PHOSPHORUS FERTILIZATION IN INBRED AND HYBRID RICE

M. R. Islam, P. K. Saha, S. K. Zaman and M. J. Uddin¹

Soil Science Division, BRRI, Gazipur-1701, Bangladesh

Key words: Response, Phosphorus fertilizer, Inbred, Hybrid rice

Abstract

Five phosphorus rates (0, 5, 10, 20 and 30 kg P/ha) were tested with four rice genotypes in Boro (BRRI dhan36, BRRI dhan45, EH₁ and EH₂) and T. Aman (BRRI dhan30, BRRI dhan49, EH₁ and EH₂) season. Phosphorus rates did not influence grain yield irrespective of varieties in T. Aman season while in Boro season P response was observed among the P rates. Application of P @ 10 kg/ha significantly increased the grain yield. But when P was applied @ 20 and 30 kg P/ha, the grain yield difference was not significant. The optimum and economic rate of P for T. Aman was 20 kg P/ha but in Boro rice the optimum and economic doses of P were 22 and 30 kg/ha, respectively. Hybrid entries (EH₁ and EH₂) used P more efficiently than inbred varieties. A negative P balance was observed up to 10 kg P/ha.

Introduction

Phosphorus deficiency in wetland rice has so far received limited attention. The imbalance nutrient management practices may impair productivity of the soils of Bangladesh, which contain a low level of organic matter. Yield declining has been reported in the Philippines.^(1,2) In India, in spite of balanced fertilization of N, P and K, the yield was declining.⁽³⁾ However, the omission of P and K fertilizer, the yield declined than that of balanced fertilization. The cultivation of modern rice varieties increased the removal of P, K, S and other plant nutrients and more rice soils are becoming P and K deficient than before.

Nevertheless, inappropriate P fertilizer management coupled with increasing cropping intensity with modern high yielding variety (HYV) led P deficiency in many alluvial soils of Bangladesh. Water logging increases soil P availability, but this increase in P deficient rice soil is minimum and temperature dependent. Because of high price of chemical P fertilizers and less noticeable response of it to rice, farmers usually ignore P application to rice. Acute P deficiency in soil caused a yield reduction in lowland rice by 50% or more. Optimum P fertilizer doses for modern rice varieties deserve special attention. Application of optimum amount of P fertilizer is very important to maximize rice production.

¹Corresponding author: Department of Soil, Water and Environment, University of Dhaka, Dhaka-1000, Bangladesh.

182 ISLAM et al.

Generally, rice plant can utilize 10 - 20% of the applied phosphorus (P). In rice fields P availability is higher in T. Aman season and low in Boro season may be due to seasonal temperature variation. For this reason, P deficiency is particularly severe in Boro season. Soil with low P status needs substantial P application until adequate soil P level reached for high crop yield. Considering these points in mind the experiment was initiated to determine the optimum and economic dose of P fertilizer for different BRRI MVs and hybrid entries in a rice - rice cropping pattern.

Materials and Methods

The experiment was conducted at the Bangladesh Rice Research Institute farm, Gazipur (AEZ-28, land type -High Land) on Chhiata clay loam soil (hyperthermic Vertic Endoaquept). The soil had pH 5.92, organic C 0.82%, total N 0.08%, available P 6 mg/kg⁽⁶⁾, and exchangeable K 0.26 cmol(+)/kg. Five doses of P i.e. 0, 5, 10, 20 and 30 kg/ha were imposed as treatment. The design of the experiment was split-plot with fertilizer in the main plot and variety in the sub-plot. Each plot received a flat dose of 145 kg N, 50 kg K and 10 kg S/ha as STB in Boro season and 70 kg N, 50 kg K and 10 kg S/ha in T. Aman season, respectively. BRRI dhan30, BRRI dhan49 and two hybrid entries i.e. EH₁ and EH₂ were tested in T. Aman season but in Boro season BRRI dhan36, BRRI dhan45 and the same hybrid entries were tested in the experiment during 2007 - 08. Urea N was applied in three 3 equal splits i.e. 1/3 N at final land preparation, 1/3 N at active tillering stage and rest 1/3 N at 5 - 7 days before PI stage. Phosphorus, potassium and sulfur fertilizers were applied at final land preparation in the form of TSP, MoP and gypsum. The unit plot size was 6 m × 6.5 m. Forty-day-old seedlings were transplanted using 2 - 3 seedlings/hill. Plant protection measures were taken whenever required. At maturity, the crop was harvested 5 m² area at the centre of each plot and 16 hills were collected for straw yield. The grain yield was recorded at 14% moisture content and straw yield as oven dry basis. Plant P was determined by di-acid (HNO₃ + HCLO₄) digestion method. (7) The obtained data was statistically analyzed following⁽⁸⁾ IRRISTAT version 4.1. Economic analyses were calculated following the method of. (9)

Results and Discussion

Application of P rates did not influence growth (tiller/m², panicle m²) and yield irrespective of varieties in soils having 6 mg P/kg soil during T. Aman season (Table 1) indicating P fertilizer had no effect on growth and yield of both inbred and hybrid entries. Similar results were also reported.⁽¹⁰⁾

But in the same field during Boro season P response was observed among the P rates on both growth and yield (Table 2) because the mineralization of soil P was low due low temperature (< 15° C). It may be said that phosphorus rates had no effect on tiller/m² and panicle/ m² but it differs significantly among the varieties. It may be due to varietals

differences. The highest number of tiller/m² and panicle/m² was found in hybrid entries EH₂ resulting highest grain and straw yields. Application of P @ 10 kg/ha significantly increased the grain yield. But when P was applied @ 20 and 30 kg P/ha, the grain yield difference was not statistically significant. However, the increasing trend up to 20 kg P/ha was found very remarkable. Similarly, the straw yield increased with increasing P application but it was statistically insignificant (Table 2). Similar results were observed.⁽¹⁰⁾

Table 1. Effect of P fertilizer rates on the growth and yield of T. Aman rice.

P rate	Tiller/	Panicle/	Yield (t/ha)		
(kg/ha)	m^2	m^2	Grain	Straw	
P ₀	202	189	3.78	4.42	
P ₅	232	213	4.18	5.20	
P_{10}	236	208	4.48	5.50	
P_{20}	234	218	4.45	5.15	
P ₃₀	228	207	4.41	5.12	
LSD _{0.05}	NS	NS	NS	NS	
Variety					
BRRI dhan30	213	198	4.43	5.44	
BRRI dhan49	217	201	4.31	5.68	
EH_1	211	203	4.22	5.38	
EH_2	223	194	4.50	5.17	
$LSD_{0.05}$	NS	NS	NS	NS	

Table 2. Effect of P fertilizer rates on the growth and yield of Boro rice.

P rate	Tiller/	Panicle/	Yield (t/ha)		P uptake
(kg/ha)	m^2	m^2	Grain	Straw	(kg/ha)
P ₀	289	264	1.51	2.62	3.0
P_5	306	294	4.57	4.63	10.0
P_{10}	342	327	5.48	5.42	13.0
P ₂₀	340	326	5.81	5.56	16.0
P ₃₀	318	307	6.11	5.94	16.0
LSD _{0.05}	NS	NS	0.71	0.41	2.0
Variety					
BRRI dhan36	253	238	4.23	4.48	11.0
BRRI dhan45	250	237	4.34	4.67	11.0
EH ₁	331	310	4.95	5.04	12.0
EH_2	343	330	5.24	5.14	13.0
LSD _{0.05}	33	31	0.44	0.51	NS

184 ISLAM et al.

Regression analysis in T. Aman and Boro rice show that the estimated function between P rates and grain yield (mean of 4 varieties) was quadratic in nature. The value of R² (Coefficient of determination) was significant (Figs. 1 and 2).

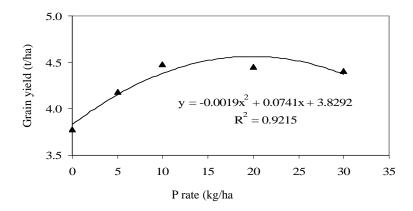


Fig. 1. Relationship between P rates and grain yield of T. Aman

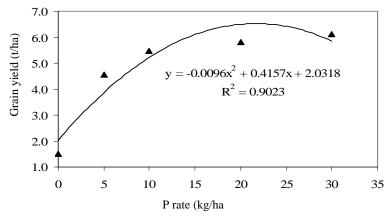


Fig. 2. Relationship between P rates and grain yield of Boro rice.

The economics doses of P during T. Aman (BRRI dhan30, BRRI dhan49, EH_1 and EH_2) and Boro (BRRI dhan36, BRRI dhan45, EH_1 and EH_2) seasons were calculated from Tables 3 and 4. Optimum doses of P for T. Aman and Boro rice were calculated from response curve (Figs. 1 and 2). The result showed that the optimum and economic dose for T. Aman was 20 kg/ha while in Boro rice the optimum and economic doses of P were 22 and 30 kg/ha, respectively.

Table 3. Economic analysis of P response during T.Aman season.

P rate (kg/ha)	Extra-production value (Tk./ha)	TVC	MBCR	Net additional income (Tk./ha)
Po	-	-	-	-
P_5	8760	1435	6.1	7325
P_{10}	14760	2730	5.4	12030
P_{20}	24360	4438	5.5	19922
P ₃₀	12740	6132	2.1	6608

Table 4. Economic analysis of P response during Boro season.

P rate (kg/ha)	Extra production value (Tk./ha)	TVC (Tk./ha)	MBCR	Net additional income (Tk./ha)
Po	-	-	-	-
P_5	59100	5159	11.5	53941
P_{10}	77060	7308	10.5	69752
P_{20}	83280	9520	8.7	73760
P30	89440	11690	7.7	77750

TSP = Tk. 35/kg, Labor wage rate = Tk. 140/day, ten additional man days/ha are required for per ton additional products including by products, rice grain = Tk. 18/kg, rice straw = Tk. 2/kg.

Table 5. Responsive and economic P rates of different rice varieties (inbred and hybrid) during T. Aman and Boro season.

T. Aman (BRRI dhan30, 49, EH ₁ and EH ₂)		Boro (BRRI dhan36, 45, EH ₁ and EH ₂)		
Optimum rate	Economic rate	Optimum rate	Economic rate	
(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	
20	20	22	30	

Phosphorus uptake was increased with increasing P rates up to 20 kg/ha (Table 2). The uptake was significant among the P rates except the rates of P₂₀ and P₃₀. However, the P uptake was more in hybrid entries (EH₁ and EH₂) than those of inbred rice indicating hybrid entries were exploited P more efficiently than inbred varieties of Boro rice (Table 2). A negative apparent P balance was observed when P was applied @ up to 10 kg P/ha. But when P was applied @ 20 kg P/ha a little amount of P existed in soil (Fig. 3). In Boro season, a significant amount of P remained in soil when P was applied @ 30 kg/ha. It may be suggested that when P was applied @ 30 kg/ha in Boro season, no need to apply P fertilizer in T. Aman season.

186 ISLAM et al.

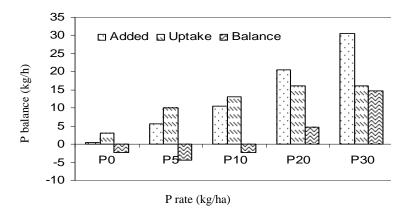


Fig. 3. Phosphorus uptake and balance after Boro.

Soils having available P around 6 mg/kg might be sufficient in T. Aman but in Boro season application of P @ 15 kg/ha appeared to be sufficient for produce optimum rice yield. The results also suggested that no need to apply P fertilizer in T. Aman season where P was applied @ 30 kg/ha in Boro season.

References

- 1. Flinn J C and S K De Datta 1984. Trends in irrigated-rice yields under intensive cropping at Philippine Research Stations. Field Crop Res. 9: 1-15.
- Cassman, K G and P L Pingali 1995. Extrapolating trends from long-term Experiments to farmers' fields: The case of irrigated rice systems in Asia. *In:* V. Burnett, R. Payne and R. Steiner (eds) Agricultural Sustainability: Economic, Environmental and Sustainable Considerations, pp. 63-84. John Wiley and Sons, London.
- Yadav R L, D S Yadav, R M Singh and A Kumar 1998. Long-term effects of inorganic fertilizer inputs on crop productivity in a rice-wheat cropping system. Nutrient Cycling in Agroecosystem. 51: 193-200.
- 4. Saleque M A, M J Abedin and N I Bhuiyan 1996. Effect of moisture and temperature regimes on available phosphorus in wetland rice soil. Comm. Soil Sci. Plant Anal. 27: 2017-2023.
- Saleque M. A, M J Abedin, G M Panaullah and N I Bhuyian 1998. Yield and phosphorus
 efficiency of some lowland rice varieties at different levels of soil available phosphorus.
 Commun. Soil Sci. Plant Anal. 29: 2905-2916.
- 6. Olsen S R and L E Sommers 1982. Phosphorus. p. 403-4727. *In:* Page, A L, Miller R H and D R Keeney (ed.). Methods on Soil Analysis, Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.

- 7. Yoshida S, A F Douglas, J H Cock and K A Gomez 1976. Laboratory Manual for Physiological Studies of Rice; IRRI: Las Banos, Laguna, Philippines. pp. 14-18.
- 8. IRRI 1998. Irristat for Windows, Version 4.1. Biometric Unit, International Rice Research Institute, Los Banos, Phillippines.
- 9. Rechard K, D L Perrin, E R Winkelmann, Moscardi and J R Anderson 1979. From Agronomic data to Farmer Recommendation. An Economics Training Manual. Information Bulletin 27. International Maize and Wheat Improvement Center, Apartado Postal 6-641, Mexico 6, D.F. Mexico. p. 25.
- Miah M A M 2006. Completed report on soil fertility and fertilizer management for rice based cropping systems 1999 - 2000 to 2004 - 2005. Soil Science Division. Bangladesh Rice Research Institute, Gazipur. 78-85.

(Manuscript received on 29 July, 2009; revised on 19 October, 2009)