Hydrocarbon Prospectivity of Surma Group in Sylhet Area in Context of Sequence Stratigraphy

Md. Sajjadul Islam Fahim, Md. Abdul Matin Mondol and Md. Anwar Hossain Bhuiyan

Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh

Manuscript received: 21 June 2022; accepted for publication: 31 August 2022

ABSTRACT: This research focuses on studying the Surma Group sediments with an integrated approach of using wireline logs and 2D seismic data from Sylhet structure and outcrop analogy from the Zaflong-Tamabil-Jaintiapur area to explain the geological evolution in the context of sequence stratigraphic framework and its implications to identify the hidden potential of hydrocarbon traps that remains overlooked. The 'SYL-07' well logs divided the encountered sedimentary strata by sequence boundaries (SB) and flooding surfaces (FS) into an upper third-order Lowstand System Tract (3_LST), followed by the third-order Highstand System Tract (3_HST), and underlying third-order Transgressive System Tract (3_TST) which correspond to the Tipam, Boka Bil, and Bhuban formations, respectively. The 3_HST has further been subdivided into fourth-order sequences. Well-to-seismic ties helped in identifying the sequence boundaries in the regional context. Three new prospects in the nose and flank area of the Sylhet structure have been detected based on seismic attributes and log responses. Seismic sweetness attribute anomalies confirmed the existence of these prospects. Rigorous fieldworks provided nineteen facies and seven sets of sedimentary facies associations and helped to establish the sedimentological stacking patterns and corresponding depositional environments. About 2250m lithocolumn constructed from field data revealed four third-order sequence stratigraphic system tracts roughly corresponding to Renji (3 LST), Bhuban (3 TST), Boka Bil (3 HST), and Tipam (3 LST) formations in the bottomup order, while the obtained facies associations aid in identifying four fourth-order sequences including fourth-order system tracts in the 3_HST. The lithologic column corresponds well with the seismic sections and validates the seismically interpreted third-order system tracts and fourth-order sequences. However, the high-frequency fourth-order system tracts can only be correlated with the log motif patterns due to sub-seismic resolution. The erosional remains of the fourth-order sequences in 3_HST, for instance, the coarsening upward shoreface and shelfal facies topped by transgressive shale, have vielded potential future drilling sites based on seismic attribute and log response analysis. The analogy of field data with well log and seismic data helped the overall evaluation of the hydrocarbon prospectivity of the area.

Keywords: Surma Group; Sequence Stratigraphy; System Tracts; Log Motif; Seismic Attribute

INTRODUCTION

The Surma Basin is a sub-basin of the Bengal Basin that covers much of Bangladesh's northeastern region (Fig. 1) and contains a 17-km-thick Eocene to Recent sedimentary column (Alam et al., 2003; Hiller and Elchi, 1984; Johnson and Alam, 1991). Except for the Eocene Sylhet Limestone, the entire succession is dominated by clastic deposits (Alam et al., 2003). These clastic deposits constitute a significant hydrocarbon source, and several gas fields are located there. Natural gas is the principal energy source in an energy-starving country like Bangladesh. To meet the demand for increased hydrocarbon production, it is necessary geological to update the current

Corresponding author: Md. Anwar Hossain Bhuiyan Email: ahb@du.ac.bd

DOI: https://doi.org/10.3329/dujees.v11i1.63714

understanding of the region using a modern concept of sequence stratigraphy. So far, no strategic approach has been taken to establish the sequence stratigraphy of Bangladesh to modernize the current stratigraphy given by Evans in 1932. Sequence stratigraphy can play an essential role in establishing the correct stratigraphy of Bangladesh on a chronostratigraphic basis. Only structural traps have been prioritized in the Surma Basin's exploration methods thus far (faultbounded anticlines). Most of the anticlinal structures have already been drilled and are nearing completion. As a result, it is time to revisit new petroleum prospects in the context of sequence stratigraphy. Sequence stratigraphy is a subdivision of geological studies where sedimentary deposits are linked and subdivided into unconformity-bound units or correlative conformities (Catuneanu, 2019: Posamentier and Allen, 1999; Vail, 1987; Van Wagoner et al., 1990). Even in regions that have already been extensively investigated, using digital data gathering techniques in addition to conventional

field methods and behind-outcrop, well data is an effective tool for studying extensive and inaccessible cliff exposures (Rahman, 2022). The current research focuses on constructing a sequence stratigraphic framework for the Surma Group bounded by underlying Renji and overlying Tipam formations in the Sylhet area using data from field works at the Zaflong-Tamabil-Jaintiapur area, well logs, and seismic sections over Sylhet structure (Fig. 1).

Using a sequence stratigraphic framework to identify reservoir geometry, extent, sealing, and trapping styles geologists help anticipate reservoir can characterization, hydrocarbon distribution, and exploration drilling planning. It will also serve as a proof of concept for re-evaluating similar mature gas field plays in the Surma Basin for additional petroleum opportunities. One upside potential of the study is no additional drilling to get the information. The current data can aid in determining new drilling options.

GEOLOGICAL SETTING

In northeastern Bangladesh, the Sylhet Trough (also known as the Surma Basin) is a sub-basin of the Bengal Basin (Curiale et al., 2002; Hiller and Elchi, 1984; Johnson and Alam, 1991; Uddin and Lundberg, 1998). The Shillong Massif, the only rising topography in the Himalayan foreland, borders the trough to the north. The Shillong Massif comprises Indian Plate Precambrian basement rocks partially covered by Cenozoic sediments (Hossain et al., 2019). The Dauki Fault, which runs east-west, is the primary boundary structure between the Sylhet Trough and the Shillong Massif (Hiller and Elchi, 1984; Johnson and Alam, 1991).

Figure 1: Location Map of the Study Area, The Red Three Lines are the Seismic Lines Designated as P1, P2, and P3, and the Yellow Box is the Zone of Interest

The structural framework, geological evolution, stratigraphy, and petroleum system of the Bengal Basin's Sylhet Trough began with the late Mesozoic Gondwana separation and continues to this day (Alam. 1989). The Dihing Formation. Dupi Tila Formation, Tipam Group (Girujan Clay and Tipam Sandstone formations), Surma Group (Boka Bil and Bhuban formations), Barail Group (Renji and Jenum formations), and Jaintia Group (Kopili Shale and Sylhet Limestone formations) (Evans, 1932; Holtrop and Keizer, 1970; Johnson and Alam, 1991; Reimann, 1993) are the stratigraphic units. Sedimentary rocks exposed along the road and stream sections in the Zaflong-Tamabil-Jainiapur area (Fig. 1) have been found adequate to identify and evaluate the facies and facies associations in the sequence stratigraphic framework. The lithologic subsections in the study area are often differentiated by erosional surfaces that aid in identifying sequence stratigraphic system tracts. The Surma Group sediments and the under- and overlying rock formations were evaluated, while particular emphasis has been given to the exposures of the Boka Bil Formation for hydrocarbon prospectivity analysis in the sequence stratigraphy framework.

DATASETS AND METHODOLOGY

Bangladesh Oil, Gas & Mineral Corporation (Petrobangla) provided the material for this investigation, including well logs, 2D seismic data, and software support. Three (3) high-quality 2D seismic lines were used in this study. 25m geophone interval, 100m source interval, 240 live channel, 30 nominal fold, 2ms sampling rate, 6-sec recording length, and 14Hz frequency were the seismic acquisition parameters of the used seismic data (Personal communication with BAPEX). A 12-fold CDP stack was used to process the data. The log responses of 'SYL-07' well were used for a wellseismic tie and log motif analysis in this research. Gamma Ray (GR), Spontaneous Potential (SP), Neutron-Density (N-D), Resistivity, and Sonic logs are among the borehole data.

Figure 2: Core and Well Log Data Showing the Relation among Lithologic Attributes, Inferred Depositional Environments, and their Expression on SP, GR, and ILD Well Log Curves. The MFS (Maximum Flooding Surface), TS (Transgressive Surface, SB (Sequence Boundary), LST (Lowstand System Tract), HST (Highstand System Tract), and TST (Transgressive System Tract) are assigned in the figure based on lithologic attributes.

Three rigorous fieldworks in the Zaflong-Tamabil-Jainiapur area were carried out, and a detailed lithologic column was constructed to understand the area's geology. Facies and facies associations were determined, erosional boundaries were identified, and stratigraphic sequence system tracts the and corresponding depositional stacking patterns were established. Following the field investigations, log motif analysis of the SYL-07 well and seismic interpretation of the 2D dataset was performed for correlation and sequence stratigraphic analysis. The application utilized for seismic interpretation was PetrelTM 2018 and Hampson-Russell 11, a PC-based Schlumberger and CGG program. All relevant tools for seismic interpretation were included in the bundle.

The results of the analyses were combined and interpreted to create a sequence stratigraphic framework.

The maximum flooding surfaces, transgressive surfaces, and sequence boundaries were identified from the log motif, and system tracts were established according to the concept of AGI Training Module, Interpreting Sequence Stratigraphy (Fig. 2). However, the theoretical background of the study was adopted from Catuneanu (2019), Catuneanu (2006), Posamentier and Vail (1988), Van Wagoner et al. (1990), Vail (1987), and Vail et al. (1977).

Then well to seismic tie was performed, combining subsurface depth measurements taken at a wellbore with seismic data collected over time. Both well data (logs) and seismic data sets were correlated to see how the sand and shale lithologies in the well data connect to the seismic section's peaks and troughs (Fig. 3). The log values in the SYL-07 well were matched with the seismic section to understand the lithology and properly delineate the petroleum properties.

Figure 3: Well to Seismic Tie of the Seismic Data to Synthetic Data Computed from Density and Sonic Logs (Blue: Synthetic Seismic from Well Logs, Red: Average of Seismic Traces). Event 3 is the Sequence Boundary between Tipam and Boka Bil, and Event 2 and Event 1 are the Erosional Surfaces Depicted from Seismic Attributes

RESULTS AND DISCUSSION

Log Motif Analysis and Seismic Interpretation

From the SYL-07 well, the gamma-ray and resistivity logs were taken to determine the lithology, and sedimentological stacking patterns and the demarcation lines were drawn to indicate the bounding surfaces (sequence boundaries, transgressive surfaces, and flooding surfaces), third-order system tracts, and fourth-order sequences. Three third-order system tracts were identified from the SYL-07 well. These are: (i) third-order Lowstand System Tract (3_LST), followed by (ii) third-order Highstand System Tract (3 HST), and (iii) third-order Transgressive System Tract (3 TST) demarcating Tipam, Boka Bil, and Bhuban formations, respectively (Fig. 4). Figure 4 shows that 3_SB differentiates the overlying third-order LST from the underlying thirdorder HST, while 3_FS(?) differentiates the thirdorder HST from the underlying third-order TST. Due to insufficient log data below the 3_FS-boundary in well SYL-07, some uncertainty remains in distinguishing the system tract. As mentioned earlier, the main focus of the study is the third order HST which represents the Boka Bil Formation. Four fourthorder sequences, 4_Seq-1 to 4_Seq-4, have been identified in this system tract. Each fourth-order sequence has been further divided into three fourthorder system tracts, including 4 LST, 4 HST, and 4 TST bounded by sequence boundaries, flooding surfaces, and transgressive surfaces labeled as 4_SB1-4, 4_FS1-4, and 4_TS1-4, respectively (Fig. 4). To establish the seismic stratigraphic framework, subseismic scale $(10^1 - 10^2 \text{m})$ higher frequency sequences are needed, typically consisting of outcrop scale sequences. So, the outcrop is the only option to demarcate systems tracts of fourth order or further (Catuneanu, 2019).

Figure 4: Log Motif Analysis and Identification of Depositional Stacking Patterns for Well-SYL-07. Gamma-ray and Deep Resistivity Logs for the Depth Ranging from ~1075m to 2025m (1st Tract) have been

Shown in the Display's 2nd, 3rd, and 4th Tracts. Third-Order System Tracts and Fourth-order Sequences, Including System Tracts, are Shown in the Display's 5th – 7th Tracts. Sequence Boundaries, Flooding, and Transgressive Surfaces with Labeling are Marked with Red, Green, and Blue Lines. Arrowheads Show Log Motifs

The log motif patterns of GR responses adopted from Rider (1990) have been used to identify the system tracts and their depositional stacking patterns (Fig. 4). Description of the system tracts, stacking pattern, and depositional environments are provided in **Table 1**.

Table 1: Description of the Fourth-order System Tracts andTheir Corresponding Sequences from the Log Motif of'SYL-07' Well. The Log Motif Patterns of Gamma-rayResponses Adopted from Rider (1990) Helped Describe theSystem Tracts, Stacking Patterns, and DepositionalEnvironments

System	4 th	System	
Tracts of	Order	Tracts of	Description
3 rd Order	Sequences	4 th Order	_
Sequence		Sequences	
3_LST			The lower segment above the depth of 1075m of well-
			shaped log motif that
			indicates an aggrading stacking pattern with braided
			fluvial deposits. The
			with low resistivity (water
			saturated) and low GR values An erosional base
			(sand/shale sharp contrast)
			with overall finning upward sand-dominated sequence
			indicates an LST.
		4_HST4	This log segment shows a
			fining upward sequence. The
			sharp erosional boundary at
			the top, the flooding surface
			at the base (high GR), and
3_HST			the shale-dominated bell-
			shaped log motif indicate a
			retrograding HST with tidal
			flat, channel-fill, or
	4_Seq4		prodeltaic shelfal deposits.
		4 TST4	In this segment, the log shows an hourglass-shaped
			log motif, meaning
			coarsening upward sequence
			at the bottom and a fining
			upward sequence at the top.
			A flooding surface at the top
			and a transgressive surface
			(shale/sand sharp contrast) at
			the bottom indicates tidal flat
			and transgressive shelf
		4 1 0 7 4	deposits.
		4_LS14	The cylindrical-shaped log

		motif indicates a prograding
		stacking pattern with an
		overall fining upward
		sequence (LST). The
		lithology comprises mainly
		sand-dominated prograding
		delta front, mouth-bar, and
		distributary tidal channel fill
		deposits bounded by a
		transgressive surface at the
		top and an erosional surface
		at the base (sand/shale sharp
		contrast).
	4_HST3	Here the log pattern is a
		sawteeth-shaped coarsening
		upward sequence with an
		aggrading stacking pattern.
		The sharp erosional
		boundary at the top,
		flooding surface at the
		bottom, and snale-
1 52-2		abannal fill or and liat,
4_Seq3		channel-III, or prodeltaic
		shehal deposits indicate
	4 7672	The evenue la pottern is a
	4_1315	fining unward sequence
		(hall shared) A flooding
		(bell-shaped). A housing
		retrograding depositional
		system at the top and a
		transgressive surface at the
		base delineating TST with
		lower sand dominated tidal
		flat to upper shale-
		dominated transgressive
		shelf denosits
	4 LST3	This aggrading sequence
	4_L515	shows a cylindrical or
		blocky-shaped log motif
		with an overall coarsening
		upward trend indicating
		mainly shoreface and delta
		front deposits. An erosional
		boundary at the base with a
		general fining upward
		sequence defines it as an
		LST.
	4_HST2	The sequence coarsens
		upward (funnel-shaped)
		with an erosional sharp top
		and flooding surface at the
		base indicating HST with
		shoreface or delta front
4_Seq2		deposits.
	4_TST2	The overall log pattern is an
		hourglass-shaped sequence
		indicating basal prograding
		and upper retrograding
		stacking patterns. The
		flooding surface at the top
		and transgressive surface at
		the bottom shows a TST
		with regressive to

			transgressive delta plain deposits
		4 1 6 7 2	The log pattern is
		4_L512	rife log pattern is
			indicating
			aggrading/prograding
			stacking pattern An
			erosional base at the bottom
			with the domination of
			shoreface sand denosits
			indicates an LST
-		4 UST1	This fining upward
		4_11511	(hall shaped)
			shows retro and ding, staaling
			shows fettograding stacking
			the top and flooding surface
			at the bottom isolate this
			at the bottom isolate this
	4 Sec1		hollow maring demosits
	4_Seq1	4 TST1	This stacking pattern shows
		4_1511	fins stacking pattern shows
			a fumer-snaped log mouth
			(coarsening upward
			sequence). The flooding
			surface at the top and
			hatten define this section as
			Torr in the section as
			a ISI with delta plain
			deposits.
		4_LST1	The overall log pattern is
			bell-shaped (fining upward
			sequence) with an
			aggrading/prograding
			stacking pattern. The sharp
			erosional surface at the base
			and transgressive surface at
			the top define this section as
			an LST with shoretace sand
			to prograding delta front
			deposits (sand/shale sharp
			contrast).

The sequence stratigraphic system tracts and the bounding surfaces obtained from log motif analyses of well SYL-07 have been interpreted in the regional content based on the 2D seismic data. The seismic data were utilized for reconstructing the stratigraphy of the study area. Besides, the outcrop analogy validates the seismic interpretation up to third-order system tracts and fourth-order sequences. However, to correlate the fourth-order system tracts, the log motif patterns obtained from SYL-07 have been used (Fig. 4).

For correlation purposes, Line_P1 was interpreted as this is the closest line to 'SYL-07' well. The sequence boundaries were drawn in the seismic section following the attributes (erosional surfaces). But, Line_P1 is not proximal to the outcrops of the Zaflong-Tamabil-Jaintiapur area. Line_P2 intersects both Line_P1 and Line_P3, and Line_P3 is closest to the outcrops. Therefore, to reach the locations where the field works were conducted, Line_P2 and Line_P3 were interpreted. The seismically interpreted sequence boundaries within 3_HST are extrapolated to the litholog for correlation (Fig. 5).

Figure 5: The Dotted Lines are Erosional Surfaces Drawn based on Seismic Attributes, and the Surfaces are Extrapolated to the Outcrop. The Blue Lines Connect the Erosive Boundaries in the Seismic Section to the Outcrop. Lithology and Sedimentary Structures are Provided in the Middle Bottom of the Figure

Figure 6: Hydrocarbon Prospects from the Seismic Attribute of Line P3 based on Sweetness Attribute Anomaly. Five Erosional Surfaces are Shown as Dotted Lines, and the Yellow Lines Show Channel Incisions. The Red Zones are Prospect Zones as They Indicate High Hydrocarbon Saturation Considering Structure and Depth

After log motif and seismic interpretation, the seismic attributes were analyzed. Three new prospects in the nose and flank area of the Sylhet structure have been identified based on seismic attributes and log responses. Seismic sweetness attribute anomalies confirmed the existence of these prospects (Fig. 6). Sweetness attribute anomalies may be due to hydrocarbon saturation. These high attribute zones indicate hydrocarbon richness. The thing is that these areas are pretty separated from the present drilling zones. Thus, these zones have the potential to store hydrocarbon and fulfill all the criteria for being a prospective hydrocarbon system and are potential candidates for future drilling.

Litho-facies and Facies Associations

The outcrop investigation provided nineteen facies and seven sets of facies associations in the study area (Fig. 7-8). Detailed sedimentological logging aided in facies interpretation. Seven facies associations were set based on their depositional characteristics, a detailed lithocolumn was constructed, and the sequence stratigraphic system tracts were envisaged (Fig. 9-10).

Table 2: Description of the Lithofacies (Color, Compaction, Sorting, Grain Size, Structures) and Their Depositional Environments. The Corresponding Figures of the Litho-Facies are Mentioned in the Table

Lithofacies	Description of the	Depositional
	lithofacies	Environment
Channel lag	These are primarily matrix-	These occur in the
(conglomerates)	supported rocks composed	fluvial or tidal
	of pebbles, sandstone	channels, incised
	cobbles, claystone, and	valleys, and
	shale clasts. Usually	shallow marine
	observed as channel lags in	canyons.
	Renji, Boka Bil, and Tipam	
	Sandstone formations.	
Massive to thick-	Very thick homogeneous	Fluvial channel and
bedded sandstone	stratification. Fine to	delta front
	medium-grained sandstone	shoreface
	varies in color and has no	environment.
	particular structure (Fig. 7d	
	and 8h). Tipam and upper	
	Boka Bil units contain	
	massive bedded sandstone	
	of 5-7m thickness.	
Graded bedded	In graded beds, coarse sand	Graded sandstones
sandstone	dominates the bottom and	are deposited in
	grades into fine sediments	fluvial, shoreface,
	as it progresses-grey to	and tidal-influenced
	greyish-brown in color, with	channel-fill
	no internal structures.	environments.
Hummocky	Strong storm surges like	These facies occur
cross-bedded	hurricanes may form the	in shallow marine
sandstone	hummocky cross-bedded	shoreface, shelf,
	sandstone. It comprises a	storm-surged tidal
	series of crescent-shaped	flat, and fluvial
	bodies with sideward	environments.
	downward curvature,	
	crosscutting each other	
	(observed in the UGS of the	
	upper Boka Bil unit).	
Trough cross-	These have lower surfaces	Tidal flat (broad
bedded sandstone	that are curved, truncate the	and shallow
	underlying beds, and are	subtidal
	medium to coarse-grained	environment),

	and moderately sorted (Fig.	fluvial channel,
	8d). Due to high energy	overbank, crevasse
	conditions, the troughs are	splay, intertidal, to
	formed by erosion.	shoreface
		environments.
Planar cross-	Cross-bedded sandstones	Shoreface and
bedded sandstone	with essentially planar	fluvial braided
	bounding surfaces and a	channel
	considerable horizontal	environments.
	extent compared to the set	
	thickness-yellowish-	
	brown, medium to fine-	
	grained sandstone (Tipam	
	Sandstone, the lower part of	
	Bhuban and upper part of	
	Boka Bil units, (Fig. 8d).	
Parallel bedded	Laminae with parallel but	These are formed in
sandstone	nonplanar boundaries, fine	the fluvial channel,
	to medium grained	shoreface, and
	sandstones, and internally	intertidal
	shows parallel laminated	environments.
	sandstones (Fig. 8d).	
Ripple laminated	Facies with exposures of	Occur in the fluvial
sandstone	ripple laminations, fine to	channel, overbank,
	medium-grained, well	crevasse splay,
	sorted, grey to light	intertidal, to
	brownish grey (Fig. 8f).	shoreface
		environments.
Silty sandstone	Silt-dominated sandstones,	Intertidal,
	grey to bluish-grey color,	supratidal, crevasse
	flaser, wavy bedding, and	spays, fluvial, and
	micro cross-stratifications	tidal overbank
	are seen.	environments.
Calcareous	These facies represent light	Common in Surma
sandstone	grey, fine-grained, hard,	Group sediments of
	compact sand or silt with no	subaqueous
	internal structures (Fig. 7b).	depositional
	These are diagenetic	environment.
	features and destroy	
	porosity significantly, and	
	may act as seals if they	
	occur regionally.	
Flaser bedded	These are composed of	Tidal flat to
sandstone	alternating fine to medium-	shoreface deposits
	grained rippled sand lavers	formed in
	and discontinuous light grey	supratidal to
	mud. Contain high sand	intertidal
	content (Fig. 8g).	environments.
Wavy bedded	Identified by alternating	Tidal flat deposits
sandstone	straight to slightly wavy	formed in
	alternation of bluish grey	supratidal to
	shale and grey colored silty	intertidal
	sandstone (Fig. 8g).	environments.
Lenticular	Light to dark grev shalv	Tidal flat deposits
bedded sandstone	facies contains thin flat sand	formed in
	lenses (connected or	supratidal to
	isolated, Fig. 8g).	intertidal
		environments.
Facies with soft	Soft sedimentary	Fluvial channel.
sedimentary	deformations containing	delta plain. and
deformations	ripple laminated sandstone	intertidal
	with deformed lenses.	environments.
	loadcast, flame, and	

	convolute structures (Fig.	
	8e) are observed in lower	
	Bhuban and upper Boka Bil	
	units.	
Silty shale	Silt-dominated shale, bluish	These facies may
	grey, moderately sorted,	deposit in the
	moderately compact.	floodplain, crevasse
		splay, delta plain,
		tidal flat, and
		prodeltaic
		environments.
Dark-fissile shale	Dark grey thinly laminated	These sediments
	fissile shale (Fig. 8b) and	may deposit in the
	observed at the middle and	prodeltaic, shallow
	upper Bhuban and upper	to open marine
	Boka Bil (UMS) units.	environments.
Mudstone or	Bluish grey, very fined-	The mud or clay
claystone	grained massive mudstone	may deposit in
	predominantly composed of	prodeltaic, shallow
	unidentified clays with	marine, flood
	occasional silty streaks. It	basins, tidal mud
	lacks internal sedimentary	flats, and lacustrine
	structures except for minor	environments.
	lamination.	
Nodular Shale	Shale has loosely packed	The mud or clay
	nodules, predominantly	may deposit in
	composed of dark grey clays	prodeltaic, shallow
	with fine-grained silty	marine, flood
	streaks and occasional	basins, tidal mud
	siltstone. The nodules might	flats, and lacustrine
	be of a tectonic or	environments.
	diagenetic origin and	
	observed in the anticline's	
	highly disturbed inflection	
	zone (Bhuban Formation).	
Laterite	Dark brown indurated, and	Laterites are
	compact rocks, rich in	formed in tropical
	ferruginous cement, contain	and subtropical
	shaly pebbles and vesicular	warm and humid
	structures (Fig. 7c and 8c).	fluvial to littoral
	These are formed by post-	environments.
	depositional diagenesis and	
	are observed in the contact	
	of Renji and Bhuban	
	formations and Tipam	
	Sandstone.	

FACIES ASSOCIATIONS

Fluvial Channel Facies Association

This facies association consists of channel lag deposits (conglomerate), massive sandstone, cross-bedded sandstone, and parallel- and ripple-laminated sandstone. The Tipam Sandstone Formation and the upper part of the Boka Bil Formation have good exposure for this association. While braided facies characterize the channel deposits of the Tipam Sandstone Formation, the upper part of the Boka Bil Formation is preferably characterized by tidal channel bar facies with fluvial influence. Channel facies are 102

deposited under high-energy conditions (Fig. 7a); therefore, the sedimentary structures, clay galls, mud balls, and occasional quartz pebbles in the Tipam Sandstone represent the fluvial depositional environment. This facies association, composed of a cylindrical lower part within an overall fining-upward sequence with basal erosional surface and predominantly sandstone with minor shale, can be characterized as LST (Fig. 10) to the third-order sequence.

Open Marine Facies Association

The thick dark-grey shale sequence of 80m known as Upper Marine Shale (UMS) (Imam, 2013; Parvin, 2019) is seen above the UGS of the upper Boka Bil unit (Fig. 10). This shale unit is the regional seal capping the hydrocarbons trapped in the UGS. These shale-dominated facies consists of claystone with silty streaks and occasional calcareous bands. Above the UMS, a small unit of heterolithic beds was seen below the massive Tipam Sandstone unit. The litholog characteristics show fourth-order TST, and this transgressive facies association offers an overall upward fining of grain size.

Delta Front Shoreface Facies Association

Regressive facies association includes fluvialinfluenced, tide-dominated lithofacies within upward coarsening units. A massive to thick-bedded sandstone unit of about 50m (Upper Gas Sand, UGS) is underlain by heterolithic beds and shale with fragile sand lenses or silty streaks (Fig. 7d and 8h). The sandstone unit consists of hummocky crossstratification, trough cross-bedding, and parallel laminated sandstone (Fig. 8d-f), indicating high energy conditions. The lithofacies are mainly shoreface deposits composed of an overall cylindrical sequence with basal erosional surfaces, and predominantly sandstone with minor shale can be characterized as LST (Fig. 10) and belongs to the fourth-order sequence.

Delta Plain Facies Association

The facies association includes fluvial-influenced lithofacies within overall coarsening upward units of tide-dominated deposits; individual cycles represent a fining upward sequence. This facies association consists of thickly-laminated to bedded sandstones followed by heterolithic beds and shale with fragile sand lenses or silty streaks (Fig. 8h). The lithofacies are mainly delta plain deposits with prograding muddy sediments of flood basins, crevasse-splay, point bar deposits of tidal rivers, and coastal embayments between tide-influenced bay-head delta deposits between the distributary channels. Despite lateral changes, this facies association starts with a basal shale lithology and is gradually enriched by a succession of sandy lithologies ending in an erosional surface. This association can be identified as the HST (Fig. 10), which belongs to the fourth-order sequence.

Tidal Flat Facies Association

This kind of facies association primarily comprises heterolithic beds including flaser, wavy, and lenticular bedding deposits with occasional thickly laminated to bedded sandstone. Bhuban and Boka Bil formations have good exposure for this facies association in Nava Gang, Tetulghat, Afifanagar Tea-garden, and Shari River sections. Tidal flat deposits are characterized by fluctuating energy conditions in the intertidal and supratidal deltaic depositional environment (Fig. 8f, g). This facies association, composed of an overall coarsening-upward sequence with basal erosional predominantly sandstone surfaces and with subordinate shale, can be characterized as LST (Fig. 9).

Pro-deltaic Facies Association

A pro-deltaic environment is where fissile shale, shale with silt streaks, and nodular shale with current ripple siltstone form. Shale is deposited from suspension, and the subordinate claystone, heterolithic bedding, and occasional calcareous bands are associated with this shaly unit when the depositional environment is undisturbed. Pro-delta shales can be an excellent source rock for hydrocarbon generation when organic materials are present, and because of the impermeable shale layers, this unit can be a potential seal to cap the reservoirs. This pro-deltaic facies association is classified as a TST according to the interpretation of the litholog (Fig. 9).

Tidal-influenced Channel Fill Facies Association

This facies association consists of channel lag deposits, massive to thick-bedded sandstone (pink), trough cross-bedded sandstone, parallel- and ripplelaminated sandstone, and occasional heterolithic beds. The Renji Sandstone Formation has good exposure for this facies association in Tamabil and Naya Gang sections. Channel deposits are characterized by multistoried and laterally coalesced channels indicating high energy conditions in the tidally influenced fluviodeltaic depositional environment (Fig. 8a). This facies association, composed of an overall fining-upward sequence with basal erosional surfaces and predominantly sandstone with subordinate shale, can be characterized as LST (Fig. 9).

Figure 7: Photographs Show (a) The Contract between Tipam and Boka Bil; (b) Heterolithic Beds in Surma Group with Occasional Calcareous Bands; (c) Laterite Layer Marking Contact between Surma and Barail Formations, (d) Upper Gas Sand (UGS)

Figure 8: Photographs Show (a) Channel Sand Facies in Tamabil Section, (b) Dark-colored Shale in Rangapani Section, (c) Laterite Facies in Naya Gang Section, (d) Trough Cross-bedding and Parallel Bedded Sandstone Facies, (e) Flame Structures, (f) Ripple-laminated Sandstone Facies, (g) Heterolithic Bedding, and (h) Massive Bedded Sandstone (UGS)

The lithofacies in the sedimentary succession of the Surma Group and the under-and overlying Renji and Tipam formations in the Zaflong-Tamabil-Jaintiapur area is demonstrated in Figures 9 and 10. About 2250m of sedimentary lithocolumn is constructed from the information collected from the field. At the bottom, an erosional contact through channel-lag, stacked channels, and channel fill deposits is noted, indicating the base of the Renji Formation. However, at the top, a laterite bed (~1m thick) appears as the end of the Renji sandstones, where the Bhuban Formation begins (Fig.7c, 8a, and 9). The laterite facies were seen in between Bhuban and Renji formations. The presence of laterite indicates sharp changes in depositional setting, sediment supply, and climatic conditions. Laterite forms due to intense and extended weathering of the host rocks, often when there are high temperatures and significant rainfall with alternative wet and dry climates. Washout holes and larger pore spaces are seen here due to weathering and erosion of soft lithologies (Fig. 7c and 8c). About 1500m of a sedimentary succession of the Surma Group over the Renji Formation was obtained from fieldwork (Fig. 10). A regional 80m thick dark-grey shale (UMS) has been observed near Surma Group's top. UMS is underlain by UGS of Boka Bil Formation and overlain by a small sequence of heterolithic beds, which is terminated by a regional unconformity marked by the conglomerate bed and a massive sandstone of Tipam Group.

The lithology and the sedimentary structures are shown in the lithocolumns. Taking the 'SYL-07' log as a reference (Fig. 4), the transgressive surface, maximum flooding surface, sequence boundaries, and system tracts are marked in the composite log (Fig. 9, 10). A third-order sequence is bounded by two sequence boundaries (3_SB1 and 3_SB2). In the lithocolumn, the third order system tracts are denoted as 3 LST (Renji Formation), 3 TST (Bhuban Formation), 3 HST (Boka Bil Formation), and 3 LST (Tipam Formation), respectively, from bottom to top. The top 3_LST (Tipam Formation) is separated from the underlying sequence by a sequence boundary (3_SB2). The fourth-order sequences are shown as 4 SB3-4, fourth-order flooding surfaces as 4 FS3-4, and fourth-order transgressive surfaces as 4 TS3-4 in the Boka Bil Formation. Contact between Bhuban and Boka Bil formations is in the missing section from 1300 to 1400m.

Figure 9: Schematic Composite Litholog of Surma Group in Sylhet Area (1). The Log is Subdivided into Five Sections, and a detailed log is drawn for each Section. The Zigzag Lines Correspond to the Continuation of the Rock Sections, which are Similar in Their Lithologic Characteristics. The Top of the Log is a Missing Section as this Part was not Encountered in the Field. The Third-order Regional Sequence Boundary at the Bottom is marked as 3_SB1, and the Transgressive Surface is Demarcated as 3_TS. Renji and Bhuban Formations are denoted as 3_LST and 3_TST, Respectively. Lithology and Sedimentary Structures are Provided with Symbols in the top Right Part of the Figure

Figure 10: Schematic Composite Litholog of Surma Group in Sylhet Area (2). The Log is Subdivided into Six Sections, and a Detailed Log is Drawn for each Section. The Zigzag Lines Correspond to the Continuation of the Rock Sections, which are Similar in Their Lithologic Characteristics. The Missing Section is the Bottom of the Log and the Section from 1550 to 2000m. Arrowheads Show the Sequence Boundaries and the Surfaces (Flooding and Transgressive). The Boka Bil and Tipam Formations are Denoted by 3_HST and 3_LST, Respectively. The Contact between Bhuban and Boka Bil Formations (3_FS?) is in the Missing Section between 1300 and 1400m. But as the Boundary was not Encountered in the Field, a Question Mark (?) was Provided. Fourth order Sequences (4_Seq3) and System Tracts (LST, TST, HST). Lithology and Sedimentary Structures are Provided with Symbols in the Top Right Part of the Figure

This is a flooding surface denoted by 3_FS? (Fig. 10). The exact location of the contact has not been determined from the field investigations; therefore, some uncertainty remains in the delineation of this contact. Massive to thick-bedded sandstones of the Surma Group often show graded-bedding, low-angle parallelripple-laminated cross-bedding. and structures, and medium- to fine-grained, high-porosity textures (15-25%). All these characteristics in UGS and other sandstones in the middle and lower part of the Surma Group indicate reservoirs with the highest potential. These sandstones occur as high-frequency LST or HST, where the erosional remnants are overlain by TST (fourth order in this case). Most sandstones have excellent textural and compositional homogeneity and lateral continuity, which allows hydrocarbons generated at depth and transported through fractures, joints, and faults to accumulate in the reservoir. The overlying thick shale layers (highfrequency HST or TST; UMS, for instance) often act as the regional seal.

Despite the widely used stratigraphic scheme proposed by Evans (1932), many researchers have challenged the acceptance of the so-called practiced stratigraphy of Bangladesh (Holtrop and Keiser, 1970; Gupta, 1977; Lietz and Kabir, 1982; Johnson and Alam, 1991; Reimann, 1993; Gani and Alam, 2003; Davies, 2003; Imam, 2013). Instead of traditional stratigraphic classification, chronostratigraphy of the Bengal Basin can be established by resolving lithostratigraphic ambiguities in the sequence stratigraphic framework (Lietz and Kabir, 1982; Hubbard et al., 1988; Davies, 2003; Gani and Alam, 2003; Najman et al., 2012). The proposed system tracts bounded by confining surfaces are equivalent to the Renji, Bhuban, Boka Bil, and Tipam formations. This proposition is comparable to the seismic megasequence framework proposed by Hubbard (1988), which followed the stratigraphic framework given by Van Wagoner (1988), sequences of Galloway (1989), parasequences of Van Wagoner (1990), etc.

Hence, the proposed third- and fourth-order sequencebased framework is demonstrated by utilizing petrophysical, seismic, and field investigation data and the published work and data of Lietz and Kabir (1982), Salt et al. (1986), Lindsay et al. (1991), Davies (2003), Gani and Alam (2003), and Najman et al. (2012). Detailed studies in a basin-scale framework might be more beneficial in establishing the stratigraphy of the Bengal Basin. However, analyzing petroleum systems in a sequence stratigraphic framework is helpful from an exploration and development perspective. Because in this case, it is easy to analyze and evaluate the petroleum system by analyzing the lateral and vertical facies variations.

CONCLUSIONS

The research was a commendable effort to establish the sequence stratigraphic framework that can aid in evaluating the hydrocarbon prospectivity of the Surma Group sediments in the Sylhet area. In this study, the log responses of the 'SYL-07' well were employed for log motif analysis and a well-seismic tie. Three (3) high-quality 2D seismic lines were used to correlate the log motif with the outcrops. From the 'SYL-07' well, an upper third-order Lowstand System Tract, followed by the third-order Highstand System Tract, and underlying third-order Transgressive System Tract were detected, which correspond to Tipam, Boka Bil, and Bhuban formations, respectively. The fourth-order sequences, including fourth-order system tracts, were identified (bounded by sequence boundaries, flooding, and transgressive surfaces) in the regional context by analyzing seismic attributes, which were done after performing well to seismic tie. The composite lithocolumn of about 2250m corresponds to Renji (3_LST), Bhuban (3_TST), Boka Bil (3 HST), and Tipam (3 LST) formations from bottom to top. From the study following conclusions can be drawn.

- This is an integrated approach of field data, seismic, and well-log data interpretation, which help identify sequence stratigraphic system tracts with their corresponding depositional environments. This is an excellent research method to establish the sequence stratigraphic framework.
- A total of nineteen (19) facies and seven (7) facies associations aid in determining the depositional environments, stacking patterns, and third-order system tracts.

- The fourth-order sequences, including system tracts in the 3_HST, provide evidence of petroleum system elements in the study area.
- Three new prospects in the nose and flank area of the Sylhet structure have been identified based on seismic attributes and log responses. Seismic sweetness attribute anomalies confirmed the existence of these prospects.
- The erosional remains of the fourth-order system tracts in the 3_HST (Boka Bil Formation) covered by intermittent transgressive shale, UMS, for instance, have provided a proper combination of petroleum system elements for the Surma Basin.
- The upper 3_LST (Tipam Formation) is not considered a petroleum reservoir as any seal has not overlain this.

This research is a noble approach to evaluating the hydrocarbon system in mature fields or frontier settings. This study has shown that a comprehensive stratigraphic analysis of the Sylhet area based on a seismic sequence stratigraphic framework and an outcrop study can help predict and discover commercial hydrocarbon accumulations.

RECOMMENDATION

- High-resolution close-grid 2D seismic data can improve understanding of the seismic attribute and aid in evaluating hydrocarbon prospectivity.
- ii) 3D seismic data can be acquired to understand stratigraphic prospects' extent and geometry better and reduce hydrocarbon exploration and development uncertainties.
- iii) The sequence stratigraphic framework obtained from this study would be significantly improved by introducing Biostratigraphic analysis on appropriate core and outcrop sample

ACKNOWLEDGMENT

We owe a debt of gratitude to 'The Centennial Research Grant (CRG),' the University of Dhaka, for financial support. Without financial help, this research would not be possible. The authors want to acknowledge Petrobangla (Bangladesh Oil, Gas & Mineral Corporation) for providing datasets. We immensely thank the Department of Geology, University of Dhaka, for permitting us to utilize the laboratories and computers. Special thanks to Dr. Md. Mostafizur Rahman, Associate Professor, Department of Geology, University of Dhaka, for critical remarks in constructing the lithocolumn of the Surma Group deposits. Thanks to Shakhawat Hossain, Assistant Professor, Department of Geology, University of Dhaka, for important discussions during the seismic interpretation in Petrel[™] software. Last but not least, we appreciate the excellent work of Mohammad Solaiman, MSc Student, Department of Geology, University of Dhaka, for participating in fieldwork and in preparing lithocolumn.

REFERENCES

- Alam, M., 1972. Tectonic classification of Bengal Basin. Geol. Soc. Am. Bull. 83, 519–522. https://doi.org/10.1130/0016-7606(1972)83[519:TCOBB]2.0.CO;2
- Alam, M., 1989. Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 125–139. https://doi.org/10.1016/0031-0182(89)90159-4
- Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R., Gani, M. R., 2003. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sediment. Geol. 155(3-4), 179-208. https://doi.org/10.1016/S0037-0738(02)00180-X
- Alam, M. M., 1993. Sedimentology and depositional environment of subsurface Neogene sediments in the Sylhet Trough, Bengal Basin: case study of the Fenchuganj and Beanibazar structures, northeastern Bangladesh. Unpub. Report, Bangladesh Pet. Inst., 1–82.
- Alam, M. M., 1995. Sedimentology and depositional environments of the Bengal Basin subsurface Neogene succession based on detailed facies and electrofacies analysis: A case study of the Kailashtila, Rashidpur and Bakhrabad structures in northeastern Bangladesh. NORAD Proj. BGD-023, Bangladesh Pet. Institute, Dhaka.
- BAPEX and Core Lab, 1996. The Petroleum Geology and Hydrocarbon Potential of Bangladesh, 139.
- Bhuiyan, M. A. H., 1995. Petrographic characterization and interpretation of Neogene Surma Group sandstone of Sitakund structure, Chittagong, Bangladesh. Unpubl. M. Sc. thesis, Geology Dept., Dhaka University, Bangladesh, 152.

- Catuneanu, O., 2006. Principles of sequence stratigraphy. Elsevier, Amsterdam, 375. https://www.academia.edu/15302497/2006_Princi ples_of_Sequence_Stratigraphy_Catuneanu
- Catuneanu, O., 2019. Scale in sequence stratigraphy. Marine and Petroleum Geology 106, 128-159. https://doi.org/10.1016/j.marpetgeo.2019.04.026
- Curiale, J. A., Covington, G. H., Shamsuddin, A. H. M., Morelos, J. A., Shamsuddin, A. K. M., 2002. Origin of petroleum in Bangladesh. AAPG bulletin 86(4), 625-652. https://doi.org/10.1306/61EEDB66-173E-11D7-8645000102C1865D
- Curray, J. R., Moore, D. G., 1974. Sedimentary and tectonic processes in the Bengal deep-sea fan and geosyncline. In The geology of continental margins. Springer, Berlin, Heidelberg, 617-627.
- Davies, C., Best, J., Collier, R., 2003. Sedimentology of the Bengal shelf, Bangladesh: comparison of late Miocene sediments, Sitakund anticline, with the modern, tidally dominated shelf. Sedimentary Geology 155(3-4), 271-300. https://doi.org/10.1016/S0037-0738(02)00183-5
- Emery, D., Myers, K., 1996. Sequence Stratigraphy, Blackwells, Science, Oxford, 297. https://doi.org/10.1016/S0037-0738(02)00183-5
- Evans, P., 1932. Tertiary succession in Assam. Trans. Min. Geol. Inst. India 27(3), 155-260.
- Galloway, W. E., 1989. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG bulletin, 73(2), 125-142. https://doi.org/10.1016/S0037-0738(02)00183-5
- Gani, M. R., Alam, M. M., 1999. Trench-slope controlled deep-sea clastics in the exposed lower Surma Group in the southeastern fold belt of the Bengal Basin, Bangladesh. Sediment. Geol. 127, 221–236. https://doi.org/10.1016/S0037-0738(02)00183-5
- Gani, M. R., Alam, M. M., 2003. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: A high-resolution sequence stratigraphic approach. Sediment. Geol. 155(3-4), 227-270. https://doi.org/10.1016/S0037-0738(02)00182-3

- Gupta, D. A. B., 1977. Geology of Assam-Arakan region, Quar. Jour. Geol. Min. Met. Soc. of India, 49(1), 1-54.
- Hiller, K., Elchi, M., 1984. Structural development and hydrocarbon entrapment in the Surma basin/Bangladesh (northwest Indo Burman fold belt). Proc. Offshore South East Asia (SEAPEX) Conf., 5, 6–63. https://doi.org/10.2118/12398-MS
- Holtrop, J. F., Keizer, J., 1970. Some aspects of the stratigraphy and correlation of the Surma Basin wells, East Pakistan. ECAFE Miner. Resour. Dev. Ser. 36, 143–154.
- Hossain, H. Z., Hossain, Q. H., 2019. Assessment of hydrocarbon generation potential of Permian Gondwana Coals, Bangladesh. International Journal of Economic and Environmental Geology, 15-20.
- Hoque, M., 1982. Tectonic set up of Bangladesh and its relation to hydro-carbon accumulation phase-1. Cent. Policy Research Univ. F. Staff Int. USA.
- Hubbard, R. J., 1988. Age and significance of sequence boundaries on Jurassic and Early Cretaceous rifted continental margins. AAPG Bulletin 72(1), 49-72. https://doi.org/10.1306/703C81C8-1707-11D7-8645000102C1865D
- Hydrocarbon Unit (HCU), Petrobangla report, 2010. Bangladesh Petroleum Potential and Resource Assessment, 331.
- Imam, B., 2013. Energy Resources of Bangladesh. Second Edition, 321.
- Johnson, S. Y., Nur Alam, A. M., 1991. Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geological Society of America Bulletin 103(11), 1513-1527. https://doi.org/10.1130/0016-7606(1991)103<1513:SATOTS>2.3.CO;2
- Kendall, C. S. C., Tucker, M. E., 2010. Sequence stratigraphy: methodology and nomenclature. Report for the International Commission on Stratigraphy. Newsletters on Stratigraphy Special 44(3), 173-245.
- Khan, F.H., 1991. Geology of Bangladesh. Wiley Eastern, 207.
- Khan, M. M., 1978. Geology of the eastern and the northeastern part of Sadar subdivision, Sylhet District, Bangladesh. Geological Survey of

Bangladesh, Government of the People's Republic of Bangladesh.

- Khan, M. M., Ismail, M., Ahmad, M., 1988. Geology and hydrocarbon prospects of the Surma Basin, Bangladesh. Seventh Offshore Southeast Asian Conf. Singapore, 364–378.
- Khanam, F., Rahman, M., Alam, M. M., Abdullah, R., 2021. Sedimentology and basin-fill history of the Cenozoic succession of the Sylhet Trough, Bengal Basin, Bangladesh. International Journal of Earth Sciences 110(1), 193-212. https://doi.org/10.1007/s00531-020-01946-1
- Lietz, J., Kabir, J., 1982, January. Prospects and Constrainst of Oil Exploration in Bangladesh. In Offshore South East Asia Show. Society of Petroleum Engineers 6. https://doi.org/10.2118/10444-MS
- Lindsay, J. F., Holliday, D. W., Hulbert, A. G., 1991. Sequence stratigraphy and the evolution of the Ganges-Brahmaputra Delta complex (1). AAPG Bulletin 75(7), 1233-1254.
- Magoon, L. B., Dow, W. G., 1994. The petroleum system: chapter 1: Part I. Introduction, 24.
- Moore, L. V., Lenengerger, T. L., 1994. The hydrocarbon potential of the West Bengal Basin of eastern India and western Bangladesh. In Geology in South Asia-I 28(2).
- Najman, Y., Allen, R., Willett, E. A. F., Carter, A., Barfod, D., Garzanti, E., Oliver, G., 2012. The record of Himalayan erosion preserved in the sedimentary rocks of the HatiaTrough of the Bengal Basin and the Chittagong Hill Tracts, Bangladesh. Basin Research 24(5), 499-519. https://doi.org/10.1111/j.1365-2117.2011.00540.x
- Najman, Y., Bickle, M., BouDagher-Fadel, M., Carter, A., Garzanti, E., Paul, M., Akhter, S. H., 2008. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth and Planetary Science Letters 273(1-2), 1-14. https://doi.org/10.1016/j.epsl.2008.04.028
- North, F.K., 1985. Petroleum geology: Boston. Allen amp Unwin, 607.
- Norwegian Petroleum Directorate (NPD), Hydrocarbon Unit, 2010. Bangladesh Petroleum Potential and Resource. Gustavson Associates, 331.

- Nton, M. E., Ogungbemi, T. S., 2011. Sequence stratigraphic framework of K-field in part of Western Niger delta, Nigeria. RMZ – Materials and Geoenvironment 58(2), p.163-180.
- Parvin, A., Rahman, M. J., Woobaidullah, A. S. M., 2019. Petroleum prospect analysis and new gas horizon detection at Fenchuganj Gas Field in the Surma Basin, Bangladesh: An application of sequence stratigraphic concept. Marine and Petroleum Geology 102, 786-799. https://doi.org/10.1016/j.marpetgeo.2019.01.033

Petrobangla annual report, 2018, 82.

- Pettijohn, F. J., 1949. Sedimentary Rocks. Harper & Brothers, New York, 526.
- Plint, A. G., Nummedal, D., 2000. The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. Geological Society, London, Special Publications 172(1), 1-17.

https://doi.org/10.1144/GSL.SP.2000.172.01.01

- Posamentier, H. W., Allen, G. P., 1999. Siliciclastic sequence stratigraphy: concepts and applications. Sepm Series – Concept of Sedimentology and Paleontology 7, 210.
- Posamentier, H. W., Vail, P. R. 1988. Eustatic controls on clastic deposition II—sequence and systems tract models.
- Rahman, M. M., Howell, J. A., Macdonald, D. I., 2022. Virtual outcrop-based analysis of channel and crevasse splay sandstone body architecture in the Middle Jurassic Ravenscar Group, Yorkshire, NE England. Journal of the Geological Society 179(3). https://doi.org/10.1144/jgs2021-017
- Rahman, M. J. J., 1999. Sandstone petrography of the subsurface Neogene Surma Group of the Sylhet trough, Bengal Basin. Bangladesh Geosci. J. 5, 13–30.
- Rahman, M. J. J., Worden, R. H., 2016. Diagenesis and its impact on the reservoir quality of Miocene sandstones (Surma Group) from the Bengal Basin, Bangladesh. Mar. Pet. Geol. 77, 898–915. https://doi.org/10.1016/j.marpetgeo.2016.07.027
- Reimann, K. U., 1993. Geology of Bangladesh. Borntraeger, Berlin, 160.
- Rider, M. H., 1990. Gamma-ray log shape used as a facies indicator: critical analysis of an oversimplified methodology. Geological Society,

London, Special Publications, 48(1), 27-37. https://doi.org/10.1144/GSL.SP.1990.048.01.04

- Salt, C. A., Alam M. M., Hossain M. M., 1986. Bengal Basin current exploration of the hinge zone of southwestern Bangladesh. Proceed. 6th offshore Southeast Asia conf, Singapore, 55–67.
- Selley, R. C., 1976. Subsurface environmental analysis of North Sea sediments. Am. Assoc. Pet. Geol. Bull., 60, 184–195.
- SEPM Strata, 2019. Introduction to sequence stratigraphy, Society of Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2019.04.008
- Serra, O., 1985. Sedimentary environments from wireline logs: Schlumberger Technical Services, Paris, Document No. M-081030/SMP-7008, 211.
 [extracted from Serra, O., 1986, Fundamentals of well-log interpretation volume 2-The interpretation of logging data, chapters 4-6: Elsevier Science Publishers, Amsterdam, Developments in Petroleum Science No. 15B, 684].
- Sultana, D. N., Alam, M. M., 2000. Facies analysis of the Neogene Surma group succession in the subsurface of the Sylhet Trough, Bengal Basin, Bangladesh. Bangladesh Geos J., 6, 53–74.
- Tucker, M. E., 2009. Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons, 272.

- Uddin, A., Lundberg, N., 1998. Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal basin, Bangladesh. Geological Society of America Bulletin, 110(4), 497-511. https://doi.org/10.1130/0016-7606(1998)110%3C0497:CHOTHB%3E2.3.CO;2
- Vail, P. R., 1987. Seismic stratigraphy interpretation using sequence stratigraphy: Part 1: Seismic stratigraphy interpretation procedure. AAPG Studies in Geology #27, 1, 1-10.
- Vail, P. R., Mitchum Jr, R. M., Thompson III, S., 1977. Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. AAPG Memoir 26, 83-98.
- Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., Rahmanian, V. D., 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies, AAPG methods I exploration series, 7, 55. https://doi.org/10.1017/S0016756800017866
- Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M. J., Vail, P. R., Sarg, J. F., Loutit, T. S., Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions.