
Dhaka Univ. J. Sci. 61(2): 173-178, 2013 (July)

Additive Algorithm for Solving 0-1 Integer Linear Fractional Programming Problem
Md. Rajib Arefin, Touhid Hossain and Md. Ainul Islam*

Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh

(Received: 9 September 2012; Accepted: 6 March 2013)

Abstract
In this paper, we present additive algorithm for solving a class of 0-1 integer linear fractional programming problems (0-1 ILFP) where all
the coefficients at the numerator of the objective function are of same sign. The process is analogous to the process of solving 0-1 integer
linear programming (0-1 ILP) problem but the condition of fathoming the partial feasible solution is different from that of 0-1 ILP. The
procedure has been illustrated by two examples.

Key words: 0-1 Integer programming, Dual feasibility, Implicit enumeration.

I. Introduction

An integer programming where all the variables are restricted
to a value of 0 or 1 is called 0-1 integer programming or
binary programming. Binary variables bear immense
importance because they occur regularly in many model
formulations, such as set covering problem, assignment
problem, traveling salesperson problem, capital budgeting
problem, knapsack problem, timetabling problem etc. Several
methods have been developed for solving 0-1 integer
programming problems. Techniques available for solving the
0-1 integer programming problem include algorithms of
Glass7, Balas3, Glover8, Lawler and Bell10, Geoffrion6,
Lemke and Spielberg11 etc. These algorithms are enumerative
and developed for solving zero-one Integer Linear Programs
(ILP). But often we may have to deal with some problem
where the objective function is the ratio of two linear
functions called Linear Fractional Programming (LFP)
problem. A Linear Programming (LP) computes a policy
delivering the best outcome, such as maximum profit or
lowest cost whereas a LFP is used to achieve the
highest ratio of outcome to cost; the ratio represents the
highest efficiency. Therefore, LFP is sometimes more
informative than LP. Our purpose is to solve such types of
problem using an enumerative algorithm. In this paper, we
have used additive algorithm of Balas3 for solving a class of
0-1 ILFP problems. Balas developed this algorithm for
solving 0-1 integer linear programs. Puri and Swarup12
suggested the extreme point mathematical programming
technique for solving 0-1 ILP as well as ILFP. The extreme
point mathematical programming is mainly based on simplex
algorithm. But the additive algorithm does not require the
simplex algorithm. The general idea of additive algorithm is
to enumerate (implicitly) all 2௡ possible solutions of a
problem. The first requirement of this algorithm is dual
feasibility. Initially, it is easier to obtain the dual feasibility
of any LP problem but it is difficult for LFP problem. The
main challenge in LFP is to obtain the dual feasibility at the

initial stage. In this paper, we consider a class of 0-1 ILFP as
follows:

Minimize ܳሺݔሻ ൌ
∑ ௝ݔ௝݌

௡
௝ୀଵ

∑ ௝݀ݔ௝ ൅ ݀଴
௡
௝ୀଵ

, ሺ1.1ሻ

 (all ݌௝ are of same sign)

 Subject to

 ෍ ܽ௜௝ݔ௝ሺ൑, ൒ሻܾ௜

௡

௝ୀଵ

, ݅ ൌ 1,2, … , ݉ ሺ1.2ሻ

௝ݔ ൌ 0 or 1 for all ݆ (1.3)

In the Section III, theoretically we have shown that, dual
feasibility can be obtained from (1.1)-(1.3). Many real life
oriented models can be formulated with this type of
structure such as set covering problem1. In the next Section,
we summarize the idea of additive algorithm.

II. Summary of Additive Algorithm for Solving 0-1 ILP
Developed by E. Balas

For the purpose of this algorithm, the continuous version of
the 0-1 problem must start with the dual-feasibility, that is,
optimal but not feasible. Moreover, all the constraints must
be of ൑ type. This format can be achieved as follows:
Let the problem be of the minimization type (there is no loss
of generality here) and define it as

Minimize ݖ ൌ ∑ ௝ܿݔ௝
௡
௝ୀଵ , all ௝ܿ ൒ 0 (2.1)

Subject to

∑ ܽ௜௝ݔ௝ ൅ ௜ܵ ൌ ܾ௜
௡
௝ୀଵ , ݅ ൌ 1,2, … , ݉ (2.2)

௝ݔ ൌ 0 or 1 for all ݆

௜ܵ ൒ 0, for all ݅.

Where, ௜ܵ is the slack variable associated with the ݅th
constraint. The continuous version of foregoing problem is
dual feasible if every ௝ܿ ൒ 0. Any ௝ܿ ൏ 0 can be converted
to the desired format by complementing the variable ݔ௝, that
is, by substituting ݔ௝ ൌ 1 െ ௝ݔ

ᇱ, where ݔ௝
ᇱ is a binary variable,

in the objective function and constraints. If in addition to
dual feasibility, the problem is primal-feasible, nothing

*Author for Correspondence, e-mail: mainul_51@yahoo.com

174 Arefin et al.

more need to be done, since the minimum, in terms of new
variables is achieved by assigning zero values to all the
variables. However, if it is primal infeasible, the additive
algorithm is used to find the optimum. The general idea of
the additive algorithm is to enumerate all 2௡ possible
solutions of the problem. However, it recognizes that some
solutions can be discarded automatically without being
investigated implicitly. Hence, in the final analysis, only a
portion of the 2௡ solutions need to be investigated
explicitly.

In terms of the given zero-one problem (2.1)-(2.2), this idea
is implemented as follows: Initially, assume that all the
variables are at zero level. This is logical, since all ௝ܿ ൒ 0.
Since the corresponding solution is not feasible (i.e. some
slack variables ௜ܵ may be negative), it will be necessary to
elevate some variables to level one. The procedure calls for
elevating one (or perhaps more) variable at a time, provided
there is evidence that this step will be moving the solution
toward feasibility, that is, making ௜ܵ ൒ 0 for all ݅. Balas3
developed a number of tests to ensure the proper selection of
the variables to be elevated to level one. The following
terms are needed to describe these tests.

Free variable: A free variable is initially at zero level but
may be elevated to level one if this can improve the
infeasibility of the problem.

Partial solution: A partial solution provides a specific
binary assignment for some of the variables in the sense that
it fixes the values of one or more variables at zero or one. A
convenient way to summarize this information for the
purpose of the (Branch and Bound) algorithm is to express
the partial solution as an ordered set. Let ܬ௧ represent the
partial solution at the ݐth node (or iteration), and let the
notation ൅݆ሺെ݆ሻ represent ݔ௝ ൌ 1 ሺݔ௝ ൌ 0ሻ. Thus the
elements of ܬ௧ consist of the subscripts of the fixed variables
with the plus (minus) sign signifying that the variable is one
(zero). The set ܬ௧ must be ordered in the sense that each new
element is always augmented on the right of the partial
solution.

A partial solution is said to be fathomed if

1. It cannot lead to a better value of the objective function.
2. It cannot lead to a feasible solution.

When all the elements of a fathomed partial solution are
negative, the associated variables would have been
considered at both zero and one levels. As a result, there are
no more branches to consider and the enumeration is
complete. The general version of the additive algorithm is
now presented by the concept of partial solutions. The
exclusion tests used to fathom partial solutions and augment
new variables at level one are also generalized for the zero-
one problem.

Consider the binary problem (2.1)-(2.2). Let ܬ௧ be the partial
solution at node ݐ (initially, ܬ଴ ൌ which means that all ,׎

variables are free) and assume ݖ௧ is the associated value of ݖ
while ݖҧ is the current best upper bound (initially ݖҧ ൌ ∞). Balas
[3] developed the following four tests to ensure the proper
selection of the variables to be elevated to level one.

Test 1: For any free variable ݔ௥, if ܽ௜௥ ൒ 0 for all ݅
corresponding to ௜ܵ

௧ ൏ 0, then ݔ௥ cannot improve the
infeasibility of the problem and must be discarded as non
promising.

Test 2: For any free variable ݔ௥, if ܿ௥ ൅ ௧ݖ ൒ ௥ݔ ҧ thenݖ
cannot lead to an improved solution and hence must be
discarded.

Test 3: Consider the ݅th constraint ܽ௜ଵݔଵ ൅ ܽ௜ଶݔଶ ൅ ڮ ൅
ܽ௜௡ݔ௡ ൅ ௜ܵ ൌ ܾ௜, for which ௜ܵ

௧ ൏ 0. Let ௧ܰ define the set of
free variables not discarded by test 1 and 2. None of the free
variable in ௧ܰ are promising if for at least one ௜ܵ

௧ ൏ 0, the
following condition is satisfied:
∑ min ሼ0, ܽ௜௝ሽ௝אே೟ ൐ ௜ܵ

௧. This actually says that the set ௧ܰ
cannot lead to a feasible solution and hence must be
discarded altogether. In this case, ܬ௧ is said to be fathomed.

Test 4: If ௧ܰ ് ௞ is selected asݔ the branching variable ,׎
the one corresponding to

௞ݒ
௧ ൌ max ሼݒ௝

௧ሽ , ݆ א ௧ܰ,

where, ݒ௝
௧ ൌ ∑ min ሼ0, ௜ܵ

௧ െ ܽ௜௝ሽ௠
௜ୀଵ .

If ݒ௞
௧ ൌ 0, ௞ݔ ൌ 1 together with ܬ௧ yields an improved

feasible solution. In this case, ܬ௧ାଵ, which is defined by ܬ௧
with ሼ݇ሽ augmented on the right, is fathomed. Otherwise,
the foregoing tests are applied again to ܬ௧ାଵ until the
enumeration is completed, that is, until all the elements of
the fathomed partial solution are negative.

In the following section, we generalize the additive
algorithm for solving a 0-1 ILFP.

III. Additive Algorithm for Solving 0-1 ILFP

Before using the additive algorithm for solving a 0-1 ILFP,
we have to ensure the dual feasibility of that problem. In this
section, theoretically it has been shown that dual feasibility
can be obtained from the problem (1.1)-(1.3). Introducing
slack variables we obtain the following from (1.1)-(1.3):

 Minimize ܳሺݔሻ ൌ
∑ ௣ೕ௫ೕ

೙
ೕసభ

∑ ௗೕ௫ೕାௗబ
೙
ೕసభ

, (3.1)

 (all ݌௝ are of same sign)

Subject to

 ∑ ܽ௜௝ݔ௝ ൅ ௜ܵ ൌ ܾ௜
௡
௝ୀଵ , ݅ ൌ 1,2, … , ݉ (3.2)

௝ݔ ൌ 0 or 1 for all ݆ (3.3)

Where ௜ܵ , ݅ ൌ 1,2, … , ݉ are the slack variables and ௜ܵ ൒ 0,
for all ݅.

This is a minimization problem, so at the initial tableau all
of the reduced cost factors (i.e. ∆௝) should be ൒ 0 to obtain

Additive Algorithm for Solving 0-1 Integer Linear Fractional Programming Problem 175

the dual feasibility. From (3.1) and (3.2) it is clear that
initially ݔ௝ ൌ 0, for ݆ ൌ 1,2, … , ݊. Thus ܳሺݔሻ becomes zero.
Thus, from Bajalinov2 we obtain the reduced cost factor ∆௝
of the problem (3.1)-(3.2) as;

 ∆௝ሺݔሻ ൌ ሺ∆௝
ᇱ െ ܳሺݔሻ∆௝

ᇱᇱሻ (3.4)

Where ∆௝
ᇱൌ ௝݌ െ ∑ ௜௝ݔ௦೔݌

௠
௜ୀଵ ,

∆௝
ᇱᇱൌ ௝݀ െ ∑ ݀௦೔ݔ௜௝

௠
௜ୀଵ . ∆௝

ᇱ and ∆௝
ᇱᇱ are referred to as reduced

cost of numerator and denominator respectively. Equation
(3.4) yields that

∆௝ሺݔሻ ൌ ∆௝
ᇱ െ 0, since ܳሺݔሻ ൌ 0,

i. e. ∆௝ሺݔሻ ൌ ௝݌ െ ∑ ௜௝ݔ௦೔݌
௠
௜ୀଵ (3.5)

where, ݌௦೔ are the coefficients of the basic variables at the
numerator of the objective function (3.1). Since ݌௦೔ ൌ 0 at
the initial stage of the problem (3.1)-(3.3) for all ݅, we
obtain from (3.5) that ∆௝ൌ ,௝݌ ݆ ൌ 1,2, … , ݊. It was assumed
in (3.1) that ݌௝ ൒ 0 for all ݆.

So ∆௝ሺݔሻ ൒ 0 for all ݆. Therefore, the dual feasibility of the
problem (3.1)-(3.3) is guaranteed.

Once dual feasibility of the problem (3.1)-(3.3) is
guaranteed, additive algorithm can be used to obtain the
optimal solution of the problem (1.1)-(1.3). That is, the four
tests of the Section II can be incorporated to the problem
(3.1)-(3.3). The condition for fathoming a partial feasible
solution for 0-1 ILFP is given in the next section.

IV. Condition of Fathoming Partial Feasible Solution for
0-1 ILFP

It should be noted here that the condition for fathoming a
partial feasible solution in 0-1 ILFP is different from the
case of 0-1 ILP. In case of 0-1 ILP, a partial solution is
fathomed if it yields a feasible solution, because elevation of

another variable to level one together with current partial
feasible solution gives the value of the objective function
greater than the current value of the objective function
(minimization problem). On the other hand, a partial
feasible solution of 0-1 ILFP does not guarantee that the
solution can be fathomed, since elevation of another
variable to level one together with the current feasible
partial solution may increase or decrease the value of the
objective function with satisfying all the constraints. The
objective function in 0-1 ILFP is the ratio of two linear
functions, so if a variable is elevated to level one it may
increase or decrease the value of the objective function
because of the effect of its coefficients at the numerator and
denominator. This is why, fathoming a partial feasible
solution in 0-1 ILFP is different from the case of 0-1 ILP.
This difference has been discussed in iteration 3 of example
II.

Now let us illustrate the above procedure by two examples.

 :ܫ ݈݁݌݉ܽݔܧ

Minimize ܳሺݔሻ ൌ
ଵݔ2 ൅ ଶݔ ൅ ଷݔ3 ൅ ସݔ

ଵݔ െ ଶݔ2 ൅ ଷݔ െ ସݔ ൅ 6

 Subject to

ଵݔ2 ൅ ଶݔ2 െ ଷݔ െ ସݔ ൑ 2

ଵݔ െ ଶݔ2 ൅ ଷݔ3 ൅ ସݔ ൒ 1

ଵݔ ൅ ଶݔ ൅ ଷݔ െ ସݔ ൑ 3

,ଵݔ ,ଶݔ ,ଷݔ . ସ are binaryݔ

Since the second constraint is " ൒ " type, multiply the
constraint by െ1. Then introducing slack variables ଵܵܵଶ, ܵଷ
we get

the following table 1:

Table 1. Initial tableau for Example I

 ܲ
 ܦ
 ↓஻ ஻ܲ Basisܦ

2
1

1
-2

3
1

1
-1

0
0

0
0

0
0

b

x1 x2 x3 x4 S1 S2 S3

 0 0 ଵܵ
 0 0 ܵଶ
 0 0 ܵଷ

2
-1
3

2
2
1

-1
-3
1

-1
-1
-1

1
0
0

0
1
0

0
0
1

 2
-1
 3

 ∆௝
ᇱ

 ∆௝
ᇱᇱ

2
1

1
-2

3
1

1
-1

0
0

0
0

0
0

Q = 0

 ∆௝ൌ ∆௝
ᇱ െ ܳ∆௝

ᇱᇱ 2 1 3 1 0 0 0

Since all the ∆௝’s are non negative and ܾଶ is negative so the
problem is dual feasible.

Iteration 0: For ܬ଴ ൌ ,׎ തܳ ൌ ∞,

ሺ ଵܵ
଴, ܵଶ

଴, ܵଷ
଴ሻ ൌ ሺ2, െ1,3ሻ

176 Arefin et al.

Since the constraint coefficient of ݔଶ corresponding to the
negative slack variable is nonnegative, ݔଶ is excluded by
test 1. By test 3, ଴ܰ ൌ ሼ1,3,4ሽ cannot be abandoned because

ܵଶ : െ 1 െ 3 െ 1 ൌ െ4 ൏ െ1

By test 4, ݒଵ
଴ ൌ 0 ൅ 0 ൅ 0 ൌ 0;

ଷݒ
଴ ൌ 0 ൅ ሺെ1 െ 2ሻ ൅ 0 ൌ െ3;

ସݒ
଴ ൌ 0 ൅ 0 ൅ 0 ൌ 0

 max ௝ݒ
଴ ൌ 0, ݆ א ଴ܰ. This is a tie, choose ݇ ൌ 4, since ݔସ

yields the minimum value of ܳሺݔሻ.

Iteration 1: For ܬଵ ൌ ሼ4ሽ, തܳ ൌ ଵ
ହ
,

 ሺ ଵܵ
ଵ, ܵଶ

ଵ, ܵଷ
ଵሻ ൌ ሺ2 ൅ 1, െ1 ൅ 1,3 ൅ 1ሻ

 ൌ ሺ3,0,4ሻ ܳଵ ൌ 1/5.

Since it is feasible, തܳ ൌ ܳଵ ൌ 1/5. No

other variables are promising to improve the current value
of the objective function so ܬଵ is fathomed.

Iteration 2: For ܬଶ ൌ ሼെ4ሽ, തܳ ൌ 1/5,

ሺ ଵܵ
ଶ, ܵଶ

ଶ, ܵଷ
ଶሻ ൌ ሺ2, െ1,3ሻ, ܳଶ ൌ 0

If we elevate ݔଵ to level one then we will obtain ܳ ൌ 2/7,
which is greater than തܳ (upper bound of ܳ). So, by test 2,
discard ݔଵ. Similarly substitution of ݔଷ ൌ 1 would give the
value of ܳ greater than തܳ. Thus test 2 also excludes ݔଷ.
Hence ܬଶ is fathomed. Since the element of ܬଶ is negative,
the enumeration is complete and ܬଵ is optimal. Therefore,
the solution of the given example is ሺ0,0,0,1ሻ with min ܳ ൌ
1/5.

We now present a real life example which illustrates the
application of the method. The problem has been formulated
using the model of set covering problem (SCP) for LFP1.
We have used the Section II and III to solve this problem.

Example II: Installing Fire Stations at Different Cities

 Suppose there are six cities (cities 1-6) in the district. The
district is reviewing the location of its fire stations. In each
city the investments required to build fire stations differ
from one another. The investments required in each city are
shown in table 2. The district must determine where to build
fire stations. The fire station can be placed in any city but
the district wants to build the stations such that at least one
fire station be within 15 minutes (driving time) of each city
and the total cost invested per number of stations built be
minimal. The times (in minutes) required to drive between
the cities in the district are shown in table 3.

For each city we must define one variable

௝ݔ ൌ 0 or 1, ݆ ൌ 1,2, … ,6. This variable ݔ௝

 will be 1 if we place a station in city ݆, and

 will be 0 otherwise. Then the problem can be

 formulated as follows:

Miniimize ܳሺݔሻ

ൌ
ଵݔ12 ൅ ଶݔ14 ൅ ଷݔ9 ൅ ସݔ16 ൅ ହݔ5 ൅ ଺ݔ8

ଵݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ

 Subject to

ଵݔ ൅ ଶݔ ൒ 1
ଵݔ ൅ ଶݔ ൅ ଺ݔ ൒ 1

ଷݔ ൅ ସݔ ൒ 1

ଷݔ ൅ ସݔ ൅ ହݔ ൒ 1

ସݔ ൅ ହݔ ൅ ଺ݔ ൒ 1

ଶݔ ൅ ହݔ ൅ ଺ݔ ൒ 1

௝ݔ ൌ 0 or 1, ݆ ൌ 1,2,3, … ,6

Table 2. Investment required in the city

Table 3. Driving time in minutes

 City 1 City 2 City 3 City 4 City 5 City 6

 City 1 0 10 20 30 30 20

 City 2 10 0 25 35 20 10

 City 3 20 25 0 15 30 20

 City 4 30 35 15 0 15 25

 City 5 30 20 30 15 0 14

 City 6 20 10 20 25 14 0

 City 1 City 2 City 3 City 4 City 5 City 6
Millions(taka) 12 14 9 16 5 8

Additive Algorithm for Solving 0-1 Integer Linear Fractional Programming Problem 177

As required in additive algorithm that all the constraints
must be less than or equal ሺ൑ሻ form. The constraints of the
given SCP problem must be converted to ‘൑’ form to start
with the dual feasibility. To do this, multiply each constraint
by -1. Also all the coefficients at the numerator of the
objective function is nonnegative. Then introducing slack
variables ሺ ଵܵ, ܵଶ, ܵଷ, ܵସ, ܵହ, ܵ଺ሻ to the constraints, we get the
following problem which is dual feasible at the initial stage:

Minimize ܳሺݔሻ

ൌ
ଵݔ12 ൅ ଶݔ14 ൅ ଷݔ9 ൅ ସݔ16 ൅ ହݔ5 ൅ ଺ݔ8

ଵݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ ହݔ ൅ ଺ݔ

Subject to

 െݔଵ െ ଶݔ ൅ ଵܵ ൌ െ1

 െݔଵ െ ଶݔ െ ଺ݔ ൅ ܵଶ ൌ െ1

 െݔଷ െ ସݔ ൅ ܵଷ ൌ െ1

 െݔଷ െ ସݔ െ ହݔ ൅ ܵସ ൌ െ1

 െݔସ െ ହݔ െ ଺ݔ ൅ ܵହ ൌ െ1

 െݔଶ െ ହݔ െ ଺ݔ ൅ ܵ଺ ൌ െ1

௝ݔ ൌ 0 or 1, ݆ ൌ 1,2,3, … ,6

Now let us apply the procedure for solving 0-1 ILFP
proposed in Section III.

Iteration 0: For ܬ଴ ൌ ,׎ ܳ ൌ ∞,

(ܳ represents the current best upper bound

 of the objective function)

ሺ ଵܵ
଴, ܵଶ

଴, ܵଷ
଴, ܵସ

଴, ܵହ
଴, ܵ଺

଴ሻ ൌ ሺെ1, െ1, െ1, െ1, െ1, െ1ሻ, ܳ଴ ൌ 0

By test 3, ଴ܰ ൌ ሼ1,2,3,4,5,6ሽ cannot be abandoned because,

ଵܵ ׷ െ1 െ 1 ൌ െ2 ൏ െ1;

ܵଶ ׷ െ1 െ 1 െ 1 ൌ െ3 ൏ െ1;

ܵଷ ׷ െ1 െ 1 ൌ െ2 ൏ െ1;
ܵସ ׷ െ1 െ 1 െ 1 ൌ െ3 ൏ െ1;

ܵହ ׷ െ1 െ 1 െ 1 ൌ െ3 ൏ െ1;

ܵ଺ ׷ െ1 െ 1 െ 1 ൌ െ3 ൏ െ1

By test 4, ݒଵ
଴ ൌ െ4, ଶݒ

଴ ൌ െ3, ݒଷ
଴ ൌ െ4, ସݒ

଴ ൌ െ3, ହݒ
଴ ൌ

െ3, ଺ݒ
଴ ൌ െ3

Now max ௝ݒ
଴ ൌ െ3, ݆ א ଴ܰ which occurs for

ଶݒ
଴, ସݒ

଴ & ݒହ
଴, ଺ݒ

଴. Choose ݇ ൌ 5 since, ݔହ ൌ 1 gives the
minimum value of ܳሺݔሻ among the variables ݔଶ, ,ସݔ ,ହݔ .଺ݔ

Iteration 1: For ܬଵ ൌ ሼ5ሽ, ܳ ൌ ∞,

ሺ ଵܵ
ଵ, ܵଶ

ଵ, ܵଷ
ଵ, ܵସ

ଵ, ܵହ
ଵ, ܵ଺

ଵሻ ൌ ሺെ1, െ1, െ1,0,0,0ሻ

ܳଵ ൌ 5

By test 3, ଵܰ ൌ ሼ1,2,3,4,6ሽ cannot be abandoned because in
this case,

ଵܵ ׷ െ2 ൏ െ1; ܵଶ ൌ ׷ െ3 ൏ െ1;

ܵଷ ൌ ׷ െ2 ൏ െ1; ܵସ ൌ ׷ െ2 ൏ 0;

ܵହ ൌ ׷ െ2 ൏ 0; ܵ଺ ൌ ׷ െ2 ൏ 0.

By test 4,

ଵݒ
ଵ ൌ െ1, ଶݒ

ଵ ൌ െ1, ଷݒ
ଵ ൌ െ2, ସݒ

ଵ െ 2,

଺ݒ
ଵ ൌ െ2.

Now max ௝ݒ
ଵ ൌ െ1, ݆ א ଵܰ which occurs for ݒଵ

ଵ& ݒଶ
ଵ .

Choose ݇ ൌ 1 since ݔଵ ൌ 1 yields the minimum value of
ܳሺݔሻ.

Iteration 2: For ܬଶ ൌ ሼ5,1ሽ, ܳ ൌ ∞,

 ሺ ଵܵ
ଶ, ܵଶ

ଶ, ܵଷ
ଶ, ܵସ

ଶ, ܵହ
ଶ, ܵ଺

ଶሻ

 ൌ ሺെ1 ൅ 1, െ1 ൅ 1, െ1,0,0,0ሻ

 ൌ ሺ0,0, െ1,0,0,0ሻ, ܳଶ ൌ 17/2. By test 3, ଶܰ ൌ ሼ2,3,4,6ሽ
cannot be abandoned.

By test 4, ݒଶ
ଶ ൌ െ1, ଷݒ

ଶ ൌ 0, ସݒ
ଶ ൌ 0, and

଺ݒ
ଶ ൌ െ1.

Now max ௝ݒ
ଶ ൌ 0, ݆ א ଶܰ which occurs for ݒଷ

ଶ& ݒସ
ଶ .

Choose ݇ ൌ 3 since ݔଷ ൌ 1 yields the minimum value of
ܳሺݔሻ.

Iteration 3: For ܬଷ ൌ ሼ5,1,3ሽ,

ሺ ଵܵ
ଷ, ܵଶ

ଷ, ܵଷ
ଷ, ܵସ

ଷ, ܵହ
ଷ, ܵ଺

ଷሻ ൌ ሺ0,0,0,0,0,0ሻ,

ܳଷ ൌ 26/3

This is feasible. But, this partial feasible solution may not be
fathomed because elevation of some other variables to level
one may give the value of ܳ less than ܳଷ satisfying all the
constraints. Now we look for those variables.

a) Elevation of ݔଶ to level one yields ܳ ൌ 10, which is
greater than ܳଷ

b) Elevation of ݔସ to level one yields ܳ ൌ 42/4, which is
greater than ܳଷ

c) Elevation of ݔ଺ to level one yields ܳ ൌ 17/2, which is
less than ܳଷ

Therefore, ݔ଺ can be elevated to level one since it gives the
value of ܳ less than ܳଷ. Now test whether elevation ݔ଺
together with the partial solution ܬଷ satisfies all the
constraints.

ሺ ଵܵ
ଷ, ܵଶ

ଷ, ܵଷ
ଷ, ܵସ

ଷ, ܵହ
ଷ, ܵ଺

ଷሻ

 ൌ ሺ0,0 ൅ 1,0,0,0 ൅ 1,0 ൅ 1ሻ

ൌ ሺ0,1,0,0,0,1,1ሻ

178 Arefin et al.

This is still feasible. Thus, select ݔ଺ to level one and rewrite
the partial solution ܬଷ as

ଷܬ ൌ ሼ5,1,3,6ሽ with ܳ ൌ 17/2. Hence, ܬଷ is fathomed.

Iteration 4: For ܬସ ൌ ሼ5,1, െ3, െ6ሽ, ܳ ൌ ଵ଻
ଶ

,

ሺ ଵܵ
ସ, ܵଶ

ସ, ܵଷ
ସ, ܵସ

ସ, ܵହ
ସ, ܵ଺

ସሻ ൌ ሺ0,0, െ1,0,0,0ሻ,

ܳସ ൌ 17/2.

Now by test 2, we discard ݔଶ and ݔସ because elevation of ݔଶ
or ݔସ to level one yields the value of ܳ greater than ܳ ൌ
17/2. So ସܰ ൌ .ସ is fathomedܬ ,and hence ׎

Iteration 5: For ܬହ ൌ ሼ5, െ1, െ3, െ6ሽ,

ܳ ൌ
17
2

, ሺ ଵܵ
ହ, ܵଶ

ହ, ܵଷ
ହ, ܵସ

ହ, ܵହ
ହ, ܵ଺

ହሻ

ൌ ሺ0,0, െ1,0,0,0ሻ, ܳହ ൌ 5.

Test 2 discards ݔଶ and ݔସ again. So ହܰ ൌ ହ isܬ ,and hence ׎
fathomed.

Iteration 6: For ܬ଺ ൌ ሼെ5, െ1, െ3, െ6ሽ, ܳ ൌ 17/2.

Clearly, this partial is not promising any more. Therefore, ܬ଺
is fathomed. Since all the elements of ܬ଺ are negative, the
enumeration is complete and ܬଷ is optimal.

Thus, the solution of the given SCP is (1, 0, 1, 0, 1, 1) with
min ܳ ൌ 17/2.

V. Conclusion

In this paper, the additive algorithm has been used for
solving a class of 0-1 ILFP where all the coefficients ݌௝ at
the numerator of the objective function are of same sign.
The process is easy to understand and doesn’t require the
simplex algorithm. Future work should extend the process
for solving any kind of 0-1 ILFP using the additive
algorithm.

References

1. Arora, S.R., M.C. Puri, K. Swarup, 1977. The Set Covering
Problem with Linear Fractional Functional. Indian Journal of
Pure and Applied Mathematics, 8(5), 578-588.

2. Bajalinov, E. B., 2003. Linear Fractional Programming:
Theory, Methods, Applications and Software. Kluwer
Academic Publishers, Dordrecht, the Netherlands.

3. Balas, E. 1965. An Additive Algorithm for Solving Linear
Programs with Zero-One variables. Operations Research,
13(4), 517-546.

4. Balas, E. and E. Zemel, 1980. An algorithm for Large 0-1
Knapsack Problems. Operations Research, 28(5), 1130–1154.

5. Daskalaki, S., Birbas T. and Housos 2004. E. An Integer
Programming Formulation for a Case Study in University
Timetabling. European Journal of Operational Research,
153(1), 117–135.

6. Geoffrion, Arthur M., 1966. Integer Programming by Implicit
Enumeration and Balas’ Method. SIAM Rev., 9(2), 178–190.

7. Glass, Harvey, 1965. A Zero-One Algorithm”. Honeywell
Aeronaut. Div., Petersburg, Fla.

8. Glover, Fred 1965. A multiphase-dual algorithm for the zero-
one integer programming problem. Operations
Research,13(6), 879-919.

9. Hamdy, A., Taha, 2007. Operations Research: An Introduction,
8th ed. Pearson Education, Inc.

10. Lawler, E. L., and M. D. Bell, 1966. A Method for Solving
discrete optimization problems. Operations Research, 14(6),
1098-1112.

11. Lemke, C. E., and K. Spielberg, 1967. Direct Search Zero-
One and Mixed Integer Programming. Operations Research,
15(5), 892-914.

12. Puri, M. C., K. Swarup, 1974. “Extreme Point Linear
Fractional Functional Programming, Z. O. R., 18(3), 131-139.

