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ABSTRACT: The Madhupur Tract region of Bangladesh, characterized by Pleistocene uplifted terrain, is undergoing 
rapid and unplanned urbanization, marked by increased population density, industrial expansion, and infrastructure 
development. To highlight the environmental effects of urbanization on this previously unexplored region, this study 
uses geospatial approaches to assess the spatiotemporal changes in land use and land cover (LULC) in the Madhupur 
Tract. Utilizing multispectral Landsat images from 2000, 2010 and 2023, LULC maps were generated using unsupervised 
classification methods in ArcGIS. Indices such as the Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI) were employed to evaluate land 
cover dynamics and spatial patterns for the years 2000,2005, 2010, 2015 and 2023. Results revealed significant land 
cover changes over the study period, with a marked decline in forest cover and agricultural land and a substantial increase 
in settlement areas due to urban growth. From 2000 to 2023, forest cover decreased from 29% to 11%, while settlements 
expanded from 10% to 30%, indicating extensive urbanization and deforestation. NDVI analysis showed fluctuations 
in vegetation health, with sparse vegetation decreasing and barren land increasing significantly, reflecting ongoing land 
degradation. NDWI results indicated a dramatic reduction in water bodies, declining from 30% coverage in 2000 to just 
6% in 2023. The findings of this study provide critical insights into the complex interplay between urban expansion 
and environmental degradation within the Madhupur Tract, emphasizing the region’s vulnerability to unsustainable 
development practices. By documenting the loss of natural landscapes and the intensification of built-up areas, this 
research highlights the urgent need for integrating sustainable land management and urban planning policies to balance 
economic development with environmental conservation. 

Keywords: Landuse-Landcover; Urbanization; Madhupur Tract; Landsat Images; Geospatial Techniques

INTRODUCTION

Urbanization is frequently associated with socioeconomic 
progress and poverty alleviation, but it also leads to 
permanent changes in biodiversity and land use. This 
transformation can result in the loss of agricultural 
land, disruption of terrestrial carbon reservoirs, threats 
to biodiversity, altered hydrological systems, and 
impacts local and regional climates. Urbanization 
predominantly reflects variations in land use and is 
considered by researchers to be a principal cause of 
climate change and ecological diversity (Ding and Shi, 
2013). The rapid shift from rural to urban areas through 
industrialization is one of the fastest transformations 
in recent history, significantly impacting the natural 
functioning of ecosystems. Urban expansion causes 

unsustainable development, especially due to the rapid 
reduction in vegetation cover driven by changing land-
use and land-cover (LULC) dynamics (Adegboyega 
et al., 2019). The transformation of LULC profoundly 
affects biodiversity and ecosystems (Luck and Wu, 
2002), and both natural processes and anthropogenic 
activities continuously alter surface morphology, land 
cover, and land use (Alam et al., 2022). The impacts of 
LULC on climate exhibit substantial regional variations 
(Vermeulen et al., 2012). Additionally, land use plays 
a significant role in climate change, as deforestation 
contributes to greenhouse gas (GHG) emissions, 
while climate change, in turn, influences future land 
cover and agricultural productivity (Dissanayake et 
al., 2017). Over the past 150 years, nearly one-third of 
the CO2 emitted has been attributed to LULC changes 
(Edenhofer, 2015).

The physiographic unit, Madhupur Tract of Bangladesh 
is facing numerous environmental challenges due 
to factors such as population growth, unplanned 
urbanization, booming garment factories and the drying 
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up of river channels. As this region intersects with a 
highly extensive economic zone, these pressures are 
exacerbating the area’s natural hazards and human 
impacts. For instance, Yesmin et al. (2014) used remote 
sensing and GIS techniques to document land-use and 
land-cover changes over 20 years in Gazipur District, 
revealing the construction of numerous factories and rapid 
population growth, which has intensified deforestation. 
The Madhupur Sal Forest, one of Bangladesh’s most 
ecologically significant and productive forest types, is 
currently undergoing severe destruction. Over the past 
30 years, the area of the Sal Forest has decreased by 
23.35%, while settlements and bare land have increased 
by 107.19% and 160.89%, respectively (Islam et al., 
2023). The growing population in this region also 
generates large amounts of waste, leading to landfills, 
pollution, deforestation, and the filling of water bodies 
for settlement and development purposes. This rapidly 
changing environment highlights the need for effective 
monitoring and management strategies.

Remote sensing data provides essential information 
about land use and its changes over time, offering 
insights that are critical for a variety of applications 
such as environmental protection, forestry, hydrology, 
agriculture, and geology (Al Faruq et al., 2016). These 
techniques are indispensable for detecting and managing 
environmental and meteorological phenomena (Borges 
et al., 2016). Access to historical and current land 
cover information is vital for sustainable management 
practices (Chaurasia et al., 1996). LULC classification 
provides valuable data on urban areas, agricultural 
lands, vegetation, natural surfaces, and cultural features 
(Akinci et al., 2013). Furthermore, LULC data are 
crucial inputs for climate-change-related models, 
particularly those that are policy-oriented (Disperati 
and Virdis, 2015). The regional impacts of LULC on 
climate are significant and vary across different regions 
(Vermeulen et al., 2012). Remote sensing remains one 
of the most accurate methods for detecting changes in 
vegetation cover (Miller et al., 1998). The Normalized 
Difference Vegetation Index (NDVI), derived from 
satellite imagery, has become a standard tool for 
estimating vegetation productivity (Rouse et al., 1974). 
Additionally, the Modified Normalized Difference 
Water Index (MNDWI), developed by Xu (2006), is 
used to detect changes in water content and purity. By 
applying appropriate threshold values, these indices are 
instrumental in classifying different LULC types (Chen 
et al., 2006).

The primary objective of this research is to analyze the 
spatio-temporal variability of land use and land cover 
(LULC) changes, focusing on an area that has received 
limited prior study. Specifically, this research seeks to 
identify and assess the impacts of rapid urbanization 
on LULC, including patterns of urban growth, land 
cover loss, and associated environmental factors. By 
leveraging satellite remote sensing, this study will 
generate thematic maps representing various land cover 
types—such as water bodies, forests, and settlements—
while evaluating spatial patterns using indices like 
NDVI, NDWI, and NDBI. Additionally, a time series 
analysis from 2000 to 2023 will offer insights into the 
dynamics of these changes.

STUDY AREA

The Madhupur Tract Region (Fig. 1) area is in the 
Middle part of Bangladesh i.e., Dhaka & Mymensingh 
division. Mymensingh division was formerly part of 
Dhaka division. It was declared as Bangladesh’s 8TH 
division. The Madhupur Ghar is situated in Tangail & 
Gazipur which is in Dhaka division & rest part lies in 
Mymensingh including Jamalpur in north Mymensingh 
in northeast.  The total extent of this Madhupur Tract 
is 4,244 km2 (Banglapedia, 2023). Madhupur hill track 
is considered as Pleistocene upland which has distinct 
characteristics of reddish fine grain soil with many 
muds’ balls & tree trunks. Highly oxidize soil special 
characteristic of this area which may help special 
type of tree called Sal (Mizanur et al., 2009). Later 
Pleistocene monsoon climatic periods induced massive 
current movement across the Bengal plain, resulting 
in the dissection of the original Madhupur surface. As 
monsoon rainfall intensified, the valleys created by this 
erosion accumulated sediments of Holocene epoch, 
creating a geomorphic level positioned lower than the 
original surface (Rashid, T., 2014).

MATERIALS AND METHODS
Satellite Images

For  this research, satellite images were obtained for 
free from the United States Geological Survey (USGS) 
(https://earthexplorer.usgs.gov) database. Five sets of 
Landsat images with same path and row were gathered 
from the USGS website in GeoTIFF format to cover the 
study region (Madhupur Unit) for the years 2000, 2005, 
2010, 2015, and 2023 (Table 1). Three image sets were 
required to cover the full research area. 
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Figure 1: Geographic Location and Extent of the Study Area (Madhupur Tract Region)

The Landsat images which are used in research were 
projected as Universal Transverse Mercator (UTM) zone 
45N using the Datum World Geodetic System (WGS) 
1984. For the availability of sun, just daytime images 
were gathered for optimal result. At the exact same 
time intervals Landsat images could not have gathered 
due to fresh, spotlessness and images of low cloud 
cover (<10%) within the desired path and rows. The 

selection of November for 2005 and January/February 
for subsequent years was based on data availability and 
consistency in sampling during the dry season. These 
months represent similar hydrological conditions critical 
for our analysis. Images which have been obtained from 
the United States Geological Survey (USGS) archive 
are listed in table 1. 

Table 1: Landsat Images Used in the Study

Year Sensor Platform Acquisition Date WRS Path and Row Resolution
2000 Landsat-7 28th February,2000 137,43 30 m
2005 Landsat-5 16th November,2005 137,43 30 m
2010 Landsat-5 30th January, 2010 137,43 30 m
2015 Landsat-8 28th January, 2015 137,43 30 m
2023 Landsat-8 2ndFebruary,2023 137,43 30 m

METHODOLOGY
Image Pre-Processing

Four images (2000, 2005, 2010, 2015 and 2023) 
of Landsat level-1 data were collected from USGS 
Earth Explorer for this study. Raw Landsat images are 

geometrically corrected but often contain radiometric 
errors. Radiometric distortions arise because of a poorly 
clear atmosphere, daily and seasonal fluctuations in the 
amount of solar radiation absorbed at the ground level, 
and flaws in scanning apparatus. Hence the image data 
are corrected to create a more authentic representation 
of the original scene. 
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Radiometric Correction

Radiometric correction need for comparing multiple 
data sets over a long period of time as it helps to nullify 
the effects that modify the spectral characteristics of 
land features (Paolini et al., 2006). It aids in calibrating 
pixel values and rectifying errors in the data, thereby 
enhancing the interpretability and quality of remote 
sensing data. The Digital Number (DN) is intensity of 
the electromagnetic radiation for each pixel is recorded 
by the sensor which can be translated into more 
practical real-world units such as radiance, reflectance, 
and brightness temperature. Sensor-specific data is 
required for this validation procedure, which can be 
obtained from the metadata files of Landsat photos. For 
radiometric validation, the DN value from sensor data is 
translated into at-sensor radiance and top-of-atmosphere 
reflectance (TOA). In the end, atmospheric correction is 
done by using dark object subtraction method.   

Layer stack, Mosaic and Subset

Several bands of acquisition sensors were combined 
after collection of the images by “Layer stacking” 
process. For layer stacking process, it needs having 
band of same spatial resolution. Therefore, all the 
bands without the “Thermal” and “panchromatic” are 
combined.  Individual land surface features can be 
better identified with true and false color composite 
map of the layer stacked image. Then further analysis 
operated in this study area 

Unsupervised Classification Based LULC Mapping

Landsat TM, ETM+, and OLI/TIRS images from the 
years 2000, 2010, and 2023 were used to prepare LULC 
maps using the unsupervised classification method. 
ArcGIS software facilitated the classification process 
(Fig. 2). The unsupervised approach was selected 
primarily due to the lack of sufficient field-specific 
data necessary to create accurate signatures for specific 
classes. The classification was based on the spectral 
characteristics of the images, and all classes were 
manually labeled to meaningful land cover categories. 
In some cases, a single land cover type was represented 
by multiple clusters; these clusters were merged into a 
single class using the “Recode” process.

Accuracy Assessment

To distinguish true land cover changes from potential 
classification errors, error matrices and per-class 
accuracy indices were calculated for the year 2023. 
In this assessment, 100 stratified random points were 
generated across the study area using high-resolution 
imagery to determine the actual land use and land cover 
(LULC) classes. These verified classes, derived from 
the reference images, were then utilized to evaluate per-
class accuracy (i.e., user’s and producer’s accuracy). 
Additionally, overall accuracy and the Kappa coefficient 
for the year were computed to provide a comprehensive 
evaluation of the classification performance.

Producer’s Accuracy (PA): Measures how well a 
particular land cover class has been classified from the 
perspective of the classifier (or producer). It indicates 
the probability that a reference pixel (ground truth) is 
correctly classified in the map.

User’s Accuracy (UA): Measures the accuracy from 
the user’s perspective, demonstrating how often the 
class on the map accurately represents the real-world 
category.

Normalized Difference Vegetation Index (NDVI) 
Retrieval

The Normalized Difference Vegetation Index (NDVI) 
quantifies vegetation by comparing the difference 
between near-infrared light, which is strongly reflected 
by vegetation, and red light, which is absorbed by 
vegetation (Carlson et al., 1997). Very low values of 
correspond to water body (Gandhi et al., 2015). In 
NDVI imagery, vegetated areas appear as lighter tones, 
while non-vegetated areas appear as darker tones. The 
NDVI can be calculated using the following equation, 
as proposed by Rouse et al. (1974):

      NDVI = 𝑵𝑵𝑵𝑵𝑵𝑵−𝑹𝑹𝑹𝑹𝑹𝑹
𝑵𝑵𝑵𝑵𝑵𝑵+𝑹𝑹𝑹𝑹𝑹𝑹

 

Here, “RED = Reflectance Red region of the 
multispectral image & NIR = Reflectance of Near Infra- 
Red region of the multispectral image”

The value of NDVI ranges between -1 to +1. Dense 
vegetation areas show positive values close to +1 whereas 
snow, cloud and water body show lower values close to 
-1. For Landsat 5 (TM) and Landsat 7 (ETM+), band 4 and 
band 3 represent the NIR and RED region respectively.
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 NDVI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟑𝟑
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒 + 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟑𝟑

  (For Landsat 5 and 7) 

On the other hand, for Landsat 8, the reflectance values 
of band 5 and band 4 represent NIR and RED region is 
used to retrieve NDVI thematic maps of the study area 
as below.

 
NDVI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓+ 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒
  (For Landsat 8) 

Normalized Difference Water Index (NDWI) Retrieval

Using Normalized Difference Water Index (NDWI) 
methods detect changes related to water content in 
water bodies. The index is designed to maximize the 
high reflectance of water by using green wavelengths 
and minimize the low reflectance by NIR bands (Xu, 
2006). It also uses the advantage of high reflectance 
of NIR by vegetation and soil features. NDWI can be 
calculated using the following equation defined by 
McFeeters (1996):

NDWI = 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆−𝑵𝑵𝑵𝑵𝑵𝑵
𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮+𝑵𝑵𝑵𝑵𝑵𝑵

            

Here, “GREEN = Reflectance of the Green region of 
the multispectral image &

             NIR = Reflectance of the Near Infra- Red region 
of the multispectral image”

 NDWI values vary from -1 to +1. Here positive values 
indicate features like water, which are intensified 
whereas negative values indicate vegetation and soil. 
For Landsat 5(TM) and Landsat 7 (ETM+), band 2 and 
band 4 represents Green and NIR region respectively.

 NDWI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟐𝟐 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟐𝟐 + 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒

  (For Landsat 5 and 7) 

In Landsat 8, “Band 3” and “Band 5” represent Green 
and NIR region respectively.

 NDWI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟑𝟑 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟑𝟑 + 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓

  (For Landsat 8) 

Normalized Difference Built-up Index (NDBI) Retrieval

For calculating Normalized Difference Built-up Index 
(NDBI), we need to use the “NIR” and “SWIR” bands 
to identify manufactured built-up areas. The method 
is based on ratios to reduce the impact of atmospheric 
factors and variations in terrain illumination.

NDBI = (𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 − 𝐍𝐍𝐍𝐍𝐍𝐍) 
 (𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 + 𝐍𝐍𝐍𝐍𝐍𝐍)

 

Here, “NIR = Reflectance of the Near Infra- Red region 
of the multispectral image & SWIR = Shortwave 
Infrared Band”

The NDBI values vary from -1 to 1. High NDBI values 
represent the built-up areas whereas low NDBI values 
represent the other regions. For Landsat 5(TM) and 
Landsat 7 (ETM+), band 5 and band 4 represent SWIR 
and NIR region respectively.

 NDBI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓 + 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟒𝟒

  (For Landsat 5 and 7) 

But in Landsat 8, Band 6 and band 5 represent SWIR 
and RED region.

 NDBI = 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟔𝟔 − 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟔𝟔 + 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝟓𝟓

  (For Landsat 8) 

RESULTS 
Landuse-Landcover (LULC) Mapping

The unsupervised classified thematic images (Fig. 3) of 
the years 2000, 2010, and 2023 have been utilized for 
the detecting the changes (Table 2) in land use and land 
cover in the study area. Waterbody, forest, agricultural 
land, bare land and settlement have been identified as 
spectral classes.

In 2000, the LULC analysis revealed a diverse landscape 
with water bodies covering 20% (8324.29 sq km), 
forests at 29% (12376.3 sq km), and agricultural land 
occupying 33% (13810 sq km), highlighting extensive 
farming. Bare land made up 8% (3554.24 sq km), 
reflecting areas with little vegetation, while settlements, 
including urban areas, covered 10% (4181.72 sq km). In 
2010, the LULC analysis indicated significant landscape 
changes from 2000. Water bodies slightly decreased to 
19% (8086.73 sq km), while forests reduced to 15% 
(6490.52 sq km), suggesting deforestation. Agricultural 
land shrank to 21% (8793.18 sq km), and bare land 
expanded to 23% (9587.87 sq km), indicating increased 
areas with minimal vegetation. Settlements grew 
significantly, covering 22% (9288.25 sq km), reflecting 
notable urbanization and infrastructure development. In 
2023, the LULC analysis revealed significant landscape 
changes. Water bodies expanded to 22% (9282.55 sq 
km), indicating possible increases in lakes or water 
conservation. Forests decreased sharply to 11% (4444 
sq km), suggesting deforestation or land conversion. 
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 Figure 2: Flow Chart of the Research Methodology

Figure 3: Landuse-Landcover (LULC) Map of the Research Area Using Unsupervised Classification for 2000, 2010 & 2023
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Table 2: Area Coverage for Different Types of Land 
Cover in Different Years (sq km)

LULC types Area Coverage in different years 
(sq km)	

2000 2010 2023
Water body 8324.29 8086.73 9282.55
Forest 12376.3 6490.52 4444
Agricultural Land 13810 8793.18 9764
Bare Land 3554.24 9587.87 6232
Settlement 4181.72 9288.25 12524

Agricultural land remained stable at 23% (9764 sq km), 
continuing as a primary land use. Bare land increased to 
15% (6232 sq km), reflecting further expansion of areas 
with minimal vegetation. Settlements grew substantially, 
covering 30% (12524 sq km), indicating considerable 
urbanization and infrastructure development (Fig. 4).

Accuracy Assessment

Table 3 presents the results from the per-class accuracy 
assessment for the year 2023. Most land cover classes 
exhibited user’s accuracy (UA) and producer’s accuracy 
(PA) values ranging between 50% and 90%. The waterbody 
and settlement classes achieved strong accuracies, with 
both classes attaining a user’s accuracy of 90%. 

 

Figure 4: Graphical Representation Comparing the Landcover Types in Years 2000, 2010 & 2023

However, the agricultural land class displayed lower 
accuracies, with a producer’s accuracy of only 58%, 
indicating potential misclassification or confusion with 
other land cover types. Additionally, the bare land class 
exhibited a user’s accuracy of 72% and a producer’s 
accuracy of 53%, likely reflecting its sparse distribution 
in the study area. Despite these variations, the overall 
accuracy for the classification was 92%, coupled with 
a Kappa coefficient of 0.825, suggesting near perfect 
agreement between the classified data and the reference 
data.

Table 3: Per-Class Accuracy Assessments of Multi-
Temporal for the Year 2023

LULC Class Year 2023
User’s
Accuracy (UA)

Producer’s
Accuracy (PA)

Waterbody 0.90 0.90
Forest 0.66 0.80
Agricultural Land 0.50 0.58
Bare Land 0.72 0.53
Settlement 0.90 0.64
overall accuracy 0.92
Kappa coefficient 0.825
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LULC Mapping based on NDVI

The NDVI images (Fig. 5) identified four LULC types: 
water bodies, forests, agricultural land, and mixed land 
(including settlements, bare land, and some agricultural 
areas). Mixed land is represented by NDVI values greater 
than 0, moderate values (0.2 to 0.4) indicate agricultural 
land, and values above 0.4 signify healthy vegetation 
and forests. From 2000 to 2023, notable changes in 
these land cover types were observed. In 2000, water 
bodies covered approximately 6,152.8 sq km, barren 
land 1,098.8 sq km, sparse vegetation 21,191.3 sq km, 
and dense vegetation 13,810.3 sq km. By 2005, water 
bodies slightly expanded to 6,279 sq km, barren land 
increased to 1,977.8 sq km, sparse vegetation decreased 
to 13,442.8 sq km, and dense vegetation grew to 20,562 

sq km. In 2010, water bodies remained stable at 6,176 
sq km, barren land increased substantially to 18,090 sq 
km, sparse vegetation decreased to 17,795 sq km, and 
dense vegetation dropped to 275 sq km. By 2015, water 
bodies expanded to 7,682.9 sq km, barren land increased 
to 21,557.4 sq km, sparse vegetation reduced to 
13,212.7 sq km, and dense vegetation decreased further 
to 324.9 sq km. Finally, by 2023, water bodies reached 
7,975.6 sq km, barren land stabilized at 21,455.7 sq km, 
sparse vegetation declined to 12,798 sq km, and dense 
vegetation slightly increased to 551 sq km. Overall, 
the data reflects significant changes in land cover, with 
notable fluctuations in vegetation and an increase in 
water bodies and barren land over time (Table 4).

Figure 5: Landuse-Landcover (LULC) Map of the Research Area Using NDVI Classification (2000, 2005, 2010, 
2015 & 2023) 

Water bodies fluctuated, initially declining from 20% 
(8324.29 sq km) in 2000 to 19% in 2010 but then 
increasing to 22% (9282.55 sq km) in 2023. Forests 
saw a continuous decline, from 29% (12376.3 sq km) 
in 2000 to just 11% (4444 sq km) in 2023. Agricultural 
land, initially covering 33% (13810 sq km) in 2000, 

decreased to 21% in 2010 but rebounded slightly to 23% 
(9764 sq km) by 2023. Bare land expanded significantly 
from 8% (3554.24 sq km) in 2000 to 23% in 2010, 
reducing to 15% (6232 sq km) in 2023. Settlements 
grew markedly, expanding from 10% (4181.72 sq km) 
in 2000 to 30% (12524 sq km) in 2023 (Fig. 6).
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Table 4: NDVI Classes for the Five Years with Area in Km2

Class Name 2000 2005 2010 2015 2023
Waterbody 6152.814 6278.967 6176 7682.913 7975.557
Barren land 1098.783 1977.786 18090 21557.4 21455.7
Sparse Vegetation 21191.29 13442.8 17795 13212.67 12797.98
Dense Vegetation 13810.29 20561.99 275 324.855 550.962

Figure 6: Chart Showing Changes of the NDVI Classes Among the Year 2000, 2005, 2010, 2015, and 2023

LULC Mapping based on NDWI

The purpose of NDWI calculation (Table 5) was to 
identify the variation in water body over the study 
area. So, the changes of water body have been well 
documented from the NDWI (Fig. 7). Two LULC types 
such as land (representing negative values) and water 
(representing positive values) have been identified 
using NDWI. The area coverage of the observed NDWI 
in each year is presented below.

From 2000 to 2023, NDWI data reveals significant 
shifts in water and land cover. In 2000, water-covered 
areas accounted for 12,831.43 km² (30% of the total 
area), while land covered 29,421.75 km² (70%). By 
2005, water areas decreased to 10,258.06 km² (24%), 
with land expanding to 32,003.49 km² (76%). This 
trend continued in 2010, with water further reducing to 

7,372.70 km² (17%) and land increasing to 34,962.89 
km² (83%). In 2015, water-covered areas dropped to 
4,696.48 km² (11%), while land reached 38,081.36 
km² (89%). By 2023, water areas declined significantly 
to 2,462.54 km² (6%), with land covering 40,317.67 
km² (94%). These changes (Fig. 8) suggest notable 
environmental shifts or land use changes over time.

Table 5: NDWI Classes for the Five Years with Area

Year Area in km2 Area in Percentage
Water Land Water Land

2000 12831.43 29421.75 30 70
2005 10258.06 32003.49 24 76
2010 7372.701 34962.89 17 83
2015 4696.479 38081.36 11 89
2023 2462.535 40317.67 6 94
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Figure 7: Landuse-Landcover (LULC) Map of the Research Area Using NDWI Classification (2000, 2005, 2010, 
2015 & 2023)

Figure 8: Chart Showing Changes of the NDWI Classes Among Year 2000, 2005, 2010, 2015, and 2023
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LULC Mapping based on NDBI

The Normalized Difference Built-up Index (NDBI) is 
used to detect and monitor urban areas by differentiating 
built-up surfaces from other land types in satellite 
imagery. It helps track urban growth; map developed 
areas and classify land cover more accurately. The 
Normalized Difference Built-up Index (NDBI) for 
the years 2000, 2005, 2010, 2015, and 2023 provides 
insights into the changing dynamics of built-up areas 
within the region (Fig. 8). In 2000, the maximum 
NDBI value was 0.537 (Table 6), indicating the highest 
concentration of built-up areas, while the minimum 
value was -0.319, representing regions with minimal 
or no built-up activity. The mean NDBI was 0.109, 
with a standard deviation of 0.61, reflecting significant 
variability in built-up levels. By 2005, the maximum 
NDBI decreased to 0.382, and the minimum increased 
to -0.384, with a mean of -0.001 and a standard deviation 
of 0.54, indicating a reduction in average built-up 
concentration and moderate variability. In 2010, a 
notable increase in the maximum NDBI to 0.594 was 

observed, indicating intensified built-up activity, while 
the minimum NDBI dropped to -0.686. The mean value 
further decreased to -0.046, and the standard deviation 
narrowed to 0.091, suggesting a concentration of values 
around non-built-up areas.

In 2015, the maximum NDBI decreased to 0.418, and 
the minimum value rose slightly to -0.390, with the 
mean increasing to 0.014, indicating a mild recovery in 
built-up concentration. The standard deviation of 0.57 
suggested persistent variability. By 2023, the maximum 
NDBI value further declined to 0.367, while the 
minimum increased to -0.415, with a mean of -0.024 
and a standard deviation of 0.55, reflecting moderate 
dispersion. These statistical trends demonstrate the 
temporal variations in built-up area concentration, 
highlighting shifts in urbanization patterns and land 
development dynamics across the region from 2000 
to 2023. The fluctuations in NDBI values illustrate 
the impact of urban expansion, land use changes, and 
environmental factors on the built-up landscape over 
time.

Figure 9: Landuse-Landcover (LULC) Map of the Research Area Using NDBI Classification (2000, 2005, 2010, 
2015 & 2023)
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Table 6: Maximum, Minimum, Mean and Standard deviation values of NDBI

Values/Years 2000 2005 2010 2015 2023
Maximum 0.536991 0.382376 0.59375 0.417668 0.36697
Minimum -0.31903 -0.38435 -0.68628 -0.39046 -0.4153
Mean 0.10898 -0.00099 -0.04626 0.01361 -0.02416
Standard deviation .61 0.54 0. 091 0.57 .55

DISCUSSION

The spatiotemporal analysis of land use and land 
cover (LULC) changes in the Madhupur Tract region 
from 2000 to 2023, based on NDVI, NDWI, and 
NDBI indices derived from Landsat imagery, reveals 
significant landscape shifts driven by rapid urbanization. 
These changes highlight the region’s vulnerability as a 
Pleistocene uplifted terrain and underscore the need to 
examine their drivers, environmental impacts, and the 
robustness of the methods employed.

The NDVI results show a marked decline in vegetation 
cover, with dense vegetation dropping from 13,810.3 
km² in 2000 to 551 km² in 2023, a loss of over 96%. 
This mirrors the unsupervised classification findings, 
where forest cover decreased from 29% to 11% over 
the same period. Meanwhile, barren land surged from 
1,098.8 km² to 21,455.7 km², indicating a transition to 
degraded or developed surfaces. These trends align with 
prior observations of deforestation in the Madhupur 
Sal Forest and settlement growth, likely driven by 
population pressures and industrial expansion, such as 
garment factories. Our 96% vegetation loss exceeds the 
23.35% forest decline reported over 30 years elsewhere 
in the region, suggesting an accelerated trend in this 
study period. The NDBI analysis supports this, showing 
a peak in built-up activity in 2010 (maximum NDBI of 
0.594), followed by a steady rise in settlement areas 
from 10% (4,181.72 km²) to 30% (12,524 km²) by 
2023. This urban sprawl appears to be the primary force 
behind vegetation loss and land degradation.

The NDWI analysis reveals a drastic reduction in water 
bodies, falling from 12,831.43 km² (30%) in 2000 
to 2,462.54 km² (6%) in 2023,an 80% decline. This 
contrasts with the unsupervised classification, which 
suggests a slight increase in water coverage (20% to 
22%), pointing to potential methodological differences. 
The NDWI trend likely reflects urban encroachment, 
such as filling water bodies for development, and 
possibly climate-related drying of river channels, both 
noted as challenges in the region. This loss threatens 

water availability, agricultural productivity, and 
ecosystem stability, amplifying environmental stress.

These LULC shifts carry significant ecological 
consequences. The decline in forests and vegetation 
reduces the region’s capacity to store carbon, while 
the growth of built-up areas intensifies the urban heat 
island effect and surface temperature changes. The 
increase in barren land, possibly tied to erosion of the 
area’s reddish soils, further degrades soil fertility and 
water retention. For example, deforestation (NDVI) 
reduces infiltration, shrinking water bodies (NDWI), 
which urban expansion (NDBI) then exploits, limiting 
agricultural water access and driving further settlement 
growth. Together, these changes suggest a cycle where 
urbanization accelerates environmental degradation, 
limiting the region’s resilience to broader climate 
pressures.

The unsupervised classification method employed in 
this study offers practical benefits but also presents 
limitations worth considering. Its primary advantage 
lies in its applicability when field-specific training 
data are scarce, as was the case here, allowing spectral 
clustering to map LULC without predefined signatures. 
This approach achieved an overall accuracy of 92% and a 
Kappa coefficient of 0.825 for 2023, suggesting reliable 
performance for broad land cover categories like water 
bodies and settlements (both 90% user’s accuracy). 
However, compared to supervised techniques, which 
use ground-truth data to refine class boundaries, 
unsupervised methods may struggle with nuanced 
distinctions, as seen in the lower producer’s accuracy 
for agricultural land (58%) and bare land (53%). These 
discrepancies, possibly due to spectral overlap between 
sparse vegetation and degraded surfaces, align with 
challenges noted in similar studies where unsupervised 
classification was used without extensive validation. 
Moreover, the absence of field validation in this study 
limits the ability to confirm these classifications against 
real-world conditions, a gap that future research should 
address to enhance accuracy and credibility.
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Methodologically, the use of NDVI, NDWI, and NDBI 
provides a solid basis for tracking LULC dynamics, with 
the 2023 classification demonstrating strong overall 
reliability. However, lower accuracy for certain classes 
indicates possible misclassification, and the five-year 
intervals (2000, 2005, 2010, 2015, 2023) might miss 
short-term shifts, such as seasonal vegetation changes 
or rapid urban developments. Additionally, the study’s 
focus on remote sensing indices excludes socioeconomic 
factors like population growth, industrial policies, or 
waste generation that are likely shaped these patterns. 
Incorporating field surveys or more frequent satellite 
data could address these gaps and enhance resolution.

In summary, the Madhupur Tract’s LULC changes 
reflect a region undergoing rapid transformation, 
with urbanization driving significant losses in forests, 
water bodies, and vegetation health. These findings 
highlight the need for sustainable land management to 
mitigate ecological impacts, while the methodological 
limitations suggest avenues for refining future research. 
This analysis offers valuable insights for balancing 
development with environmental conservation in the 
region.

CONCLUSIONS

This study comprehensively investigates the 
spatiotemporal dynamics of land use and land cover 
(LULC) changes in the Madhupur Tract region of 
Bangladesh from 2000 to 2023, using geospatial tools 
and Landsat imagery. The findings reveal profound 
landscape transformations driven by rapid and 
unplanned urbanization. The most notable trend is the 
sharp decline in forest cover, which has plummeted 
from 29% of the area in 2000 to just 11% in 2023. This 
alarming deforestation is primarily a result of expanding 
urban areas, infrastructure projects, and other human 
activities, posing severe risks to biodiversity, climate 
regulation, and ecosystem services.

In parallel, settlement areas have surged dramatically, 
increasing from 10% in 2000 to 30% in 2023. This rapid 
urbanization has not only contributed to the loss of natural 
landscapes but has also intensified issues such as the 
urban heat island effect, air pollution, and water scarcity. 
The NDVI analysis further highlights the degradation 
of vegetation health, while the significant rise in barren 
land emphasizes the growing environmental stress on 
the region’s ecosystems. The NDWI results reveal a 
concerning decline in water bodies, underscoring the 

vulnerability of the area to hydrological imbalances 
and water shortages. The NDBI analysis confirms the 
increasing footprint of urban areas, reflecting the region’s 
rapid urban growth and its accompanying environmental 
pressures. Collectively, these findings provide critical 
data for policymakers, urban planners, and environmental 
managers, offering an empirical foundation for making 
informed decisions regarding sustainable urban 
development and environmental conservation.

In conclusion, this study underscores the urgent need for 
sustainable land management practices, urban planning 
policies, and conservation initiatives to mitigate the 
adverse environmental impacts of rapid urbanization in 
the Madhupur Tract. By recognizing the scale and nature 
of LULC changes, decision-makers can implement 
strategies to preserve ecological integrity, promote 
resilient urban growth, and secure a sustainable future 
for the region’s ecosystems and communities.
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