
Dhaka Univ. J. Sci. 68(1): 95- 99, 2020 (January) 

*Author for correspondence. e-mail: tsmallick@du.ac.bd 

Generalized Quasilikelihood Inference for Zero Inflated Longitudinal Count 

Data 

Jannatul Ferdous Antu, Sabina Sharmin and Taslim Sazzad Mallick
*
 

Department of Statistics, University of Dhaka, Dhaka-1000, Bangladesh 

( Received : 24 October 2019; Accepted : 7 January 2020 ) 

Abstract 

In this paper, we extend an observation-driven model for time series of zero inflated count data to longitudinal data setup. 

Basic properties of the models are discussed. For statistical inference of the proposed model, a generalized quasilikelihood 

(GQL) estimating equation has been derived for the regression parameter. A pharmaceutical data has been reanalyzed using 

the proposed approach and results are compared. The proposed approach produces similar estimates as given in the earlier 

work with much smaller standard errors. 
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I. Introduction 

Regression analysis of count data has become a common 

interest in almost every discipline. For example, in public 

health, it may be of interest to analyze the frequency of 

antenatal care visits or hospital visits. Similar applications 

are also found in finance, insurance and criminology, where 

data on frequency of failure of a financial institution, 

frequency of accidents and the number of criminal offenses 

are analyzed. Analyses of such count data are routinely 

carried out using generalized linear model (GLM)
1
 with 

Poisson or negative binomial distribution. There are, 

however, situations where count data exhibit excess zeros 

than the standard count model can assume. GLM without 

accommodating this ‘excess zeros’ may result in lack of 

fit
2
. The modified count model that incorporates the 

probability of such excess zeros is termed as zero inflated 

or two-part model. This type of models is in fact mixture of 

two distributions; one of them is essentially a binary 

distribution that puts extra mass for the zero counts. In the 

count data literature, zero-inflated (ZI)
3
 and Hurdle

4
 models 

are two such models that are commonly used depending on 

the nature of zeros. The difference between ZI and hurdle 

models lies in the fact that ZI assumes the population 

consists of both ‘at risk’ and ‘not at risk’ respondents, while 

hurdle assumes only ‘at risk’ respondents in the population.  

Consequently, ZI models incorporates excess zero from 

both binary and Poisson processes and hurdle models uses 

zero truncated count model assuming zeros originated only 

from the binary components. Cohen
5
 proposed a general 

method for estimating the mixing mixtures of known 

distributions. Applications of these modified count models 

are found for analyzing number of recreational boating 

trips
6
, number of non-payments on credit scoring 

applications
7
, modelling abundance of rare species

8
, 

accident counts
9
, the number of decayed and filled tooth 

surfaces
10

 among others in the literature.  

Recently, analyses of ZI correlated count data have been 

used in social and health related studies
11

.  Because of the 

correlation among repeated responses in longitudinal 

setting, the behavior of counts as well as zero inflation is 

expected to change over time. Therefore, modelling such 

correlated ZI count data is much more challenging 

compared to the models used in longitudinal count data 

literature. There exist few studies that deal with modelling 

such ZI longitudinal count data along with its inference 

procedures. These studies mostly extended cross-section 

models by introducing random effects through which the 

longitudinal ZI counts are assumed to be correlated. 

Assuming independence among binary responses, Hall used 

subject specific random effects to accommodate correlation 

among longitudinal count responses
12

. On the other hand, 

some authors used random effects for both binary and 

Poisson processes under ZIP or hurdle setup. Using 

Gaussian random effects for each of the two components of 

a hurdle model, Yau & Lee
13

 discussed Penalized 

Quasiikelihood (PQL) approach for the inference 

procedure. ZIP mixed model has also been used in a study
14

 

for modelling clustered length of hospital stay data (LOS) 

using independent random effects for binary and count 

portion of the model. This study
14

 used residual maximum 

likelihood (REML) method through expectation 

maximization (EM) algorithm for parameter estimation. In 

another study
15

, LOS data was analyzed using zero inflated 

negative binomial mixed regression. Min & Agresti
2
 used 

correlated Gaussian random effects in Poisson hurdle model 

for a longitudinal pharmaceutical study, where two 

treatments were compared in terms of number of episodes 

of a certain side effect. For the estimation of parameters, 

they have used both ML and nonparametric maximum 

likelihood (NPML) estimation approaches. Some authors
16

 

used two independent random effects, one for within-cluster 

and the other for within-individual correlations for both 

binary and count parts of ZIP to model clustered 

longitudinal data. For the estimation of the parameters, they 

have used restricted ML approach. Recently, Long et al.
17

 

used marginalized ZI Poisson model for longitudinal data 

using certain random effects. They employed adaptive 

Gauss-Hermite quadrature to obtain ML estimates of the 

parameters associated with their proposed model. For a nice 

review of recent development on two-part models for 

longitudinal data, see Farewell et al.
11

. 

Although modelling correlated count data is convenient 

using random effect models, interpretation of correlation 
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among repeated responses is not clear as it is modelled as 

function of unobserved random effects. There exists 

alternative observation-driven models in time series of 

count data, where correlations are modelled through past 

count responses by allowing correlation structures to have 

autoregressive or moving average type structures which are 

widely used in continuous time series data
18-21

. For a 

comprehensive review of such models, we refer to Weiß
22

. 

Since longitudinal data on   individuals can be thought of 

as   independent time series, several authors
23,24

 have used 

those models under longitudinal data setup. Hasan and 

Sneddon
25

 proposed an observation-driven ZIP model for 

analyzing longitudinal data of annual number of visits to 

physician. For statistical inference, they have used 

generalized quasilikelihood (GQL) approach
26

. Their 

proposed model provides AR(1) type correlation structure, 

where the lag correlations among repeated ZIP responses 

are function of the product of inflation and correlation 

parameters of count responses. Since the domains of 

inflation and correlation parameters lie between 0 and 1, 

this model is useful for longitudinal ZIP responses with low 

correlations. 

Recently, Jazi et al.
27

 have introduced an observation-

driven ZIP model for time series data. This approach of 

modelling is appealing and can be extended for the 

longitudinal data. Note that Jazi et al.
27

 did not consider 

their model under regression setup. The aim of this paper is 

to extend the ZIP model of Jazi et al.
27

 for longitudinal data 

under regression setup, derive simpler GQL estimating 

equation for estimating regression effects and reanalyze the 

pharmaceutical data previously analyzed by Min & 

Agresti
2
. In Section 2, the model is discussed along with its 

basic properties, GQL estimating equation is derived in 

Section 3, application of the proposed methods is given in 

Section 4 and the paper concludes in Section 5. 

II. Proposed ZIP Autoregressive Model for Longitudinal 

Data 

Let,     be the count response for  -th              
respondent at  -th            time point. Following 

Jazi et al.
27

, we assume that the longitudinal zero-inflated 

count data have been generated from the following process 

                   

                        
(1) 

Where                  ;               being the 

probability mass function (pmf) of a mixture of a 

distribution degenerate at zero and a Poisson distribution 

with mean     having the form 

             { }    
        

       
 

  
  

          

(2) 

We denote the pmf in (2) as                    with       
as an indicator function that equals to 1, if     else equal 

to zero. The term         in (1) is computed through a 

binomial thinning operation
20

 defined as 

         ∑      

      

   

  (3) 

where the counting series       is a sequence of 

independent identically distributed binary random variables 

with  [       ]     [       ]           . 

For    ,                 . Note that the parameters 

             and   in (1)-(3) are referred to as inflation 

and correlation parameters, respectively. For a  -

dimensional vector of covariates associated with  -th 

respondent at  -th time,     (                )
 
 and the 

corresponding effect parameters   (          )
 
  under 

regression setup, we define            
    in (2). It 

follows from (1)-(3) that 

            
          

     
  (4) 

     
           

                      

    
  (5) 

   (          )                     
   (6) 

For    , it is easy to verify that the model reduces to ZIP 

model under cross-section setup. Assuming stationary 

process,              , implying         and 

        for all                     , the mean and 

variance of     is time invariant, i.e.,         and       
   . As opposed to the random effect models, model (1) 

provides AR(1) correlation structure, i.e., the lag-  

correlation,    (          )     (          )    .Note 

that the assumption of AR(1) correlation structure is 

appealing from practical point of view. 

III. Statistical Inference: Generalized Quasilikelihood 

Approach 

Let                   
  denote the mean vector and 

                                
  denote the      th 

component of the    covariance matrix for  -th 

respondent. For the purpose of estimating regression 

parameter   associated with model (1), we use GQL 

estimating equation
29

  given by 

∑
   

 

  
  
           

 

   

  (7) 

Where         (                              )
 
 

with                              . The covariance 

matrix    in (7) is constructed based on (5)-(6). Note that 

the covariance matrix    under generalized estimating 

equation (GEE)
28

 is constructed based on some ‘working’ 

correlation matrix, but in GQL it is constructed based on 

model based true correlation structure (5)-(6). Several 

authors
29-31 

have used GEE under longitudinal ZIP data by 
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considering ‘working’ correlation in conjunction with the 

cross-sectional ZIP model. The use of ‘working’ correlation 

has been shown to have many pitfalls for standard 

longitudinal count data
32,33

; therefore this approach may not 

be appropriate under more complex ZI longitudinal data. 

Under some mild regularity conditions
34

, it may be shown 

that the GQL estimator  ̂ obtained from (7) asymptotically 

follows a Gaussian distribution with mean   and covariance 

matrix given by 

   ( ̂)  [∑
   

 

  
  
   

   

  

 

   

]

  

  

Note that the GQL estimating equation (7) is a function of 

other unknown parameters     and   which should be 

estimated from the data. 

Assuming suitable ‘working’ correlation structure and a set 

of covariates     (                )
 
 with corresponding 

effect parameters   (          )
 
, a GEE with logit 

link                 
   can be used to estimate   which 

is then used to obtain  ̂  . As far as the estimation of 

correlation parameter   is concerned, following, we 

propose a consistent estimator using method of moments
35

.  

The moment estimator of   can be written as 

 ̂  
∑ ∑  ̃   ̃     

 
   

 
   

∑ ∑   ̃  
  

   
 
   

    

       
   (8) 

where  ̃                  . 

The proposed estimation approach is carried out in the 

following sequence: 

1. Using GEE with suitable ‘working’ correlation matrix, 

obtain  ̂  . 

2. With an initial value of   and  ̂  , the GQL estimate  ̂ 

is obtained using Newton-Raphsoniterative procedure. 

3. The converged estimate  ̂ from step 2 is then used to 

compute  ̂. 

4. The estimation of   and   are recursively executed 

until convergence. 

IV. Analysis of Pharmaceutical Data 

The proposed ZIP model for longitudinal data and GQL 

estimation approach will be illustrated by reanalyzing a 

pharmaceutical data
2
. The purpose of the data analysis is to 

compare two treatments for a particular disease, where the 

number of episodes of a certain side effect are the count 

responses. A total of       patients were randomly 

allocated to receive either one of two treatments, where 59 

of them received treatment   and the other 59 received  . 

The count response of side effect episodes was measured at 

each of six visits. Figure-1 shows the frequencies of the 

side effects at each follow-up, approximately 80% of the 

cases are observed without any side effect at each visits. 

This motivates one to use zero inflated count models for the 

analysis. Overall, the average number of episodes of the 

side effect was found as 0.158 and 0.415 for treatment   

and  , respectively ( -value < 0.01 for standard  -test). 

 

Fig. 1. Episodes of side effects at each visits by treatment 

We next fit our proposed longitudinal ZIP regression model 

to the data. For the purpose of comparison, we consider the 

same setup as of Min and Agresti
2
. To be specific, for  -th 

respondent at the  -th visit, we consider  

                                    

                                

Recall that, the proposed model assumes             
          . Unlike Min and Agresti

2
, we have estimated 

  ’s           using generalized estimating equation 

GEE
30

 with unstructured correlation structure. The columns 

6-7 of Table-I under the heading ‘Full data GQL’ represent 

the GQL estimates of  , GEE estimates of   and the 

moment estimate of  , along with their standard errors 

(SE). For comparison, we also report the ML and NPML 

estimates of Min & Agresti
2
 in the same table. Overall, the 

parameter estimates obtained by our proposed method 

indicate similar effect as in Min & Agresti
2 

with much 

smaller standard errors, but indicate different strength of 

association between the effects of treatment and time with 

episodes of side effect counts. 

Table 1. Comparison of parameter estimates under 

proposed GQL approach with ML and NPML 

of Min and Agresti
2
 for side effect count data 

 ML NPML Full data GQL 

Parameter Estimate SE Estimate SE Estimate SE 

   -2.874 0.622 -2.813 0.576 -2.091 0.518 

   0.895* 0.417 0.958* 0.335 0.483 0.302 

   0.021 0.186 0.022 0.185 0.040 0.165 

       

   -2.844 0.735 -2.880 0.619 -0.629 0.197 

   0.963* 0.352 0.898* 0.294 0.488* 0.063 

   0.540* 0.192 0.494* 0.188 0.152* 0.016 

  - - - - 0.422 - 
* -value < 0.05 

For example, for the binary part, ML estimate
2
 of treatment 

effect indicates that the odds of positive side effect count 

for treatment   is 145% higher as compared to treatment   

[Odds ratio =                ], while GEE estimated it 
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to be about 62% higher for treatment  . Note that, although 

ML estimate found   to have significantly higher odds of 

positive side effect counts, GEE shows no significant effect 

of treatment. The effect of time appears to be insignificant 

in all approaches for the binary part. As far as the estimates 

of the count model are concerned, all the estimation 

approaches indicate that treatment    has significantly 

higher number of side effect counts and an increase in time 

between follow-ups results in significantly higher number 

of side effect counts. For example, the ML estimates
2
 

shows that patients receiving treatment  experienced side 

effect episodes 162% more often, while our proposed GQL 

estimate reveals that it is only 63% more for treatment  .  

Note that in the data, there are 64 respondents for whom no 

side effect counts were observed throughout the study 

period. This raises a question about the existence of a 

separate population who may never show such side effects. 

If this is the case, we can drop them from the study as they 

have no chance of experience that particular side effect. 

Figure-2 depicts side effect counts for the reduced data of 

     respondents. The data still contains a large 

proportion of zeros and thus modified count regression 

model is still appropriate to analyze it. 

 

Fig. 2. Episodes of side effects at each visits by treatment for 

‘reduced’ data 

The GQL estimates of  , GEE estimates of   and the 

moment estimate of   for reduced data are reported in 

Table-II. The estimates are very close to what we have 

found by our proposed approach for the full dataset. 

Table 2. GQL estimates for ‘reduced’ side effect count 

data 

Parameter Estimate SE Parameter Estimate SE 

   -0.824 0.579    -0.554 0.200 

   0.264 0.230    0.454* 0.057 

   0.009 0.203    0.178* 0.018 

     0.311 - 

V. Conclusion 

In this paper, we have extended an observation-driven ZIP 

time series model 
1
to the longitudinal data with regression 

formulation. As opposed to the existing parameter-driven 

models, where correlations are modelled using certain 

random effects, the proposed stochastic model 

accommodates AR(1) correlation structure among repeated 

stationary zero inflated counts. Since the repeated count 

response on certain visit depends on both binary and count 

response of the past, it is expected that the average count on 

that visit cannot be the same as in the baseline. The model 

we propose for the longitudinal ZI counts not only provides 

different mean on follow-ups, but also provides stochastic 

AR(1) correlation structure that is more practical and 

appealing to accommodate temporal association. Moreover, 

the proposed GQL estimation approach is computationally 

simpler as compared to other existing estimation 

approaches.  

When we reanalyzed the pharmaceutical data, similar to 

Min & Agresti
2
, the proposed method found the treatment   

has significantly higher side effect count, however the rate 

of occurrence was much smaller in our approach. 
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