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Abstract 
In this paper, we present additive algorithm for solving a class of 0-1 integer linear fractional programming problems (0-1 ILFP) where all 
the coefficients at the numerator of the objective function are of same sign. The process is analogous to the process of solving 0-1 integer 
linear programming (0-1 ILP) problem but the condition of fathoming the partial feasible solution is different from that of 0-1 ILP. The 
procedure has been illustrated by two examples.  
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I. Introduction 

An integer programming where all the variables are restricted 
to a value of 0 or 1 is called 0-1 integer programming or 
binary programming. Binary variables bear immense 
importance because they occur regularly in many model 
formulations, such as set covering problem, assignment 
problem, traveling salesperson problem, capital budgeting 
problem, knapsack problem, timetabling problem etc. Several 
methods have been developed for solving 0-1 integer 
programming problems. Techniques available for solving the 
0-1 integer programming problem include algorithms of 
Glass7, Balas3, Glover8, Lawler and Bell10, Geoffrion6, 
Lemke and Spielberg11 etc. These algorithms are enumerative 
and developed for solving zero-one Integer Linear Programs 
(ILP). But often we may have to deal with some problem 
where the objective function is the ratio of two linear 
functions called Linear Fractional Programming (LFP) 
problem. A Linear Programming (LP) computes a policy 
delivering the best outcome, such as maximum profit or 
lowest cost whereas a LFP is used to achieve the 
highest ratio of outcome to cost; the ratio represents the 
highest efficiency. Therefore, LFP is sometimes more 
informative than LP. Our purpose is to solve such types of 
problem using an enumerative algorithm. In this paper, we 
have used additive algorithm of Balas3 for solving a class of 
0-1 ILFP problems. Balas developed this algorithm for 
solving 0-1 integer linear programs. Puri and Swarup12 
suggested the extreme point mathematical programming 
technique for solving 0-1 ILP as well as ILFP. The extreme 
point mathematical programming is mainly based on simplex 
algorithm. But the additive algorithm does not require the 
simplex algorithm. The general idea of additive algorithm is 
to enumerate (implicitly) all 2௡ possible solutions of a 
problem. The first requirement of this algorithm is dual 
feasibility. Initially, it is easier to obtain the dual feasibility 
of any LP problem but it is difficult for LFP problem. The 
main challenge in LFP is to obtain the dual feasibility at the 

initial stage. In this paper, we consider a class of 0-1 ILFP as 
follows: 

Minimize   ܳሺݔሻ ൌ
∑ ௝ݔ௝݌

௡
௝ୀଵ

∑ ௝݀ݔ௝ ൅ ݀଴
௡
௝ୀଵ

,                  ሺ1.1ሻ 

              (all ݌௝ are of same sign ) 

  Subject to 

  ෍ ܽ௜௝ݔ௝ሺ൑, ൒ሻܾ௜

௡

௝ୀଵ

, ݅ ൌ 1,2, … , ݉                                      ሺ1.2ሻ 

௝ݔ    ൌ 0 or 1 for all ݆                                                       (1.3) 

In the Section III, theoretically we have shown that, dual 
feasibility can be obtained from (1.1)-(1.3). Many real life 
oriented models can be formulated with this type of 
structure such as set covering problem1. In the next Section, 
we summarize the idea of additive algorithm. 

II. Summary of Additive Algorithm for Solving 0-1 ILP 
Developed by E. Balas 

For the purpose of this algorithm, the continuous version of 
the 0-1 problem must start with the dual-feasibility, that is, 
optimal but not feasible. Moreover, all the constraints must 
be of ൑  type. This format can be achieved as follows:  
Let the problem be of the minimization type (there is no loss 
of generality here) and define it as   

Minimize  ݖ ൌ ∑ ௝ܿݔ௝
௡
௝ୀଵ , all ௝ܿ ൒ 0    (2.1) 

Subject to 

∑ ܽ௜௝ݔ௝ ൅ ௜ܵ ൌ ܾ௜
௡
௝ୀଵ , ݅ ൌ 1,2, … , ݉         (2.2) 

௝ݔ  ൌ 0 or 1 for all ݆ 

௜ܵ ൒ 0, for all ݅.  

Where, ௜ܵ is the slack variable associated with the ݅th 
constraint. The continuous version of foregoing problem is 
dual feasible if every ௝ܿ ൒ 0. Any ௝ܿ ൏ 0 can be converted 
to the desired format by complementing the variable ݔ௝, that 
is, by substituting ݔ௝ ൌ 1 െ ௝ݔ

ᇱ, where ݔ௝
ᇱ is a binary variable, 

in the objective function and constraints. If in addition to 
dual feasibility, the problem is primal-feasible, nothing 
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more need to be done, since the minimum, in terms of new 
variables is achieved by assigning zero values to all the 
variables. However, if it is primal infeasible, the additive 
algorithm is used to find the optimum. The general idea of 
the additive algorithm is to enumerate all 2௡ possible 
solutions of the problem. However, it recognizes that some 
solutions can be discarded automatically without being 
investigated implicitly. Hence, in the final analysis, only a 
portion of the 2௡ solutions need to be investigated 
explicitly. 

In terms of the given zero-one problem (2.1)-(2.2), this idea 
is implemented as follows: Initially, assume that all the 
variables are at zero level. This is logical, since all ௝ܿ ൒ 0. 
Since the corresponding solution is not feasible (i.e. some 
slack variables  ௜ܵ may be negative), it will be necessary to 
elevate some variables to level one. The procedure calls for 
elevating one (or perhaps more) variable at a time, provided 
there is evidence that this step will be moving the solution 
toward feasibility, that is, making ௜ܵ ൒ 0 for all ݅. Balas3 
developed a number of tests to ensure the proper selection of 
the variables to be elevated to level one. The following 
terms are needed to describe these tests. 

Free variable: A free variable is initially at zero level but 
may be elevated to level one if this can improve the 
infeasibility of the problem. 

Partial solution: A partial solution provides a specific 
binary assignment for some of the variables in the sense that 
it fixes the values of one or more variables at zero or one. A 
convenient way to summarize this information for the 
purpose of the (Branch and Bound) algorithm is to express 
the partial solution as an ordered set. Let ܬ௧ represent the 
partial solution at the ݐth node (or iteration), and let the 
notation ൅݆ሺെ݆ሻ represent ݔ௝ ൌ 1   ሺݔ௝ ൌ 0ሻ. Thus the 
elements of ܬ௧ consist of the subscripts of the fixed variables 
with the plus (minus) sign signifying that the variable is one 
(zero). The set ܬ௧ must be ordered in the sense that each new 
element is always augmented on the right of the partial 
solution. 

A partial solution is said to be fathomed if   

1. It cannot lead to a better value of the objective function. 
2. It cannot lead to a feasible solution. 

When all the elements of a fathomed partial solution are 
negative, the associated variables would have been 
considered at both zero and one levels. As a result, there are 
no more branches to consider and the enumeration is 
complete. The general version of the additive algorithm is 
now presented by the concept of partial solutions. The 
exclusion tests used to fathom partial solutions and augment 
new variables at level one are also generalized for the zero-
one problem. 

Consider the binary problem (2.1)-(2.2). Let  ܬ௧ be the partial 
solution at node ݐ (initially, ܬ଴ ൌ  which means that all ,׎

variables are free) and assume ݖ௧ is the associated value of ݖ 
while ݖҧ is the current best upper bound (initially ݖҧ ൌ ∞). Balas 
[3] developed the following four tests to ensure the proper 
selection of the variables to be elevated to level one. 

Test 1: For any free variable ݔ௥, if ܽ௜௥ ൒ 0 for all ݅ 
corresponding to ௜ܵ

௧ ൏ 0, then ݔ௥ cannot improve the 
infeasibility of the problem and must be discarded as non 
promising. 

Test 2: For any free variable ݔ௥, if ܿ௥ ൅ ௧ݖ ൒  ௥ݔ ҧ  thenݖ
cannot lead to an improved solution and hence must be 
discarded. 

Test 3: Consider the ݅th constraint  ܽ௜ଵݔଵ ൅ ܽ௜ଶݔଶ ൅ ڮ ൅
ܽ௜௡ݔ௡ ൅ ௜ܵ ൌ ܾ௜, for which ௜ܵ

௧ ൏ 0. Let ௧ܰ define the set of 
free variables not discarded by test 1 and 2. None of the free 
variable in ௧ܰ are promising if for at least one ௜ܵ

௧ ൏ 0, the 
following condition is satisfied:                   
∑ min ሼ0, ܽ௜௝ሽ௝אே೟ ൐ ௜ܵ

௧. This actually says that the set ௧ܰ 
cannot lead to a feasible solution and hence must be 
discarded altogether. In this case, ܬ௧ is said to be fathomed. 

Test 4: If  ௧ܰ ്  ௞ is selected asݔ the branching variable ,׎
the one corresponding to 

௞ݒ
௧ ൌ max ሼݒ௝

௧ሽ , ݆ א ௧ܰ,   

where,       ݒ௝
௧ ൌ ∑ min ሼ0, ௜ܵ

௧ െ ܽ௜௝ሽ௠
௜ୀଵ . 

If ݒ௞
௧ ൌ 0, ௞ݔ ൌ 1 together with ܬ௧ yields an improved 

feasible solution. In this case, ܬ௧ାଵ, which is defined by ܬ௧ 
with ሼ݇ሽ augmented on the right, is fathomed. Otherwise, 
the foregoing tests are applied again to ܬ௧ାଵ until the 
enumeration is completed, that is, until all the elements of 
the fathomed partial solution are negative.  

In the following section, we generalize the additive 
algorithm for solving a 0-1 ILFP.  

III. Additive Algorithm for Solving 0-1 ILFP 

Before using the additive algorithm for solving a 0-1 ILFP, 
we have to ensure the dual feasibility of that problem. In this 
section, theoretically it has been shown that dual feasibility 
can be obtained from the problem (1.1)-(1.3). Introducing 
slack variables we obtain the following from (1.1)-(1.3): 

 Minimize   ܳሺݔሻ ൌ
∑ ௣ೕ௫ೕ

೙
ೕసభ

∑ ௗೕ௫ೕାௗబ
೙
ೕసభ

,            (3.1)                

                               (all ݌௝ are of same sign ) 

Subject to   

 ∑ ܽ௜௝ݔ௝ ൅ ௜ܵ ൌ ܾ௜
௡
௝ୀଵ ,   ݅ ൌ 1,2, … , ݉    (3.2) 

௝ݔ  ൌ 0 or 1 for all ݆                                 (3.3) 

Where ௜ܵ , ݅ ൌ 1,2, … , ݉ are the slack variables and  ௜ܵ ൒ 0, 
for all ݅. 

This is a minimization problem, so at the initial tableau all 
of the reduced cost factors (i.e. ∆௝) should be ൒ 0 to obtain 
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the dual feasibility. From (3.1) and (3.2) it is clear that 
initially ݔ௝ ൌ 0, for ݆ ൌ 1,2, … , ݊. Thus ܳሺݔሻ becomes zero. 
Thus, from Bajalinov2 we obtain the reduced cost factor ∆௝ 
of the problem (3.1)-(3.2) as; 

 ∆௝ሺݔሻ ൌ ሺ∆௝
ᇱ െ ܳሺݔሻ∆௝

ᇱᇱሻ                          (3.4) 

Where       ∆௝
ᇱൌ ௝݌ െ ∑ ௜௝ݔ௦೔݌

௠
௜ୀଵ  ,   

∆௝
ᇱᇱൌ ௝݀ െ ∑ ݀௦೔ݔ௜௝

௠
௜ୀଵ .   ∆௝

ᇱ and ∆௝
ᇱᇱ are referred to as reduced 

cost of numerator and denominator respectively. Equation 
(3.4) yields that 

∆௝ሺݔሻ ൌ ∆௝
ᇱ െ 0, since ܳሺݔሻ ൌ 0,     

i. e.  ∆௝ሺݔሻ ൌ ௝݌ െ ∑ ௜௝ݔ௦೔݌
௠
௜ୀଵ                   (3.5) 

where, ݌௦೔ are the coefficients of the basic variables at the 
numerator of the objective function (3.1). Since ݌௦೔ ൌ 0 at 
the initial stage of the problem (3.1)-(3.3) for all ݅, we 
obtain from (3.5) that ∆௝ൌ ,௝݌ ݆ ൌ 1,2, … , ݊. It was assumed 
in (3.1) that ݌௝ ൒ 0 for all ݆.  

So  ∆௝ሺݔሻ ൒ 0 for all ݆. Therefore, the dual feasibility of the 
problem (3.1)-(3.3) is guaranteed.  

Once dual feasibility of the problem (3.1)-(3.3) is 
guaranteed, additive algorithm can be used to obtain the 
optimal solution of the problem (1.1)-(1.3). That is, the four 
tests of the Section II can be incorporated to the problem 
(3.1)-(3.3). The condition for fathoming a partial feasible 
solution for  0-1 ILFP is given in the next section. 

IV. Condition of Fathoming Partial Feasible Solution for 
0-1 ILFP 

It should be noted here that the condition for fathoming a 
partial feasible solution in 0-1 ILFP is different from the 
case of 0-1 ILP. In case of 0-1 ILP, a partial solution is 
fathomed if it yields a feasible solution, because elevation of 

another variable to level one together with current partial 
feasible solution gives the value of the objective function 
greater than the current value of the objective function 
(minimization problem). On the other hand, a partial 
feasible solution of 0-1 ILFP does not guarantee that the 
solution can be fathomed, since elevation of another 
variable to level one together with the current feasible 
partial solution may increase or decrease the value of the 
objective function with satisfying all the constraints. The 
objective function in 0-1 ILFP is the ratio of two linear 
functions, so if a variable is elevated to level one it may 
increase or decrease the value of the objective function 
because of the effect of its coefficients at the numerator and 
denominator. This is why, fathoming a partial feasible 
solution in 0-1 ILFP is different from the case of 0-1 ILP. 
This difference has been discussed in iteration 3 of example 
II. 

Now let us illustrate the above procedure by two examples.  

   :ܫ ݈݁݌݉ܽݔܧ

Minimize ܳሺݔሻ ൌ
ଵݔ2 ൅ ଶݔ ൅ ଷݔ3 ൅ ସݔ

ଵݔ െ ଶݔ2 ൅ ଷݔ െ ସݔ ൅ 6
  

 Subject to  

ଵݔ2     ൅ ଶݔ2 െ ଷݔ െ ସݔ ൑ 2 

ଵݔ                              െ ଶݔ2 ൅ ଷݔ3 ൅ ସݔ ൒ 1 

ଵݔ                                   ൅ ଶݔ ൅ ଷݔ െ ସݔ ൑ 3 

,ଵݔ  ,ଶݔ ,ଷݔ  . ସ   are binaryݔ

Since the second constraint is " ൒ " type, multiply the 
constraint by െ1. Then introducing slack variables  ଵܵܵଶ, ܵଷ 
we get  

the following table 1: 

 

Table 1. Initial tableau for Example I 

                             ܲ 
      ܦ                            
 ↓஻     ஻ܲ     Basisܦ   

2 
1 

1 
-2 

3 
1 

1 
-1 

0 
0 

0 
0 

0 
0 

 
 

 
b 

x1 x2 x3 x4 S1 S2 S3  

    0        0            ଵܵ 
    0        0            ܵଶ 
    0        0            ܵଷ 

2 
-1 
3 

2 
2 
1 

-1 
-3 
1 

-1 
-1 
-1 

1 
0 
0 

0 
1 
0 

0 
0 
1 

 
 
 

 2 
-1 
 3 

                            ∆௝
ᇱ                  

                           ∆௝
ᇱᇱ                   

2 
1 

1 
-2 

3 
1 

1 
-1 

0 
0 

0 
0 

0 
0 

 
 

 
Q = 0 

        ∆௝ൌ ∆௝
ᇱ െ ܳ∆௝

ᇱᇱ 2 1 3 1 0 0 0   

 

Since all the  ∆௝’s are non negative and ܾଶ is negative so the 
problem is dual feasible. 

Iteration 0:  For ܬ଴ ൌ ,׎ തܳ ൌ ∞, 

ሺ ଵܵ
଴, ܵଶ

଴, ܵଷ
଴ሻ ൌ ሺ2, െ1,3ሻ             
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Since the constraint coefficient of ݔଶ corresponding to the 
negative slack variable is nonnegative, ݔଶ is excluded by 
test 1. By test 3, ଴ܰ ൌ ሼ1,3,4ሽ cannot be abandoned because 

ܵଶ : െ 1 െ 3 െ 1 ൌ െ4 ൏ െ1 

By test 4,   ݒଵ
଴ ൌ 0 ൅ 0 ൅ 0 ൌ 0;  

ଷݒ   
଴ ൌ 0 ൅ ሺെ1 െ 2ሻ ൅ 0 ൌ െ3;   

ସݒ   
଴ ൌ 0 ൅ 0 ൅ 0 ൌ 0 

 max ௝ݒ
଴ ൌ 0, ݆ א ଴ܰ. This is a tie, choose ݇ ൌ 4, since ݔସ 

yields the minimum value of ܳሺݔሻ. 

Iteration 1: For ܬଵ ൌ ሼ4ሽ, തܳ ൌ ଵ
ହ
, 

 ሺ ଵܵ
ଵ, ܵଶ

ଵ, ܵଷ
ଵሻ ൌ ሺ2 ൅ 1, െ1 ൅ 1,3 ൅ 1ሻ 

      ൌ ሺ3,0,4ሻ    ܳଵ ൌ 1/5.   

Since it is feasible,  തܳ ൌ ܳଵ ൌ 1/5. No  

other variables are promising to improve the current value 
of the objective function so ܬଵ is fathomed. 

Iteration 2: For ܬଶ ൌ ሼെ4ሽ, തܳ ൌ 1/5, 

ሺ ଵܵ
ଶ, ܵଶ

ଶ, ܵଷ
ଶሻ ൌ ሺ2, െ1,3ሻ, ܳଶ ൌ 0        

If we elevate ݔଵ to level one then we will obtain ܳ ൌ 2/7, 
which is greater than തܳ (upper bound of ܳ). So, by test 2, 
discard ݔଵ. Similarly substitution of ݔଷ ൌ 1 would give the 
value of ܳ greater than തܳ. Thus test 2 also excludes ݔଷ. 
Hence ܬଶ is fathomed. Since the element of ܬଶ is negative, 
the enumeration is complete and  ܬଵ is optimal. Therefore, 
the solution of the given example is ሺ0,0,0,1ሻ with min ܳ ൌ
1/5. 

We now present a real life example which illustrates the 
application of the method. The problem has been formulated 
using the model of set covering problem (SCP) for LFP1. 
We have used the Section II and III to solve this problem. 

Example II:  Installing Fire Stations at Different Cities 

 Suppose there are six cities (cities 1-6) in the district. The 
district is reviewing the location of its fire stations. In each 
city the investments required to build fire stations differ 
from one another. The investments required in each city are 
shown in table 2. The district must determine where to build 
fire stations. The fire station can be placed in any city but 
the district wants to build the stations such that at least one 
fire station be within 15 minutes (driving time) of each city 
and the total cost invested per number of stations built be 
minimal. The times (in minutes) required to drive between 
the cities in the district are shown in table 3. 

For each city we must define one variable 

௝ݔ    ൌ 0 or 1, ݆ ൌ 1,2, … ,6. This variable ݔ௝ 

  will be 1 if we place a station in city ݆, and 

  will be 0 otherwise. Then the problem can be 

  formulated as follows: 

Miniimize    ܳሺݔሻ          

ൌ
ଵݔ12 ൅ ଶݔ14 ൅ ଷݔ9 ൅ ସݔ16 ൅ ହݔ5 ൅ ଺ݔ8

ଵݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ
 

    Subject to 

ଵݔ                             ൅ ଶݔ                                ൒ 1                                         
ଵݔ                              ൅ ଶݔ                      ൅ ଺ݔ ൒ 1 

ଷݔ                                          ൅ ସݔ                  ൒ 1           

ଷݔ                                          ൅ ସݔ ൅ ହݔ        ൒ 1  

ସݔ                                                ൅ ହݔ ൅ ଺ݔ ൒ 1     

ଶݔ                                                  ൅ ହݔ ൅ ଺ݔ ൒ 1  

௝ݔ                                ൌ 0 or 1,  ݆ ൌ 1,2,3, … ,6  

Table 2. Investment required in the city 

 

Table 3. Driving time in minutes 

   City 1   City 2   City 3  City 4  City 5   City 6 

  City 1     0     10     20     30     30     20 

  City 2    10      0     25     35     20     10 

  City 3    20     25      0     15     30     20 

  City 4    30     35     15      0     15     25 

  City 5    30     20     30     15      0     14 

 City 6  20   10   20    25   14     0 

 
 City 1 City 2  City 3 City 4 City 5 City 6 
Millions(taka)   12   14     9    16    5    8 
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As required in additive algorithm that all the constraints 
must be less than or equal ሺ൑ሻ form. The constraints of the 
given SCP problem must be converted to ‘൑’ form to start 
with the dual feasibility. To do this, multiply each constraint 
by -1. Also all the coefficients at the numerator of the 
objective function is nonnegative. Then introducing slack 
variables ሺ ଵܵ, ܵଶ, ܵଷ, ܵସ, ܵହ, ܵ଺ሻ to the constraints, we get the 
following problem which is dual feasible at the initial stage: 

Minimize    ܳሺݔሻ

ൌ
ଵݔ12 ൅ ଶݔ14 ൅ ଷݔ9 ൅ ସݔ16 ൅ ହݔ5 ൅ ଺ݔ8

ଵݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ
                     

Subject to    

                          െݔଵ െ ଶݔ ൅ ଵܵ ൌ െ1  

                 െݔଵ െ ଶݔ െ ଺ݔ ൅ ܵଶ ൌ െ1  

                        െݔଷ െ ସݔ ൅  ܵଷ ൌ െ1           

                 െݔଷ െ ସݔ െ ହݔ ൅ ܵସ ൌ െ1          

                 െݔସ െ ହݔ െ ଺ݔ ൅ ܵହ ൌ െ1     

                 െݔଶ െ ହݔ െ ଺ݔ ൅ ܵ଺ ൌ െ1  

௝ݔ                 ൌ 0 or 1,  ݆ ൌ 1,2,3, … ,6  

Now let us apply the procedure for solving 0-1 ILFP 
proposed in Section III.  

 

Iteration 0: For  ܬ଴ ൌ ,׎ ܳ ൌ ∞,  

(ܳ represents the current best upper bound 

 of  the objective function)  

ሺ ଵܵ
଴, ܵଶ

଴, ܵଷ
଴, ܵସ

଴, ܵହ
଴, ܵ଺

଴ሻ ൌ ሺെ1, െ1, െ1, െ1, െ1, െ1ሻ, ܳ଴ ൌ 0   

By test 3, ଴ܰ ൌ ሼ1,2,3,4,5,6ሽ cannot be abandoned because, 

ଵܵ ׷   െ1 െ 1 ൌ െ2 ൏ െ1; 

ܵଶ ׷   െ1 െ 1 െ 1 ൌ െ3 ൏ െ1;                      

ܵଷ ׷   െ1 െ 1 ൌ െ2 ൏ െ1;                                                     
ܵସ ׷   െ1 െ 1 െ 1 ൌ െ3 ൏ െ1; 

ܵହ ׷   െ1 െ 1 െ 1 ൌ െ3 ൏ െ1; 

ܵ଺ ׷   െ1 െ 1 െ 1 ൌ െ3 ൏ െ1  

By test 4,  ݒଵ
଴ ൌ െ4, ଶݒ

଴ ൌ െ3,   ݒଷ
଴ ൌ െ4, ସݒ

଴ ൌ െ3, ହݒ
଴ ൌ

െ3, ଺ݒ
଴ ൌ െ3 

Now  max ௝ݒ 
଴ ൌ െ3, ݆ א ଴ܰ which occurs for  

ଶݒ
଴, ସݒ 

଴ & ݒହ
଴, ଺ݒ 

଴. Choose ݇ ൌ 5 since, ݔହ ൌ 1 gives the 
minimum value of ܳሺݔሻ among the variables ݔଶ, ,ସݔ ,ହݔ    .଺ݔ

Iteration 1: For ܬଵ ൌ ሼ5ሽ, ܳ ൌ ∞,    

ሺ ଵܵ
ଵ, ܵଶ

ଵ, ܵଷ
ଵ, ܵସ

ଵ, ܵହ
ଵ, ܵ଺

ଵሻ ൌ ሺെ1, െ1, െ1,0,0,0ሻ 

ܳଵ  ൌ 5 

By test 3, ଵܰ ൌ ሼ1,2,3,4,6ሽ cannot be abandoned because in 
this case, 

ଵܵ ׷   െ2 ൏ െ1;  ܵଶ ൌ  ׷ െ3 ൏ െ1; 

ܵଷ ൌ  ׷ െ2 ൏ െ1;  ܵସ ൌ  ׷ െ2 ൏ 0; 

ܵହ ൌ  ׷ െ2 ൏ 0; ܵ଺ ൌ  ׷ െ2 ൏ 0.   

By test 4,   

ଵݒ
ଵ ൌ െ1, ଶݒ

ଵ ൌ െ1, ଷݒ
ଵ ൌ െ2, ସݒ

ଵ  െ 2, 

଺ݒ
ଵ ൌ െ2. 

Now max ௝ݒ 
ଵ ൌ െ1, ݆ א ଵܰ which occurs for  ݒଵ

ଵ& ݒଶ
ଵ . 

Choose ݇ ൌ 1 since ݔଵ ൌ 1 yields the minimum value of 
ܳሺݔሻ. 

Iteration 2: For ܬଶ ൌ ሼ5,1ሽ, ܳ ൌ ∞,   

 ሺ ଵܵ
ଶ, ܵଶ

ଶ, ܵଷ
ଶ, ܵସ

ଶ, ܵହ
ଶ, ܵ଺

ଶሻ 

                         ൌ ሺെ1 ൅ 1, െ1 ൅ 1, െ1,0,0,0ሻ 

 ൌ ሺ0,0, െ1,0,0,0ሻ, ܳଶ ൌ 17/2.  By test 3, ଶܰ ൌ ሼ2,3,4,6ሽ 
cannot be abandoned. 

By test 4,   ݒଶ
ଶ ൌ െ1, ଷݒ

ଶ ൌ 0, ସݒ
ଶ ൌ 0, and 

଺ݒ
ଶ ൌ െ1.                                                       

Now max ௝ݒ 
ଶ ൌ 0, ݆ א ଶܰ which occurs for  ݒଷ

ଶ& ݒସ
ଶ . 

Choose ݇ ൌ 3 since ݔଷ ൌ 1 yields the minimum value of 
ܳሺݔሻ. 

Iteration 3: For ܬଷ ൌ ሼ5,1,3ሽ, 

ሺ ଵܵ
ଷ, ܵଶ

ଷ, ܵଷ
ଷ, ܵସ

ଷ, ܵହ
ଷ, ܵ଺

ଷሻ ൌ ሺ0,0,0,0,0,0ሻ,   

ܳଷ ൌ 26/3 

This is feasible. But, this partial feasible solution may not be 
fathomed because elevation of some other variables to level 
one may give the value of ܳ less than ܳଷ satisfying all the 
constraints. Now we look for those variables.  

a) Elevation of ݔଶ to level one yields ܳ ൌ 10, which is 
greater than ܳଷ 

b) Elevation of ݔସ to level one yields ܳ ൌ 42/4, which is 
greater than ܳଷ 

c) Elevation of ݔ଺ to level one yields ܳ ൌ 17/2, which is 
less than ܳଷ 

Therefore, ݔ଺ can be elevated to level one since it gives the 
value of ܳ less than ܳଷ. Now test whether elevation ݔ଺ 
together with the partial solution ܬଷ satisfies all the 
constraints.  

ሺ ଵܵ
ଷ, ܵଶ

ଷ, ܵଷ
ଷ, ܵସ

ଷ, ܵହ
ଷ, ܵ଺

ଷሻ 

        ൌ ሺ0,0 ൅ 1,0,0,0 ൅ 1,0 ൅ 1ሻ 

ൌ ሺ0,1,0,0,0,1,1ሻ             
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This is still feasible. Thus, select ݔ଺ to level one and rewrite 
the partial solution ܬଷ as 

ଷܬ ൌ ሼ5,1,3,6ሽ with ܳ ൌ 17/2. Hence, ܬଷ is fathomed. 

Iteration 4: For ܬସ ൌ ሼ5,1, െ3, െ6ሽ, ܳ ൌ ଵ଻
ଶ

, 

ሺ ଵܵ
ସ, ܵଶ

ସ, ܵଷ
ସ, ܵସ

ସ, ܵହ
ସ, ܵ଺

ସሻ ൌ ሺ0,0, െ1,0,0,0ሻ, 

ܳସ ൌ 17/2.        

Now by test 2, we discard ݔଶ and ݔସ because elevation of ݔଶ 
or ݔସ to level one yields the value of ܳ greater than ܳ ൌ
17/2. So ସܰ ൌ  .ସ is fathomedܬ ,and hence ׎

Iteration 5: For ܬହ ൌ ሼ5, െ1, െ3, െ6ሽ, 

ܳ ൌ
17
2

, ሺ ଵܵ
ହ, ܵଶ

ହ, ܵଷ
ହ, ܵସ

ହ, ܵହ
ହ, ܵ଺

ହሻ 

ൌ ሺ0,0, െ1,0,0,0ሻ, ܳହ ൌ 5. 

Test 2 discards ݔଶ and ݔସ again. So ହܰ ൌ  ହ isܬ ,and hence ׎
fathomed. 

Iteration 6: For ܬ଺ ൌ ሼെ5, െ1, െ3, െ6ሽ, ܳ ൌ 17/2. 

Clearly, this partial is not promising any more. Therefore, ܬ଺ 
is fathomed. Since all the elements of  ܬ଺ are negative, the 
enumeration is complete and  ܬଷ is optimal.  

Thus, the solution of the given SCP is (1, 0, 1, 0, 1, 1) with 
min ܳ ൌ 17/2.  

V.  Conclusion 

In this paper, the additive algorithm has been used for 
solving a class of 0-1 ILFP where all the coefficients ݌௝ at 
the numerator of the objective function are of same sign. 
The process is easy to understand and doesn’t require the 
simplex algorithm. Future work should extend the process 
for solving any kind of 0-1 ILFP using the additive 
algorithm. 
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