelly developers and non-

smelly developers. A developer involved in any kind of
community smell is considered a smelly developer for that
release. Otherwise the developer is considered as non-smelly.
Next, the involvement of classes in any kind of community
smell is identified. A class is said to be affected by
community smells if the class has been modified by a smelly
developer. For example, if a class Ci is modified by a smelly
developer in between two consecutive releases rj−1 and rj,
class Ci is considered smelly, otherwise it is non-smelly.
Thus, three boolean values are computed representing the
involvement of class Ci in any of the three community smells
considered.

C. Object-oriented Metrics Calculation

The list of 15 object-oriented metrics [24] considered in this
study is given below. The investigated metrics cover different
object-oriented dimensions including size, complexity,
coupling, cohesion, abstraction, encapsulation, and
documentation. In this study, a static code analysis tool,
Understand2
(version:5.1, Build:1029), is used to compute these metrics.
Thus, the values of these metrics are calculated for each class
Ci in a release rj.

– LOC: Class Lines of Code
– NOM: Number of local Methods [25]
– NIM: Number of Instance Methods
– NIV: Number of Instance Variables

Table 1: List of Analyzed Projects

Project Source Code
#Analysed

Releases
#Analysed

Commits
#Classes

ActiveMQ github.com/apache/activemq 24 9086 4673
Ant github.com/apache/ant 33 11797 1446
Cassandra github.com/apache/cassandra 18 10102 2694
Cayenne github.com/apache/cayenne 17 6569 5409
CXF github.com/apache/cxf 16 14988 7495
Drill github.com/apache/drill 24 3842 4267
Eclipse-
CDT

github.com/eclipse-cdt/cdt 38 21818 9615

Jackrabbit github.com/apache/jackrabbit 28 7060 3462
Jena github.com/apache/jena 30 7911 9637
Mahout github.com/apache/mahout 12 4026 1803
OpenNLP github.com/apache/opennlp 8 1871 893
Pig github.com/apache/pig 15 3476 2105
POI github.com/apache/poi 19 8820 4406
Tomcat github.com/apache/tomcat 35 19370 1883
Total 317 130736 59788

34 Toukir Ahammed, Mahir Mahbub, Md. Hasan Tarek and Ahmedul Kabir

– WMC: Weighted Methods per Class [26]
– CBO: Coupling Between Objects [26]
– RFC: Response For a Class [26]
– LCOM: Lack of Cohesion in Methods [26]
– IFANIN: Number of Immediate Base Classes
– NOC: Number of Immediate Sub-classes [26]
– DIT: Depth of Inheritance Tree [26]
– RPM: Ratio of Public Methods
– RSM: Ratio of Static Methods
– CLOC: Comment of Lines per Class
– RCC: Ratio Comments to Codes per Class

D. Change-prone Class Identification

In this study, a class is defined as change-prone class if it
is changed in the subsequent release of the system, otherwise
it is not change-prone [1]. To identify change-prone classes,
two consecutive releases are compared using git command3to
check whether a class is changed in between two releases.
Then, if a class has at least one change, it is called a
changeprone class. Change-proneness of a class Ci is
computed as a binary value between two consecutive releases
rj and rj+1.

After collecting all data, five different popular and widely
used machine learning algorithms such as K-nearest neighbor
(KNN), Random Forest (RF), Naive Bayes (NB), Logistic
Regression (LR), and Multi-layer Perceptron (MLP) are used
for the prediction of change-prone classes. To evaluate the
performance of these models in predicting change-prone
classes, Accuracy and F1-measure are used as performance
metrics. For further explanation, the pairwise correlation and
variance of variables are explored using Principal
Component Analysis (PCA). Univariate Logistic Regression
(ULR) is used to evaluate the relationship and individual
effect of the metrics.

3 git diff rj..rj –numstats

Fig. 1. Methodology of Data Collection.

In the following section (Section IV), the details of these
approaches are discussed.

4. Experiment and Result Analysis

In this section, we have discussed the implementation details
and the results of the selected software projects.

A. Implementation Details

In this experiment, we have analyzed five classifiers namely
K-nearest neighbor (KNN) with k = 3, Random Forest (RF),
Naive Bayes (NB), Logistic Regression (LR), and Multi-
layer Perceptron (MLP) to understand the effect of

35Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict Change-Prone Classes

Community smell (CMS) metrics to predict change-
proneness of a class

Fig. 2. Methodology of Model Building and Analysis.

incorporating with existing Object Oriented (OO) metrics.
For a fair comparison of the results, we have performed a 10-
fold cross-validation (10-CV) technique to evaluate the
results. To measure the superiority of the classifiers, accuracy
and F1measure metrics are used.

Before proceeding to the Accuracy and F1-measure [27] , we
need to explain some complementary metrics such as True
Positives(TP), True Negatives(TN), False Positives(FP),
False Negative(FP), etc.

• True Positives (TP): It indicates correctly predicted
positive values which means that both the value of the
actual class and predicted class is positive.

True Negatives (TN): It indicates correctly predicted
negative values which means that both the value of the
actual class and predicted class is negative.

• False Positives (FP): It indicates that the value of the
actual class is negative and the predicted class is
positive.

• False Negatives (FN): It indicates that the value of the
actual class is positive and the predicted class is
negative.

Here Accuracy and F1-measure are presented regarding
explaining the model’s evaluation.

• Accuracy: Accuracy is the proportion of the correctly
predicted sample(CP) and total number of samples (TS).

 (1)

• F1-measure: To explain uneven class distribution
indicating the uneven cost of Precision and Recall, the
F1measure is more suitable than the Accuracy. the
Precision is the ratio of the correctly predicted positive
sample and the total predicted positive sample. the
Recall is the ratio of correctly predicted positive
samples and the total observations in the actual positive
class.

 (2)

B. Result and Discussion

Table 2 presents the accuracy results of the
aforementioned five classifiers result with Object
Oriented (OO) metrics and Object Oriented metrics
along with Community Smell (OO+CMS) metrics.
The last row of this table indicates the number of
Win/Tie/Loss (W/T/L) comparing OO+CMS metrics
with OO metrics results. This table shows that with
OO+CMS metrics data LR and MLP classifiers
perform better than other classification algorithms to
predict the class most likely to be changed in future
software releases. Overall, OO+CMS metrics tend to
outperform OO metrics in terms of accuracy, with
variations across datasets and algorithms. In Fig. 4,
we can see the difference occurred in accuracy after
incorporating the CMS metrics with OO metrics in
Cayenne project.

36 Toukir Ahammed, Mahir Mahbub, Md. Hasan Tarek and Ahmedul Kabir

Fig. 3. Accuracy comparison between OO and OO+CMS
features.

From Table 1, we can notice that the number of classes,
commits and releases vary on different projects. Hence, we
have calculated another evaluation metric F1-measure
formulated as Eq. (2). Due to the imbalanced properties of
the projects, F1-measure is more appropriate as an
evaluation metric because it incorporates both precision and
recall measures discussed in the above section. Table 3
presents the F1-measure results. From the last row of the
table, we can see that LR and MLP classifiers outperform
other classifiers’ prediction performance. The reason behind
this is due to the inclusion of CMS metrics to the existing OO
metrics. Although NB performs well however LR and MLP
perform better in predicting a class to be change-prone in
future releases.

Table 2: Accuracy Comparison Between Oo+Cms Metrics And Oo Metrics With Different Machine Learning Algorithms

Dataset
KNN RF NB LR MLP

OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO
ActiveMQ 84.86 85.15 84.58 84.50 81.34 82.40 85.99 85.84 86.08 85.94
Ant 72.54 72.80 72.75 74.08 70.91 72.15 75.83 75.64 75.68 75.63
Cassandra 77.71 79.15 78.77 79.82 74.44 69.79 77.01 71.17 77.90 72.75
Cayenne 73.17 67.59 73.76 68.57 74.48 69.55 78.81 72.53 79.27 72.63
CXF 70.56 71.56 73.08 73.44 72.56 73.14 75.27 74.99 75.57 75.28
Drill 71.08 70.98 72.12 73.07 72.35 71.63 74.05 73.07 74.24 73.51
Eclipse-CDT 86.56 85.66 85.52 85.65 83.23 84.47 87.76 87.75 87.78 87.78
Jackrabbit 87.76 88.41 87.89 88.41 83.05 83.49 88.37 87.82 88.64 88.05
Jena 85.54 85.67 87.08 86.96 82.89 84.02 88.31 87.88 88.43 87.92
Mahout 62.53 61.08 63.39 62.16 61.07 57.95 62.31 58.70 64.49 59.40
OpenNLP 76.67 78.16 74.81 79.23 74.48 73.44 79.18 76.78 79.49 76.63
Pig 82.65 81.85 82.14 81.84 78.55 81.16 83.62 83.58 83.97 83.83
POI 66.47 65.12 66.16 66.12 65.76 66.52 67.38 67.30 69.27 67.88
Tomcat 85.16 85.35 84.87 85.18 81.60 82.69 86.55 86.25 86.57 86.46
Win/Tie/Loss 6/0/8 6/0/8 5/0/9 14/0/0 13/1/0

Table 3: F1-Measure Comparison Between Oo+Cms Metrics and Oo Metrics With Different Machine Learning Algorithms

Dataset
KNN RF NB LR MLP

OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO OO+CMS OO
ActiveMQ 82.29 82.36 82.06 81.74 80.45 80.55 80.59 80.16 81.33 80.56
Ant 70.24 71.00 69.94 71.75 68.93 69.18 67.21 66.15 67.57 66.14
Cassandra 77.02 78.09 78.26 78.94 73.74 64.62 75.45 64.03 76.49 68.66
Cayenne 72.01 65.15 72.13 65.59 73.20 65.61 75.66 62.15 76.55 64.46
CXF 68.92 69.49 70.45 70.51 71.01 70.27 69.08 68.24 70.86 69.81
Drill 69.50 69.37 70.38 70.90 68.04 65.75 69.37 66.88 70.73 68.46
Eclipse-CDT 82.55 82.17 82.00 81.96 81.78 82.28 82.33 82.31 82.32 82.25
Jackrabbit 86.17 86.84 86.30 86.81 83.81 82.33 84.84 82.53 85.65 83.07
Jena 83.46 83.00 84.31 83.51 82.57 82.14 84.16 82.45 84.23 82.43
Mahout 60.86 59.11 62.13 60.35 59.55 53.5 60.60 54.12 61.95 56.69
OpenNLP 74.31 74.46 72.71 76.80 74.46 70.92 75.55 68.24 76.17 68.57
Pig 80.20 79.87 79.94 79.58 78.24 79.48 78.33 78.16 79.30 79.00
POI 64.57 63.31 64.61 64.16 62.16 61.06 62.12 61.07 66.28 64.15
Tomcat 82.07 82.50 82.06 82.32 81.31 81.73 81.96 81.46 82.07 81.67
Win/Tie/Loss 7/0/7 7/0/7 9/0/ 5 14 /0/ 0 14/0/0

37Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict Change-Prone Classes

As shown in Fig. 3 and Fig. 6, non-parametric algorithms like
KNN almost show balanced results (similar number of wins
and losses) after inserting the community smells data.

Fig. 4. Comparison of accuracy between OO and OO+CMS
for different models in Cayenne project

This is likely due to the fact that non-parametric models do
not consider feature importance in their models, and also
because Boolean data have less significance in distance
measurement. Parametric models, on the other hand, learn
from the CMS features and show the significance of the CMS
metrics as additional features to OO metrics. In Fig. 5, the
difference is shown in F1 score after incorporating the CMS
metrics with OO metrics in Cayenne project.

Fig. 5. Comparison of F1 score between OO and OO+CMS
for different models in Cayenne project

To get better insight from the results, we have also presented
the receiver operating characteristic curve (ROC) [28] shown
in Fig. 7. The ROC curve is plotted by placing a false positive
rate (1–specificity) on the x-axis and a true positive rate
(sensitivity) on the y-axis. The area under the ROC curve
(AUC) helps to visualize how well a machine learning
classifier is performing. An AUC value of 0.50 indicates that
the classifier has no distinguishing ability (i.e., no better than

chance) and a value of 1.0 indicates perfect distinguishability.
From Fig 7, we can observe that the performance of MLP and

Fig. 6. F1 score comparison between OO and OO+CMS
features.

LR classifiers is better than other classifiers which reflects
the previously described accuracy and F1− measures results.
Moreover, in terms of AUC score NB classifier also performs
well with CMS metrics.

Fig. 7. AUC-ROC curve of Cayenne project

Table 4: Experimental Results of PCA For Cayenne Project

PC Eigenvalue Variance
(%)

Cumulative Correlated Metrics

PC-1 5.73 36.37 36.37 LOC, NOM, NIM,
WMC,CBO

PC-2 1.75 11.13 47.5 OS, LW, RS
PC-3 1.59 10.11 57.61 DIT, RPM, RCC
PC-4 1.21 7.71 65.32 NIV, RFC, IFANIN
PC-5 1.09 6.91 72.23 DIT, RSM
PC-6 1.02 6.50 78.73 IFANIN, NOC,

RSM

Therefore, LR and MLP classifiers achieve better
performance including CMS metrics to the existing OO
metrics to predict a change-prone class in future releases.
1) Principal Component Analysis (PCA): PCA is used for
the purpose of dimensionality reduction based on variable
pairwise correlation and variance for interpretation as well as
further explanation [2]. PCA with 1 to 6 components is taken
into consideration where the eigenvalue is larger than 1.0.
Table 4 also shows the correlation between 6 principal
components and the metrics. PCA provides guidance to the

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Logistic Regression (area = 0.64)
KNN (area = 0.63)
Random Forest (area = 0.62)
Naive Bayes (area = 0.64)
MLP (area = 0.68)

38 Toukir Ahammed, Mahir Mahbub, Md. Hasan Tarek and Ahmedul Kabir

dimensionality reduction, metric selection, and detection of
dependent variables for model building. The analysis for
project Cayenne shows that PC-1, with the highest
eigenvalue, explains 36.37% of the variance and is correlated
with metrics such as LOC, NOM, NIM, WMC, and CBO. It
also shows that DIT and RSM change together. Also, the
community metrics OS, LW, RS are changing together.
Therefore OS, LW, and RS are strongly related to PC-2.
Other projects also show the same kind of properties.
Therefore it can be said that the community smell metrics are
strongly correlated.

2) Univariate Logistic Regression (ULR): The Univariate
Logistic Regression analysis is conducted on our dataset to
evaluate the relationship and individual effect of our metrics.
The objective of this analysis is to explain the extent of
variance in the dependent variable defined by the
independent variables. In [2], this type of analysis proved to
be significant in exploring the importance of the features. For
project Cayenne as showed in Table 5, the value of NOM,
NIV, WMC, IFANIN, NOC, and RSM do not pass the test
with an alpha threshold of 0.05 which indicate their
usefulness in the change-prone estimator. The community
smell metrics all pass the test. Therefore NIM, CBO, CLOC,
RCC, OS, LW, and

Table 5. Univariate Logistic Regression Experimental
Results for Cayenne Project

Metric Coefficient p-
value

LOC 0.0469 0.019
NOM -0.089 0.867
NIM 0.1815 0.003
NIV -0.0186 0.259
WMC -0.089 0.892
CBO 0.1775 <0.01
RFC 0.0334 0.003
LCOM -0.0456 0.005
IFANIN 0.0088 0.508
NOC 0.017 0.162
DIT 0.067 0.01
RPM -0.0333 0.013
RSM 0.0133 0.282
CLOC 0.1135 <0.01
RCC -0.1462 <0.01
OS 0.0952 <0.01
LW -0.4754 <0.01
RS 0.8132 <0.01

RS show a good significance with relatively high regression
coefficients which means that the mean change in the
response variable is high for single unit change in the relevant
dependent variable. Other projects also show the same kind
of trends

5. Threats to Validity

This section discusses potential aspects that may threaten the
validity of the study:

– Threats to External Validity: Threats to external validity
deal with the generalization of the results. In this study,
317 releases of 14 open-source projects are analysed to
understand the impact of including community smells
related information on change-prone class prediction.
To mitigate the threat of generalization, the projects
having different codebase sizes (ranges from 3,476 to
21,818 commits), different age (ranges from 9 years to
18 years), and belonging to different application
domains (DBMS, IDE, Web Framework, Data
Analyzer etc.) are selected.

– Threats to Internal Validity: In this study, an opensource
tool, Codeface4Smells, is used to detect community
smells. The identified smells are directly included in the
analysis of this study without further verification.
However, this tool is commonly used to detect
community smell in related studies [3], [22], [23], [29],
[30]. This tool uses developer mailing list archives as
the communication source and does not consider other
communication channels, for example, Skype, Slack
[31], etc. However, mailing list is the primary
communication channel in the analysed communities
according to contribution guidelines of evaluated
projects. Moreover, object-oriented metrics are
calculated using a static code analysis tool named
Understand and the values are directly included in the
dataset.

6. Conclusion

Community smells implies poor social and organizational
phenomena that can lead to the emergence of social debt.
Previous studies suggest that community related aspects
should be considered while studying the evolution of source
code. In this study, we have performed rigorous experiment
on fourteen java projects with five different machine learning
algorithms to evaluate the impact of community smells in
predicting a class to be change-prone in future software
release. The experimental results suggest that including
community metrics to the the existing OO metrics give us
better change-prone class prediction result. Moreover, MLP
and LR machine learning algorithms have better prediction
ability than others. Further experiment on other programming
languages with more open source projects can be performed
to understand the impact of community metrics to predict
change-prone classes in future releases.

39Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict Change-Prone Classes

References

1. H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of
object-oriented metrics to predict change-proneness: a meta-
analysis,” Empirical software engineering, vol. 17, no. 3, pp.
200–242, 2012.

2. L. Kumar, S. K. Rath, and A. Sureka, “Empirical analysis on
effectiveness of source code metrics for predicting change-
proneness,” in Proceedings of the 10th Innovations in Software
Engineering Conference, pp. 4–14, 2017.

3. F. Palomba, D. Andrew Tamburri, F. Arcelli Fontana, R.
Oliveto, A. Zaidman, and A. Serebrenik, “Beyond technical
aspects: How do community smells influence the intensity of
code smells?,” IEEE Transactions on Software Engineering,
vol. 47, no. 1, pp. 108–129, 2021.

4. B. Eken, F. Palma, B. Ays¸e, and T. Ays¸e, “An empirical
study on the effect of community smells on bug prediction,”
Software Quality Journal, vol. 29, no. 1, pp. 159–194, 2021.

5. E. Caballero-Espinosa, J. C. Carver, and K. Stowers,
“Community smells—the sources of social debt: A systematic
literature review,” Information and Software Technology, vol.
153, p. 107078, 2023.

6. Z. Huang, Z. Shao, G. Fan, J. Gao, Z. Zhou, K. Yang, and X.
Yang, “Predicting community smells’ occurrence on
individual developers by sentiments,” 2021 IEEE/ACM 29th
International Conference on Program Comprehension
(ICPC), pp. 230–241, 2021.

7. D. A. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet,
“Social debt in software engineering: insights from industry,”
Journal of Internet Services and Applications, vol. 6, no. 1, pp.
1–17, 2015.

8. M. Di Penta, L. Cerulo, Y.-G. Gueh´ eneuc,´ and G. Antoniol,
“An empirical study of the relationships between design
pattern roles and class change proneness,” in 2008 IEEE
International Conference on Software Maintenance, pp. 217–
226, IEEE, 2008.

9. F. Khomh, M. Di Penta, Y.-G. Gueh´ eneuc,´ and G. Antoniol,
“An exploratory study of the impact of antipatterns on class
change-and faultproneness,” Empirical Software Engineering,
vol. 17, no. 3, pp. 243–275, 2012.

10. F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
and A. De Lucia, “On the diffuseness and the impact on
maintainability of code smells: a large scale empirical
investigation,” Empirical Software Engineering, vol. 23, no. 3,
pp. 1188–1221, 2018.

11. D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A.
Bacchelli, “On the relation of test smells to software code
quality,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 1–12, IEEE, 2018.

12. L. Kumar, R. Jetley, and A. Sureka, “Source code metrics for
programmable logic controller (plc) ladder diagram (ld) visual
programming language,” in 2016 IEEE/ACM 7th International
Workshop on Emerging Trends in Software Metrics
(WETSoM), pp. 15–21, IEEE, 2016.

13. D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto,
and A. De Lucia, “A developer centered bug prediction
model,” IEEE Transactions on Software Engineering, vol. 44,
no. 1, pp. 5–24, 2017.

14. S. Eski and F. Buzluca, “An empirical study on object-oriented
metrics and software evolution in order to reduce testing costs
by predicting change-prone classes,” in 2011 IEEE fourth
international conference on software testing, verification and
validation workshops, pp. 566–571 , IEEE, 2011.

15. M. O. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics
for quantifying historical changes to predict future change-
prone classes in object-oriented software,” Journal of
Software: Evolution and Process, vol. 25, no. 5, pp. 407–437,
2013.

16. G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A.
Zaidman, “Enhancing change prediction models using
developer-related factors,” Journal of Systems and Software,
vol. 143, pp. 14–28, 2018.

17. A. E. Hassan, “Predicting faults using the complexity of code
changes,” in 2009 IEEE 31st international conference on
software engineering, pp. 78–88, IEEE, 2009.

18. R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “The limited
impact of individual developer data on software defect
prediction,” Empirical Software Engineering, vol. 18, no. 3,
pp. 478–505, 2013.

19. F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A.
Fontana, and R. Oliveto, “Poster: How do community smells
influence code smells?,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering:
Companion (ICSE-Companion), pp. 240–241, IEEE, 2018.

20. S. Magnoni, “An approach to measure community smells in
software development communities,” Master’s thesis,
Politecnico di Milano, Italy, 2016.

21. D. A. Tamburri, F. Palomba, and R. Kazman, “Exploring
community smells in open-source: An automated approach,”
IEEE Transactions on Software Engineering, vol. 47, no. 3,
pp. 630–652, 2021.

22. G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and
F. Ferrucci, “Gender diversity and women in software teams:
How do they affect community smells?,” in 2019 IEEE/ACM
41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS), pp. 11–20,
IEEE, 2019.

23. G. Catolino, F. Palomba, D. A. Tamburri, and A. Serebrenik,
“Understanding community smells variability: A statistical
approach,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Society
(ICSE-SEIS), pp. 77–86, 2021.

24. F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan,
“How does context affect the distribution of software
maintainability metrics?,” in 2013 IEEE International
Conference on Software Maintenance, pp. 350 – 359, IEEE,
2013.

25. B. Henderson-Sellers, Object-oriented metrics: measures of
complexity. Prentice-Hall, Inc., 1995.

26. S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on software engineering,
vol. 20, no. 6 , pp. 476–493, 1994.

27. C. Goutte and E. Gaussier, “A probabilistic interpretation of
precision, recall and f-score, with implication for evaluation,”
in European conference on information retrieval, pp. 345–359,
Springer, 2005.

40 Toukir Ahammed, Mahir Mahbub, Md. Hasan Tarek and Ahmedul Kabir

28. Z. H. Hoo, J. Candlish, and D. Teare, “What is an roc curve?,”
Emergency Medicine Journal, vol. 34, no. 6, pp. 357–359,
2017.

29. F. Palomba and D. A. Tamburri, “Predicting the emergence of
community smells using socio-technical metrics: A machine-
learning approach,” Journal of Systems and Software, vol. 171,
p. 110847, 2021.

30. G. Catolino, F. Palomba, D. A. Tamburri, and A. Serebrenik,
“Understanding community smells variability: A statistical
approach,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Society
(ICSE-SEIS), pp. 77–86, IEEE, 2021.

31. G. Voria, V. Pentangelo, A. Della Porta, S. Lambiase, G.
Catolino, F. Palomba, and F. Ferrucci, “Community smell
detection and refactoring in slack: The cadocs project,” in 2022
IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 469–473, IEEE, 2022.

41Impact of Incorporating Community Smells with Object-Oriented Metrics to Predict Change-Prone Classes

