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ABSTRACT 

This study explores the effectiveness of various noise reduction filters in accurately measuring temperature distributions 
over a 38.2 km single-mode fiber (SMF). Brillouin optical time-domain analysis (BOTDA) sensor is utilized to gather 
Brillouin gain spectra (BGSs), which are denoised using bilateral filter (BF), guided filter (GF), adaptive Wiener filter 
(AWF), non-local means filter (NLMF), average filter (AF) and disc filter (DF). The temperature distributions over the 
SMF are then determined by applying least-squares curve fitting (LSCF). The study assesses the efficacy of noise 
reduction filters considering signal-to-noise ratio (SNR), uncertainty in temperature measurement (UTM), experimental 
spatial resolution (ESR) and signal processing speed (SPS). Among six different filters, NLMF outperforms other filters 
which can provide SNR improvement of 10.22 dB for which the UTM can be improved by 58.93% without deteriorating 
the ESR of the sensor. The noise reduction using such filter can also provide 6.2% faster SPS. Therefore, NLMF can be 
considered as an effective noise reduction filter for the precise temperature measurement using BOTDA sensors. 
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1. Introduction 

Distributed fiber-optic sensors provide unique capabilities 
for measuring different parameters in hazardous operating 
environments [1 – 3]. Such sensors are widely utilized for the 
monitoring of structural health [4], vibration [5], landslide 
[6] and temperature variations [7]. Brillouin optical time 
domain analysis (BOTDA) sensor is a specific type of fiber-
optic sensor that excels at providing long range high 
temperature measurement with low uncertainty and excellent 
spatial resolution [7 – 10]. The BOTDA sensors with 
Brillouin gain setting involves launching pulsed pump and 
continuous probe waves to counter-propagate through the 
fiber. The high-power pump wave interacts with acoustic 
phonons in the fiber and generates the stimulation of 
Brillouin scattering [11]. The interaction involves 
transferring a fraction of pump energy to the probe wave, 
resulting in the probe wave being magnified. The magnified 
probe wave is recorded by scanning the pump-probe 
frequency difference step-by-step to obtain BOTDA-traces. 
These traces create Brillouin gain spectra (BGSs) over the 
SMF. The frequency at peak gain, also known as Brillouin 
frequency shift (BFS), in the local BGS exhibits a linear 
increase with temperature [7]. By measuring the BGSs at 
different fiber positions, we can resolve local BFSs, which in 
turn provide the temperature distribution along the fiber. 

Relatively straightforward method of estimating the BFSs is 
the ‘maximum finding approach’ which identifies BFSs by 
detecting frequencies associated with peak gain of the BGSs 
[12]. However, the BGSs gathered from BOTDA experiment 
contain randomly distributed noises and experiences low  

SNR due to relative intensity noise from laser source, 
amplified spontaneous emission (ASE) noise from EDFA, 
SBS-induced noise (SBiN) due to pump-probe interaction, 
and shot and thermal noises from the detector [13, 14]. Such 
noise might elevate certain frequencies, leading to inaccurate 
BFSs. This limitation can be overcome by employing the 
least-squares curve fitting (LSCF) which involves fitting a 
suitable model function to the experimental data, allowing 
more accurate estimation of BFSs [7, 12]. However, low 
SNR at the termination of an extended SMF exacerbates the 
uncertainty in temperature measurement (UTM) using LSCF 
[13, 15]. Moreover, the LSCF utilizes an iterative 
optimization process to determine BFSs from a large number 
of BGSs, particularly when the fiber is quite long. Each BGS 
also contain several hundreds of measurement points. As a 
result, the estimation of BFSs using LSCF becomes time-
consuming [12].  

It is necessary to achieve low UTM as well as to maintain 
ESR for precise temperature measurement with BOTDA 
sensors [9, 10]. The UTM relies on the SNR of the acquired 
experimental BGSs and ESR is linked to the width of pump-
pulses [15, 16]. Short pump pulses are necessary to achieve 
better spatial resolution with BOTDA sensors. However, 
such pulses lead to very short pump-probe interaction times 
and provide BGSs with low SNR [14]. Consequently, there 
is a trade-off between UTM and ESR. At a fixed ESR, the 
averaging operation on BOTDA-traces is a frequently-used 
technique used to enhance the SNR of BGSs obtained from 
BOTDA sensors [15]. This technique involves averaging 
multiple sweeps of measurements taken at the same point 
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along the fiber. While trace averaging of a large number of 
traces is a useful technique to get better SNR, it can 
significantly slow down the measurement process. To strike 
a balance between UTM and acquisition time, we can 
alternately use averaging operation on a small number of 
traces during the experiment, and then apply a suitable noise 
reduction filters to denoise them. Different denoising 
algorithms are used for such purpose, some of which 
includes anisotropic diffusion filter [17], wavelet transform 
[18, 19], cross-correlation [12, 20] and non-local means filter 
[21 - 23]. The use of these noise reduction filters can enhance 
SNR but the selection of improper filters can have a 
detrimental effect on ESR [19]. Thus, it is crucial to analyze 
the impact of these denoising algorithms on experimental 
spatial resolution (ESR) and signal processing speed (SPS) 
which have been largely overlooked in the literatures.  

In this study, we have accurately extracted temperature 
distributions over a 38.2 km SMF. For such accurate 
temperature extraction, we have first explored the impact of 
using six different noise reduction filters for improving SNR 
of BGSs. In addition, we have analyzed the benefits of using 
these filters in terms of UTM, ESR and SPS. 

2. Experimental Setup and Acquisition of BGSs 

As shown in Fig.1, a conventional BOTDA sensor [7, 12] 
uses a continuous-wave (CW) laser source emitting 1550 nm 
light that passes through upper and lower branches after 
being divided by the coupler. The PC1 and PC2 regulate the 
SOP of light waves passing through two branches. Here, PC 
and SOP stand for polarization controller and state-of-
polarization, respectively. 

 

Fig. 1. A conventional BOTDA sensor. 

The upper branch in Fig. 1 uses a pulse pattern generator 
(PPG) to control an electro-optic modulator (EOM1), which 
modifies the CW wave to generate pump pulses. An erbium-
doped fiber amplifier (EDFA) is then employed to amplify 
the pump pulses. The amplified spontaneous emission (ASE) 

noise produced during amplification process is reduced by 
using a band pass filter (BPF), while a polarization scrambler 
(PS) diminishes the polarization-induced fading of Brillouin 
gain. The upper branch also includes an optical circulator 
(OC1) that direct light from ports ‘1’ and ‘2’, enabling pump-
pulses to launch from the upper branch to the near end of the 
SMF. The lower branch uses the radio-frequency generator 
(RFG) to create probe wave with double sideband suppressed 
carrier (DSB-SC) via EOM2. The power of DSB-SC probe 
wave is controlled by a variable optical attenuator (VOA), 
which directs such wave through an optical isolator, 
preventing reverse light propagation through the SMF. 

The setup, depicted in Fig. 1, involves the reverse 
propagation of pump and probe waves within the SMF, 
delivering power from the pump wave to intensify the probe 
wave. The setup uses OC2 to transmit the probe wave to a 
FBG filter, thereby selecting the intended sideband in the 
lower frequency region. Such sideband is detected by the 
photo-detector (PD). The data acquisition system (DAS) 
collects BOTDA-traces and assembles them as BGSs, which 
are first denoised and then processed for extracting 
temperature distribution along the SMF. 

3. Principles of Noise Reduction Filters 

In this study, we have treated noisy experimental BGSs 
acquired from the BOTDA sensor as an image and denoised 
such image using various noise reduction filters. 

3.1 Bilateral Filter (BF) 

The BF is a local, nonlinear and non-iterative filtering 
technique to reduce noise from images while preserving 
edges. This filter utilizes geometric closeness of the 
neighboring pixels and replaces the value of a pixel by the 
weighted average of its neighboring pixels [24, 25]. The BF 
filtered image value at a pixel location m of an original image 
value Im is defined [24] by 

( ) ( )1BF
m s r m n n

n Sm

I G m n G I I I
F  



= − −                  (1) 

where, S is a spatial neighborhood of m, In is the image value 
at pixel position n and ǁm - nǁ is the Euclidean distance 
between m and n. The BF filter given by Eq. (1) uses the 
geometric closeness function Gσs(·), the gray level similarity 
function Gσr(·) and the normalization factor Fm as given by 
Eq. (2), Eq. (3) and Eq. (4), respectively [25].  

( ) 2 2exp( 2s SG m n m n − = − −                              (2) 

( ) 2 2exp( 2r m n m n rG I I I I − = − −                           (3) 
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( ) ( )m s r m n
n S

F G m n G I I 


= − −                              (4) 

The parameters σs and σr in Eq. (2) and Eq. (3) determines 
the amount of filtering on the image and Fm given by Eq. (4) 
ensures that pixel weights sum to 1 [24]. 

3.2 Guided Filter (GF) 

The GF proposed by K. He et al. [26] is a local, linear and 
fast edge-preserving filter that provides the denoised image 
based on a guided image considering local spatial 
neighborhood statistics [26, 27]. The guided image can be 
the image itself [27]. There is a linear relationship between 
input image Im, the guided image Gm and the filtered image 
in a local window ωc as given by 

,GF
m c m c cI a G b m = +                                       (5) 

where, ac and bc are constant coefficients within ωc. The 
noise components Nc can be given by 

GF
m m cI I N− =                                                           (6) 

The difference given by Eq. (6) in the window ωc is 
minimized by minimizing the function E(ac, bc) as given by 

( ) ( )2 2,
c

c c c m c m c
m

E a b a G b I a





 = + − +                (7) 

where, λ is a regularization parameter. The Eq. (7) can be 
solved using linear regression [26] to obtain 

2

1

, and
c

m m c cm

c
c

G I I

a





 



 
−  

 =
+


                     (8) 

c c c cb I a = −                                                          (9) 

Where |ω|, 𝜇𝜇c and 2
c are total number, mean and variance of 

pixels, respectively in ωc, while cI is the mean of m in ωc. The 

output GF
mI can now be obtained using Eq. (5) as given by 

( )1

c

GF
m c m c

m

I a I b
 

= +                                       (10) 

where, Im is the value of noisy image and GF
mI is the guided 

filtered image values at pixel location m. 

3.3 Adaptive Wiener Filter (AWF) 

For reducing noise from experimental BGSs using AWF, 
BGSs along the SMF are grouped as a 2D image B(m, n).  
The denoising process utilizes neighborhood pixels to 
determine the local image mean and variance [28, 29]. The 
AWF uses its M-by-N neighborhood pixels to determine 
mean (ā) for local image as given by 

,

1
( , )

m n

a B m n
MN 

=                                              (11) 

where, β represents M×N local neighborhood of current pixel 
in B(m, n). The variance (2) for the local image is given by  

2 2 2

,

1
( , ) .

m n

E m n a
MN 




= −                                (12) 

The AWF filtered value of each pixel in B(m, n) is next 
approximated to be [28]  

( )
2 2

2( , ) ,AWF nD m n a B m n a
 

−

= + −                 (13) 

In Eq. (13), n
2 represents the variance of noise. It is 

remarkable in Eq. (13) that the noise reduction using AWF 
is influenced by 2, with smaller reductions for larger values 
and larger reductions for smaller ones. As a result, AWF 
works adaptively to maintain high-frequency components of 
B(m, n) and thus preserves edges. 

3.4 Non-Local Means Filter (NLMF) 

The NLMF effectively reduces noise in an image by using 
weighted average of image pixels' intensities to estimate a 
pixel's intensity, calculated based on pixel resemblance and 
surrounding pixels' similarity [30, 31]. The weighted average 
computation involves a search window Sm that contains a 
given pixel number adjacent to the pixel m. In non-local 
means filter, the value of denoised pixel D(m) of a noisy 
pixel B(m) is estimated by [31] 

( ) ( , ) ( )
m

NLM

n S

D m w m n B n


=                                  (14) 

where Sm is the search window of size SS centering pixel m. 
The resemblance between pixels m and n is assessed using a 
declining function [32] given by 

( ) ( ) ( ) 2

2,
, m nt m n B N B N


= −                               (15) 

where,  represents the standard deviation of the Gaussian 
kernel. In Eq. (15), the intensity of pixels in a CC 
comparison window centered on pixels m and n within the 
search window Sm is denoted by B(Nm) and B(Nn). The weight 
w(m, n) in Eq. (14) are then calculated [31, 32] by 

( ) 2
( , )1

, .
( )

t m n
dw m n e

h m

−

=                                        (16) 

where, d is the standard deviation of noise estimated from the 
noisy Brillouin gain spectra. It is used to adjust the degree of 
smoothing in non-local means filtering and the normalization 
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constant h(m) in Eq. (16) ensures that 0 ( , ) 1w m n   and 

( , ) 1
n
w m n = .  

3.5 Average Filter (AF) 

The AF is a linear filter which employs mean values for 
replacing the pixel values of the original image. This filter 
uses a rectangular window made up of a number of pixels 
from the neighbor centering the current pixel (m, n). The 
filtered value of a pixel using AF is determined by [33] 

1
( , ) ( , )AF

B Wp

D m n B m n
W 

=                                  (17) 

where, W is a local window that consists of a total number of 
Wp pixels including the current pixel. 

3.6 Disc Filter (DF) 

The DF is also known as circular averaging filter in which 
the averaging operation on the pixels is calculated over a 
circular window surrounding a pixel. 

4. Principle of Least-Squares Curve Fitting (LSCF) 

For the extraction of temperature distributions throughout 
the SMF, LSCF [7, 10] is exploited to find BFSs of 
experimental and denoised BGSs separately. In such fitting, 
each BGS along the SMF are fitted with the Lorentzian 
function given by 

2( )
1 4 ( )

p

p p

g
g 

  
=

 + −  

                      (18) 

where gp, υp and Δυp are respectively the peak gain, 
frequency at gp (BFS) and linewidth of a BGS. The 
comprehensive explanation of LSCF is available in Ref [7, 
11].   

After completing LSCF process, the fitted BFSs along the 
SMF are determined. Then, the fitted BFSs are transformed 
to temperature using the linear relation between them with 
~0.975 MHz/℃ slope and 10.834 GHz intercept [7]. In this 
study, the SNR of experimental as well as denoised BGS 
along the SMF are determined by [7, 17] 

2

10 2( ) 10 log p

r

g
SNR dB



 
=   

 
                                       (19) 

where σr denotes the standard deviation of residuals which is 
the difference between the experimental BGS and the fitted 
BGS. A typical experimental BGS, its fitted BGS and 
residuals are depicted in Fig. 2.  

 

Fig. 2. A typical experimental BGS, its fitted BGS and 
residuals. 

5. Experimental Results and Discussion 

The experiment involved placing a 38.2 km SMF in the 
BOTDA sensor setup depicted in Fig. 1. To evaluate the 
performance of the temperature sensor, ~0.59 km from the 
end of the SMF is heated in an oven while the remaining 
SMF (i.e., ~37.61 km) is retained at room temperature of ~25 

oC outside the oven. The oven temperature is set at 60 ºC. 
The pump-pulses width is tuned to 20 ns for fixing 2 m ESR 
of the sensor. The DAS in Fig. 1 acquires BOTDA-traces 
along the SMF with PD output sampled at 125 Mega-
symbols/second that fixed the distance between two 
consecutive samples in the traces to be 0.4 m. To obtain a 
single BOTDA-trace along the 38.2 km SMF at a particular 
frequency, the averaging of 100 traces is adopted. The BGSs 
along the SMF are formed by combining 251 traces collected 
at frequencies spanning from 10.76 GHz to 11.01 GHz 
adopting uniform frequency step of 1 MHz. These BGSs are 
shown in Fig. 3. 

 

Fig. 3. Distribution of experimental BGSs over 38.2 km SMF 
with last ~0.59 km fiber at 60 ºC. 
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The BGSs in Fig. 3 show that the normalized gains of BGSs 
at the beginning of the SMF is maximum, decreasing 
gradually with distance due to the attenuation of signals 
propagating through the SMF. The most significant 
observation in Fig. 3 that the BFSs (central frequencies) of 
BGSs along the last part (~0.59 km) of the SMF have been 
shifted to higher frequency due to applying 60 ºC inside the 
oven compared to the part of the SMF put outside the oven 
at ~25 oC. The BGSs in Fig. 3 also show a significant increase 

in noise level along the SMF due to noise accumulation. The 
noise levels in the experimental BGSs along the SMF shown 
in Fig. 3 are first reduced separately by applying different 
noise reduction filters as described in section 3. To explore 
the effectiveness, six different noise reduction filters (i.e., 
BF, GF, AWF, NLMF, AF, and DF) are adopted in this 
study. The denoised BGSs obtained after applying such noise 
reduction filters are exhibited in Fig. 4 (a)–(f).  

 

  
(a) BGSs denoised by bilateral filter (BF) (b) BGSs denoised by guided filter (GF) 

  
(c) BGSs denoised by adaptive Wiener filter (AWF) (d) BGSs denoised by non-local means filter (NLMF) 

  
(e) BGSs denoised by average filter (AF) (f) BGSs denoised by disc filter (DF) 

Fig. 4. Distributions of denoised BGSs over 38.2 km SMF with last ~0.59 km fiber at 60 ºC. 
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It is noticed that the BGSs in Fig. 4 are much smoother that 
that in Fig. 3. This means that the noise levels in denoised 
BGSs are much smaller than that in noisy experimental 
BGSs. The reduced noise in the denoised BGSs is actually 
due to the fact that the noise reduction filters help to reduce 
noise from BOTDA traces that collectively construct BGSs 
along the SMF. To observe the effects of noise reduction 
filters on BOTDA traces, one of the traces along the SMF at 
10.854 GHz and its denoised traces obtained after applying 
six different noise reduction filters are shown in Fig. 5. 

 
Fig. 5. Experimental and denoised traces over 38.2 km SMF. 

The comparison of traces in Fig. 5 manifests that the 
fluctuations of normalized gain of denoised traces obtained 
after applying noise reduction filters are much smaller than 
that of unfiltered noisy trace. As a result, the levels of noise 
in filtered BGSs in Fig. 4 are smaller than that of noisy BGSs 
in Fig. 3. Consequently, the SNRs of denoised BGSs are 
much improved compared to noisy experimental BGSs. To 
quantify such SNR improvement, we have also determined 
the SNR of each BGS along the SMF. For this, each noisy or 
denoised BGS along the SMF is curve-fitted with Lorentzian 
function defined by Eq. (18). The SNR of each BGS along 
the SMF is then calculated by Eq. (19). The distributions of 
such SNR along the 38.2 km SMF are shown in Fig. 6. 

 
Fig. 6. SNRs of experimental and denoised BGSs over 38.2 km 
SMF. 

The results presented in Fig. 4, Fig. 5 and Fig. 6 signify that 
the noise reduction filters helps to reduce the levels of noise 
of experimental BGSs, i.e., SNR is improved. The 
temperature distributions extracted from such denoised 
BGSs also provides lower uncertainty in temperature 
measurement (UTM). To verify this, the temperature 
distributions have then been extracted from both 
experimental and denoised BGSs as shown in Fig. 3 and Fig. 
4, respectively by applying the process of temperature 
extraction described in section 4. The results in Fig. 7 display 
temperature distributions from experimental and denoised 
BGSs for comparison purposes. 

 
Fig. 7. Temperature distributions over 38.2 km SMF with last ~0.59 
km heated at 60 ºC. Inset: Temperature distributions over last 1.2 
km. 

It is clear in Fig. 7 that the fluctuations in extracted 
temperature from desoised BGSs obtained after applying BF, 
GF, AWF, NLMF, AF and DF are much lower than that 
extracted from noisy experimental BGSs without applying 
any noise reduction filter. Such lower fluctuation in 
temperature distributions manifests that the use of noise 
reduction filters can provide lower UTM.  

The distributions of SNR along the SMF in Fig. 6 clearly 
exhibit that noise reduction filters notably improve the SNR 
of experimental noisy BGSs, reducing fluctuations in 
extracted temperature distributions as can be seen in Fig. 7. 
The working principle of noise reduction filters are based on 
smoothing operation. Such smoothing operation using a filter 
may adversely affect on the original BGSs, especially where 
there are shifts of BGSs to higher frequency due to applying 
higher temperature. As a result, the ESR of BOTDA sensors 
may deteriorate from the experimental value of 2 m. To 
verify such effect on the ESR of the sensor, the extracted 
temperature distributions after applying six different noise 
reduction filters along the segment of SMF (i.e., 37.612 km 
to 37.619 km) at which temperature distributions change 
sharply from ~25 oC to 60 ºC are shown in Fig. 8. The 
temperature distribution extracted from the experimental 
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BGSs over the same segment of SMF is also drawn in the 
same Fig. 8 for the purpose of comparison. 
 

 
Fig. 8. Transitions of temperature from room temperature (~25 ºC) 
to 60 ºC to show experimental spatial resolution (ESR). 

During the acquisition of BGSs from the BOTDA setup 
shown in Fig. 1, the pump-pulses having width of 20 ns were 
adopted that corresponds to the ESR of 2 m. The distribution 
of temperature for the noisy experimental BGSs with no 
filter in Fig. 8 also verifies such ESR. The temperature 
transitions in Fig. 8 show that AWF can nearly preserve such 
ESR but that of AF and DF fails to preserve ESR of 2 m. 
However, three noise reduction filters (i.e., BF, GF and 
NLMF) can strictly maintain 2 m ESR as can be observed in 
Fig. 8. The demonstration of spatial resolution in Fig. 8 
suggest that BF, GF and NLMF can be considered as the 
effective noise reduction filters for denoising BGSs obtained 
from BOTDA sensors if the preservation of ESR is 
considered only. 

This study quantitatively assessed the efficacy of six distinct 
noise reduction filters in terms of SNR, UTM, ESR and SPS. 
For such quantitative analysis, we have considered a total of 
1251 BGSs each spaced at a distance of 0.4 m along the last 
0.5 km SMF where the SNRs are the worst.  For the analysis 
of SNR improvement, each experimental BGS along the 
SMF are fitted by applying LSCF. The SNR of each 
experimental BGS is then quantified by Eq. (19). Then, the 
SNRs calculated for all of the 1251 BGSs along the last 0.5 
km SMF are all averaged to find the experimental SNR of 
the BGSs. The process is repeated to find the SNR of 
denoised BGSs after employing each of the six different 
noise reduction filters separately. For the quantitative 
analysis of UTM, we have extracted temperature 
distributions from the noisy BGSs without filtering operation 
and that from the filtered BGSs after utilizing each of the six 
filters. The UTM is calculated as the standard deviation of 
extracted temperatures over the last 0.5 km SMF. For 
analyzing the relative runtime, we have recorded the runtime 

elapsed for extracting temperature distributions from 3001 
BGSs along the last 1.2 km SMF. For the experimental 
BGSs, the runtime is calculated to be the time elapsed to 
extract temperature from the experimental BGSs directly 
without applying any filter. However, the runtime of 
extracting temperature from the denoised BGSs accounts the 
time elapsed for denoising noisy BGSs with filter plus the 
time elapsed for applying LSCF to extract temperature along 
the SMF. Finally, the signal processing speed (SPS) is 
computed to be the ratio of runtime elapsed for extracting 
temperature from noisy experimental BGSs to that from 
noisy or denoised BGSs. Thus, higher SPS represents faster 
temperature extraction compared to extracting temperature 
from noisy BGSs. The performances of different noise 
reduction filters along with the status of ESR preservation 
shown in Fig. 8 for noisy and denoised BGSs are listed in 
Table 1.  

Table 1. Performances of different noise reduction filters 

Filter SNR (dB) UTM (ºC) ESR (~2 m) SPS 
--- 13.77 1.198 Preserved 1.000 
BF 15.95 1.003 Preserved 1.071 
GF 17.73 0.836 Preserved 1.110 

AWF 24.14 0.495 Nearly 
Preserved 1.080 

NLMF 23.99 0.492 Preserved 1.062 

AF 24.91 0.471 Not 
preserved 1.091 

DF 26.38 0.393 Not 
preserved 1.122 

 
As indicated in Table. 1, the SNR of denoised BGSs obtained 
through each of the six different noise reduction filters 
improves significantly in contrary to that of the noisy BGSs. 
Thus, the UTM also reduces appreciably. Although the SNR 
and UTM provided by AWF, NLMF, AF and DF are much 
better as compared to that obtained for noisy BGSs without 
filter, only NLMF can preserve the ESR, which is 2 m in this 
study. On the other hand, BF and GF can preserve the ESR 
but the SNR and UTM provided by these two filters are much 
lower and higher, respectively. Among six different noise 
reduction filters, the results presented in Table. 1 manifest 
that only NLMF can provide reasonably higher SNR and 
lower UTM and can preserve ESR of 2 m. For using NLMF, 
the SNR can be improved by 10.22 dB from 13.77 dB (for 
noisy BGSs) to 23.99 dB. For such improvement of SNR, the 
UTM can be improved from 1.198 ºC to 0.492 ºC (i.e., 
58.93%). Moreover, the SPS for extracting temperature 
distribution after applying NLMF is 1.062, which is 6.2% 
higher than that without applying any filtering operation on 
experimental BGSs. Although the use of NLMF before 
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applying LSCF to extract temperature distribution takes 
additional runtime, the SNR of denoised BGSs becomes 
much higher as compared to noisy BGSs as shown in Table. 
1. As a result, the iterative procedure in LSCF takes shorter 
runtime for temperature extraction from denoised BGSs 
having improved SNR. Thus, the total runtime of using 
NLMF plus LSCF is relatively shorter as compared to that of 
using LSCF directly on the noisy experimental BGSs. The 
SNR, UTM, ESR and SPS listed in Table. 1 reveal that the 
performance of NLMF is the best among six noise reduction 
filters applied in this study. 

6. Conclusions 

In this study, the noise reduction filters and LSCF based 
distributed temperature extraction from BGSs along a 38.2 
km SMF have been demonstrated and analyzed. Six different 
noise reduction filters have been adopted in such 
demonstration and their performances have been compared 
in terms of SNR, UTM, ESR and SPS. The results show that 
AF and DF provides highest SNR and lowest UTM but 
completely fail to preserve the ESR. The AWF performs well 
in terms of SNR and UTM but it cannot preserve ESR 
perfectly. However, three other noise reduction filters (i.e., 
BF, GF and NLMF) can preserve ESR perfectly but the SNR 
(23.99 dB) and the UTM (0.492 ºC) performances of NLMF 
are the best among these three filters. The SPS for using 
NLMF and LSCF based temperature extraction is also a little 
bit faster than that for using LSCF directly without applying 
any filter. Thus, the use of NLMF effectively reduces noises 
from BGSs and preserves ESR perfectly, making BOTDA 
sensors more viable for high-accuracy applications. The 
future study will research on the use of NLMF and machine 
learning for precise, ESR-preserved and ultra-fast BOTDA 
sensors. 
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