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Abstract

The primary objective of this task is to take steps an indicative immersion into the subject of complex geometry by 
providing several characterizations of Kähler manifolds. We have defined complex, Hermitian, almost complex and Kähler 
manifolds in this paper and studied some of their features. The main purpose of this article is with a view to understanding 
the complex, almost complex and Kähler manifolds and their relations with Lie brackets and affine connections. Finally, 
a theorem which is related to Kähler geometry is established.
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I.  Introduction

It would not be propagation to say each person is necessarily 
a bit accommodate with geometry. In modern times, topology 
and geometry7 are the sections that mathematics curiosity are 
possibly be aware of. Most probably geometry and topology 
are more famous because they are very easy to visualize 
and understand. The flexibility and generality of topological 
shape help to realize their concepts easily.

Once in a way, we want more solid forms than the ones narrated 
by topological spaces7. Then we move to smooth and Riemannian 
manifolds6, which organize notions such as differentiability, 
integration and distances6, where all features draw of real 
numbers. In this paper we will talk about complex manifolds 
and observe how their forms narrate to racial landmark of  which 
will lead to Hermitian and Kähler manifolds2,3,9.

Complex and Kähler manifolds2,13 have huge applications 
in quantum mechanics and supersymmetry studies. In this 
paper we will establish different forms which have relevancy 
with physics6. In Fundamental complex analysis, the partial 
derivatives must have to satisfy the Cauchy-Riemann 
equations6. So we will say about both differentiability and 
analyticity of a function. 

A complex as well as a Kähler manifold obeys a complex 
formation where every coordinate neighborhood  ℂ𝑚𝑚   and the 
alteration of coordinate must have to be analytic.

In this article first we have discussed about complex 
manifolds, their properties, example and proved a theorem 
which is related to it. Then we deal with Hermitian and 
almost complex manifolds andtheir features14.

Finally, we have explained the Kähler manifolds2, some of 
its characteristics and proved a theoremwhich is our main 
interest. Then we draw our conclusion.

II.  Complex Manifolds

Definition 2.1[11] A complex-valued function 𝑓𝑓:ℂ𝑚𝑚 → ℂ   is 
holomorphic if  𝑓𝑓 = 𝑓𝑓1 + 𝑖𝑖𝑓𝑓2  maintain the Cauchy-Riemann 
equations for each 𝑧𝑧𝜌𝜌 = 𝑒𝑒𝜌𝜌 + 𝑖𝑖𝑓𝑓𝜌𝜌   as

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑒𝑒𝜌𝜌

= 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓𝜌𝜌

, 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓𝜌𝜌

= − 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑓𝑓𝜌𝜌

. 

A mapping (𝑓𝑓1, … … . , 𝑓𝑓𝑛𝑛):ℂ𝑚𝑚 → ℂ𝑛𝑛   is said to be holomorphic 
if every function 𝑓𝑓𝑒𝑒  , (1 ≤ 𝑒𝑒 ≤ 𝑛𝑛)   is holomorphic.

Definition 2.2 A nonempty set M is said to be a complex 
manifold if (i) M being a topological space, (ii) M being 
comes from pairs {(𝑈𝑈𝑖𝑖 ,𝜑𝜑𝑖𝑖)},  where {𝑈𝑈𝑖𝑖}  is a cluster of open 
sets that make M and 𝜑𝜑𝑖𝑖 :𝑈𝑈𝑖𝑖 → 𝑈𝑈𝑖𝑖′ ⊆ ℂ𝑚𝑚 ,  (iii) If 𝑈𝑈𝑖𝑖   and 𝑈𝑈𝑖𝑖   so 
that 𝑈𝑈𝑖𝑖 ∩ 𝑈𝑈𝑗𝑗 ≠ ∅,  then the transition map
𝜓𝜓𝑗𝑗𝑖𝑖  = 𝜑𝜑𝑗𝑗𝜑𝜑𝑖𝑖−1: 𝜑𝜑𝑖𝑖(𝑈𝑈𝑖𝑖 ∩ 𝑈𝑈𝑗𝑗 ) → 𝜑𝜑𝑗𝑗 (𝑈𝑈𝑖𝑖 ∩ 𝑈𝑈𝑗𝑗 ) 

is holomorphic. The 𝑑𝑑𝑖𝑖𝑚𝑚ℂ(𝑀𝑀) = 𝑚𝑚.  

Example 2.3 The sphere 𝑆𝑆2 is a complex manifold which can 
be defined by the Riemann sphere ℂ ∪ {∞}. 

 Differential Forms on Complex Manifolds

Suppose M is a differential complex manifold having 
dimension m. Also let 𝜔𝜔, 𝜏𝜏  be q-forms on Ω𝑒𝑒

𝑞𝑞(𝑀𝑀)   at a point 
p demarcating a complex q-form 𝜉𝜉 = 𝜔𝜔 + 𝑖𝑖𝜏𝜏.   The vector 
space of q-form at p is declared as Ω𝑒𝑒

𝑞𝑞(𝑀𝑀)ℂ . It is clear that 
Ω𝑒𝑒
𝑞𝑞(𝑀𝑀) ⊂ Ω𝑒𝑒

𝑞𝑞(𝑀𝑀)ℂ  and the adjacent of 𝜉𝜉  is 𝜉𝜉̅ = 𝜔𝜔 − 𝑖𝑖𝜏𝜏.  The 
q-form will be real if 𝜉𝜉 = 𝜉𝜉.̅ 

Let 𝜔𝜔 ∈ Ω𝑒𝑒
𝑞𝑞(𝑀𝑀)ℂ (𝑞𝑞 ≤ 2𝑚𝑚)  and r, s are positive integers 

and r + s = q. Also suppose that𝑉𝑉𝑖𝑖 ∈ 𝑇𝑇𝑒𝑒𝑀𝑀ℂ (1 ≤ 𝑖𝑖 ≤ 𝑞𝑞)  be 
belongs to either 𝑇𝑇𝑒𝑒𝑀𝑀+   or 𝑇𝑇𝑒𝑒𝑀𝑀−.   If 𝜔𝜔(𝑉𝑉𝑖𝑖) = 0   or else r of 
the 𝑉𝑉𝑖𝑖   in 𝑇𝑇𝑒𝑒𝑀𝑀+   and s in 𝑇𝑇𝑒𝑒𝑀𝑀−.  , 𝜔𝜔  is called bidegree (r, s). The 
pairs (r, s)-forms at p is expressed as Ω𝑒𝑒

𝑎𝑎 ,𝑠𝑠(𝑀𝑀). 
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Definition 2.4 The outer derivative of an (r, s)-form 

 𝜔𝜔 =
1
𝑎𝑎! 𝑠𝑠!

𝜔𝜔𝜇𝜇1,…,𝜇𝜇𝑎𝑎 ,𝑣𝑣1,…,𝑣𝑣𝑠𝑠
𝑑𝑑𝑧𝑧𝜇𝜇1 ∧ … …𝑑𝑑𝑧𝑧𝜇𝜇𝑎𝑎 ∧ 𝑑𝑑𝑧𝑧𝑣𝑣1 … … 𝑑𝑑𝑧𝑧𝑣𝑣𝑠𝑠   for  

𝜑𝜑(𝑒𝑒) = 𝑧𝑧𝜇𝜇   can be written as 

𝑑𝑑𝜔𝜔 =
1
𝑎𝑎! 𝑠𝑠!

�
𝜕𝜕
𝜕𝜕𝑧𝑧𝜆𝜆

𝜔𝜔𝜇𝜇1,…,𝜇𝜇𝑎𝑎 ,𝑣𝑣1,…,𝑣𝑣𝑠𝑠
𝑑𝑑𝑧𝑧𝜆𝜆 +

𝜕𝜕
𝜕𝜕𝑧𝑧̅𝜆𝜆

𝜔𝜔𝜇𝜇1,…,𝜇𝜇𝑎𝑎 ,𝑣𝑣1,…,𝑣𝑣𝑠𝑠
𝑑𝑑𝑧𝑧̅𝜆𝜆� × 

 
𝑑𝑑𝑧𝑧𝜇𝜇1 ∧ … … 𝑑𝑑𝑧𝑧𝜇𝜇𝑎𝑎 ∧ 𝑑𝑑𝑧𝑧𝑣𝑣1 … …𝑑𝑑𝑧𝑧𝑣𝑣𝑠𝑠 , 
where 𝑑𝑑𝜔𝜔  is the composition of  (r + 1, s) and (r,s + 1) -forms. 
By resolving the act of  in order to its target we get 𝑑𝑑 = 𝜕𝜕 + �̅�𝜕 
, where 

𝜕𝜕: Ω𝑒𝑒
𝑎𝑎 ,𝑠𝑠(𝑀𝑀) → Ω𝑒𝑒

𝑎𝑎+1,𝑠𝑠(𝑀𝑀), �̅�𝜕: Ω𝑒𝑒
𝑎𝑎 ,𝑠𝑠(𝑀𝑀) → Ω𝑒𝑒

𝑎𝑎 ,𝑠𝑠+1(𝑀𝑀).  The operators  
𝜕𝜕 and �̅�𝜕  are declared as Dolbeault operators.

Theorem 2.5 If M is a complex manifold, 𝜔𝜔 ∈ Ω𝑞𝑞(𝑀𝑀)ℂand   and  
∈ Ω𝑒𝑒(𝑀𝑀)ℂ , then 

 (i) 𝜕𝜕𝜕𝜕𝜔𝜔 = �𝜕𝜕�̅�𝜕 + �̅�𝜕𝜕𝜕�𝜔𝜔 = �̅�𝜕�̅�𝜕𝜔𝜔 = 0 

(ii) 𝜕𝜕𝜔𝜔� = �̅�𝜕𝜔𝜔����, �̅�𝜕𝜔𝜔� = 𝜕𝜕𝜔𝜔���� 

(iii) 𝜕𝜕(𝜔𝜔⋀𝜉𝜉) = 𝜕𝜕𝜔𝜔⋀𝜉𝜉 + (−1)𝑞𝑞𝜔𝜔⋀𝜕𝜕𝜉𝜉 

       and . �̅�𝜕(𝜔𝜔⋀𝜉𝜉) = �̅�𝜕𝜔𝜔⋀𝜉𝜉+ (−1)𝑞𝑞𝜔𝜔⋀�̅�𝜕𝜉𝜉. 

Proof. It is enough to prove that 𝜔𝜔  is of bidegree (r, s).

(i) Since 𝑑𝑑 = 𝜕𝜕 + �̅�𝜕 , so we have 0 = 𝑑𝑑2𝜔𝜔 = 

�𝜕𝜕 + �̅�𝜕��𝜕𝜕 + �̅�𝜕�𝜔𝜔 = 𝜕𝜕𝜕𝜕𝜔𝜔 + �𝜕𝜕�̅�𝜕 + �̅�𝜕𝜕𝜕�𝜔𝜔 + �̅�𝜕�̅�𝜕𝜔𝜔 

The three parts of right hand side are of bidegree

(𝑎𝑎 + 2, 𝑠𝑠), (𝑎𝑎 + 1, 𝑠𝑠 + 1) and (𝑎𝑎, 𝑠𝑠 + 2) respectively and 
they vanish separately. This proves (i).

(ii)  As we know  𝑑𝑑𝜔𝜔� = 𝑑𝑑𝑤𝑤���� , so we have

𝜕𝜕𝜔𝜔� + �̅�𝜕𝜔𝜔� = 𝑑𝑑𝜔𝜔� = (𝜕𝜕 + �̅�𝜕)𝜔𝜔����������� + 𝜕𝜕𝜔𝜔���� + �̅�𝜕𝜔𝜔����. 

Since 𝜔𝜔� , �̅�𝜕𝜔𝜔���� belong to bidegree (𝑠𝑠 + 1, 𝑎𝑎) and �̅�𝜕𝜔𝜔� , 𝜕𝜕𝜔𝜔���� are 
of (𝑠𝑠, 𝑎𝑎 + 1) , so we can write that 𝜕𝜕𝜔𝜔� = �̅�𝜕𝜔𝜔����  and �̅�𝜕𝜔𝜔� =
𝜕𝜕𝜔𝜔����. 

 

(iii) We can imagine 𝜔𝜔 is of bidegree (𝑎𝑎, 𝑠𝑠) and 𝜉𝜉 of 
(𝑎𝑎′ , 𝑠𝑠′). So 𝑑𝑑(𝜔𝜔⋀𝜉𝜉) = 𝑑𝑑𝜔𝜔⋀𝜉𝜉 + (−1)𝑞𝑞𝜔𝜔⋀𝑑𝑑𝜉𝜉 

= (𝜕𝜕 + �̅�𝜕)𝜔𝜔⋀𝜉𝜉 + (−1)𝑞𝑞𝜔𝜔⋀(𝜕𝜕 + �̅�𝜕)𝜉𝜉 

= 𝜕𝜕𝜔𝜔⋀𝜉𝜉 + (−1)𝑞𝑞𝜔𝜔⋀𝜕𝜕𝜉𝜉 + �̅�𝜕𝜔𝜔⋀𝜉𝜉 + (−1)𝑞𝑞𝜔𝜔⋀�̅�𝜕𝜉𝜉 

= 𝜕𝜕(𝜔𝜔⋀𝜉𝜉) + �̅�𝜕(𝜔𝜔⋀𝜉𝜉). 

Where 𝜕𝜕(𝜔𝜔⋀𝜉𝜉) and �̅�𝜕(𝜔𝜔⋀𝜉𝜉) are bidegree of(𝑎𝑎 + 𝑎𝑎′ +
1, 𝑠𝑠 + 𝑠𝑠′) and (𝑎𝑎 + 𝑎𝑎′ , 𝑠𝑠 + 𝑠𝑠′ + 1) respectively. 

 III. Almost Complex Manifolds

Definition 3.1[11,15] Let us suppose that 𝑀𝑀 is a differentiable 
manifold. Also let 𝐽𝐽 is a tensor field of order (1,1) for 
which at every point 𝑒𝑒 of 𝑀𝑀 we can write 𝐽𝐽𝑒𝑒2 = −1𝑒𝑒 . Then 
the pair (𝑀𝑀, 𝐽𝐽) is defined as almost complex manifold and 𝐽𝐽 
is called the almost complex structure. 
If (𝑀𝑀, 𝐽𝐽) is a complex manifold, then the Nijenhuis tensor 
field 𝑁𝑁: 𝒳𝒳(𝑀𝑀) ⊗𝒳𝒳(𝑀𝑀) → 𝒳𝒳(𝑀𝑀) can be defined as  

𝑁𝑁(𝑋𝑋,𝑌𝑌) ≡ [𝑋𝑋,𝑌𝑌] + 𝐽𝐽[𝐽𝐽𝑋𝑋,𝑌𝑌] + 𝐽𝐽[𝑋𝑋, 𝐽𝐽𝑌𝑌] − [𝐽𝐽𝑋𝑋, 𝐽𝐽𝑌𝑌]. 
The structure 𝐽𝐽 is integrable if the Lie bracket of any 
holomorphic vector fields 𝑋𝑋,𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) is also a 
holomorphic vector field, [𝑋𝑋,𝑌𝑌] ∈ 𝒳𝒳+(𝑀𝑀). If 𝑀𝑀 is an 
almost complex structure, it must be even in dimension. For 
this let the dimension of 𝑀𝑀 is 𝑛𝑛, and also let 𝐽𝐽: 𝑇𝑇𝑀𝑀 → 𝑇𝑇𝑀𝑀 
be an almost structure with complex manifold. If J2=-1 then 
(detJ)2 = (-1)n. But when 𝑀𝑀 is a real manifold. then det 𝐽𝐽 is 
real number, thus 𝑛𝑛 obviously be even if 𝑀𝑀 has an almost 
complex structure. One can show that it must be orientable 
as well. 

Theorem 3.2 For any 𝐴𝐴,𝐵𝐵 ∈ 𝒳𝒳(𝑀𝑀), 𝑁𝑁(𝐴𝐴,𝐵𝐵) = 0 if and 
only if the structure 𝐽𝐽 on a manifold 𝑀𝑀 is integrable. 
Proof. Let us suppose that 𝑍𝑍 = 𝑋𝑋 + 𝑖𝑖𝑌𝑌 and  𝑊𝑊 = 𝑈𝑈 + 𝑖𝑖𝑉𝑉 
are two elements of  𝒳𝒳ℂ(𝑀𝑀). We elaborate the Nijenhuis 
tensor field for which its operations on vector fields in 
𝒳𝒳ℂ(𝑀𝑀) can be written as 

𝑁𝑁(𝑍𝑍,𝑊𝑊) = [𝑍𝑍,𝑊𝑊] + 𝐽𝐽[𝐽𝐽𝑍𝑍,𝑊𝑊] + 𝐽𝐽[𝑍𝑍, 𝐽𝐽𝑊𝑊] − [𝐽𝐽𝑍𝑍, 𝐽𝐽𝑊𝑊] 

= {𝑁𝑁(𝑋𝑋,𝑈𝑈) − 𝑁𝑁(𝑌𝑌,𝑉𝑉)} + 𝑖𝑖{𝑁𝑁(𝑋𝑋,𝑉𝑉) + 𝑁𝑁(𝑌𝑌,𝑈𝑈)}..........(1.0) 

Now consider that 𝑁𝑁(𝐴𝐴,𝐵𝐵) = 0 for any 𝐴𝐴,𝐵𝐵 ∈ 𝒳𝒳(𝑀𝑀). 
From (1.0) it becomes 𝑁𝑁(𝑍𝑍,𝑊𝑊) = 0 for all 𝑍𝑍,𝑊𝑊 ∈ 𝒳𝒳ℂ(𝑀𝑀).  
Suppose that 𝑍𝑍,𝑊𝑊 ∈ 𝒳𝒳+(𝑀𝑀) ⊂ 𝒳𝒳ℂ(𝑀𝑀). Because of        
𝐽𝐽𝑍𝑍 = 𝑖𝑖𝑍𝑍 and 𝐽𝐽𝑊𝑊 = 𝑖𝑖𝑊𝑊, we may write 

After the assumption, 𝑁𝑁(𝑍𝑍,𝑊𝑊) = 0, we get that 

[𝑍𝑍,𝑊𝑊] = −𝑖𝑖𝐽𝐽[𝑍𝑍,𝑊𝑊] or 𝐽𝐽[𝑍𝑍,𝑊𝑊] = 𝑖𝑖[𝑍𝑍,𝑊𝑊], which means 
that [𝑍𝑍,𝑊𝑊] ∈ 𝒳𝒳+(𝑀𝑀). So we can conclude that the  
structure 𝐽𝐽 is integrable. 
Conversely, let us suppose  is integrable. Since

𝒳𝒳ℂ(𝑀𝑀) = 𝒳𝒳+(𝑀𝑀) ⊕𝒳𝒳−(𝑀𝑀), we can write separately 
𝑍𝑍,𝑊𝑊 ∈ 𝒳𝒳ℂ(𝑀𝑀) as𝑍𝑍 = 𝑍𝑍+ + 𝑍𝑍− and 𝑊𝑊 = 𝑊𝑊+ + 𝑊𝑊−. Then 
we can write, 

 
𝑁𝑁(𝑍𝑍,𝑊𝑊) = 𝑁𝑁(𝑁𝑁+,𝑊𝑊+) + 𝑁𝑁(𝑍𝑍+,𝑊𝑊−) + 𝑁𝑁(𝑍𝑍−,𝑊𝑊+) +
                      𝑁𝑁(𝑍𝑍−,𝑊𝑊−).  
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𝑁𝑁(𝑍𝑍,𝑊𝑊) = 𝑁𝑁(𝑁𝑁+,𝑊𝑊+) + 𝑁𝑁(𝑍𝑍+,𝑊𝑊−) + 𝑁𝑁(𝑍𝑍−,𝑊𝑊+) +
                      𝑁𝑁(𝑍𝑍−,𝑊𝑊−). 

Because of 𝐽𝐽𝑍𝑍± = ±𝑖𝑖𝑍𝑍± and 𝐽𝐽𝑊𝑊± = ±𝑖𝑖𝑊𝑊± it can be 
written that 𝑁𝑁(𝑍𝑍−,𝑊𝑊+) = 𝑁𝑁(𝑍𝑍+,𝑊𝑊−) = 0. We may also 
write,  

𝑁𝑁(𝑍𝑍+,𝑊𝑊+) = [𝑍𝑍+,𝑊𝑊+] + 𝐽𝐽[𝑖𝑖𝑍𝑍+,𝑊𝑊+] + 𝐽𝐽[𝑍𝑍+, 𝑖𝑖𝑊𝑊+]
− [𝑖𝑖𝑍𝑍+, 𝑖𝑖𝑊𝑊+] 

= 2[𝑍𝑍+,𝑊𝑊+] − 2[𝑍𝑍+,𝑊𝑊+] = 0. 

Since 𝐽𝐽[𝑍𝑍+,𝑊𝑊+] = 𝑖𝑖[𝑍𝑍+,𝑊𝑊+]. 

Likely 𝑁𝑁(𝑍𝑍−,𝑊𝑊−) = 0 which proves that 𝑁𝑁(𝑍𝑍,𝑊𝑊) = 0 for 
any 𝑍𝑍,𝑊𝑊 ∈ 𝒳𝒳ℂ(𝑀𝑀). Specifically, 𝑁𝑁(𝑍𝑍,𝑊𝑊) = 0 for any 
𝑍𝑍,𝑊𝑊 ∈ 𝒳𝒳(𝑀𝑀). 

IV. Hermitian Manifolds

Let us suppose that M  be a complex manifold of dimension  
m and J is a almost complex structure. Then the triple (M,J,g) 
with the Riemannian metric g is called a Hermitian manifold.

V. Kähler Manifolds

Consider that (M,J,g) is a Hermitian manifold. Also demark a 
tensor field Ω  which has operation 𝑇𝑇𝑒𝑒𝑀𝑀  on  as 

Ω𝑒𝑒(𝑋𝑋,𝑌𝑌) = 𝑔𝑔𝑒𝑒�𝐽𝐽𝑒𝑒𝑋𝑋,𝑌𝑌� for any 𝑋𝑋,𝑌𝑌 ∈ 𝑇𝑇𝑒𝑒𝑀𝑀, where Ω is 
antisymmetrical that is Ω(𝑋𝑋,𝑌𝑌) = 𝑔𝑔(𝐽𝐽𝑋𝑋,𝑌𝑌) = 𝑔𝑔(𝐽𝐽2𝑋𝑋, 𝐽𝐽𝑌𝑌) 

= −𝑔𝑔(𝐽𝐽𝑌𝑌,𝑋𝑋) = −Ω(𝑋𝑋,𝑌𝑌).  

So we can define Ω  as a two form which is also called the 
Kähler form.

Definition 5.1 A Hermitian manifold (M,J,g) is called a 
Kähler manifold if its Kähler form Ω  is closed, that is 𝑑𝑑Ω  is 
zero. The metric g is called the Kähler metric on M.

Example 5.2 Suppose 𝑀𝑀 = ℂ𝑚𝑚 = {(𝑧𝑧1, … … , 𝑧𝑧𝑚𝑚 )}, where 
ℂ𝑚𝑚  is marked with ℝ2𝑚𝑚  by the identification 𝑧𝑧𝜇𝜇 → 𝑒𝑒𝜇𝜇 + 𝑖𝑖𝑓𝑓𝜇𝜇 . 
Let 𝛿𝛿 be the Euclidean metric of ℝ2𝑚𝑚 , so we can write that 

 
𝛿𝛿 � 𝜕𝜕

𝜕𝜕𝑒𝑒𝜇𝜇
, 𝜕𝜕
𝜕𝜕𝑒𝑒𝜗𝜗

� = 𝛿𝛿 � 𝜕𝜕
𝜕𝜕𝑓𝑓𝜇𝜇

, 𝜕𝜕
𝜕𝜕𝑓𝑓𝜗𝜗

� = 𝛿𝛿𝜇𝜇𝜗𝜗  and 𝛿𝛿 � 𝜕𝜕
𝜕𝜕𝑒𝑒𝜇𝜇

, 𝜕𝜕
𝜕𝜕𝑓𝑓𝜗𝜗

� = 0. 

Because of 𝐽𝐽 𝜕𝜕
𝜕𝜕𝑒𝑒𝜇𝜇

= 𝜕𝜕
𝜕𝜕𝑓𝑓𝜇𝜇

  and 𝐽𝐽 𝜕𝜕
𝜕𝜕𝑓𝑓𝜇𝜇

= − 𝜕𝜕
𝜕𝜕𝑒𝑒𝜇𝜇

 we can say that 

𝛿𝛿 is a Hermitian metric. In complex field, we have 

𝛿𝛿 � 𝜕𝜕
𝜕𝜕𝑧𝑧𝜇𝜇

, 𝜕𝜕
𝜕𝜕𝑧𝑧𝜗𝜗

� = 𝛿𝛿 � 𝜕𝜕
𝜕𝜕𝑧𝑧̅𝜇𝜇

, 𝜕𝜕
𝜕𝜕𝑧𝑧̅𝜗𝜗

� = 0 and  

𝛿𝛿 �
𝜕𝜕
𝜕𝜕𝑧𝑧𝜇𝜇

,
𝜕𝜕
𝜕𝜕𝑧𝑧̅𝜗𝜗

� = 𝛿𝛿 �
𝜕𝜕
𝜕𝜕𝑧𝑧̅𝜇𝜇

,
𝜕𝜕
𝜕𝜕𝑧𝑧𝜗𝜗

� =
1
2
𝛿𝛿𝜇𝜇𝜗𝜗   

The Kähler form can be written as 

Ω = 𝑖𝑖
2
∑ 𝑑𝑑𝑧𝑧𝜇𝜇 ∧ 𝑑𝑑𝑧𝑧̅𝜇𝜇𝑚𝑚
𝜇𝜇=1 = ∑ 𝑑𝑑𝑒𝑒𝜇𝜇 ∧ 𝑑𝑑𝑓𝑓𝜇𝜇𝑚𝑚

𝜇𝜇=1 ,  which ensures 
us that the above form is closed. So we get that 𝛿𝛿  is an 

Euclidean metric of  ℝ2𝑚𝑚   is Kähler metric on ℂ𝑚𝑚  . Since all 
the properties of being Kähler manifold are satisfied, hence 
ℂ𝑚𝑚  is a Kähler manifold.

Theorem 5.3 A Hermitian manifold (M,J,G) is a Kahler 
manifold if and only if the structure  satisfies

∇𝜇𝜇 𝐽𝐽 = 0 

where ∇𝜇𝜇  is Levi-Civita affection related to 𝑔𝑔. 

Proof. If 𝑑𝑑𝜔𝜔  is any r-form, then its differential form 𝑑𝑑𝜔𝜔  can 
be expressed as

𝑑𝑑𝜔𝜔 = ∇𝜔𝜔 ≡
1
𝑎𝑎!
∇𝜇𝜇𝜔𝜔𝑣𝑣1,…..,𝑣𝑣𝑎𝑎𝑑𝑑𝑒𝑒

𝜇𝜇 ∧ 𝑑𝑑𝑒𝑒𝑣𝑣1 ∧ … …∧ 𝑑𝑑𝑒𝑒𝑣𝑣𝑎𝑎  

We have

∇Ω =
1
2
∇𝜇𝜇Ω𝜇𝜇𝑣𝑣 𝑑𝑑𝑒𝑒𝜆𝜆 ∧ 𝑑𝑑𝑒𝑒𝜇𝜇 ∧ 𝑑𝑑𝑒𝑒𝑣𝑣  

=
1
2
�𝜕𝜕𝜆𝜆Ω𝜇𝜇𝑣𝑣 − Γ𝜆𝜆𝜇𝜇𝑘𝑘 Ω𝑘𝑘𝑣𝑣 − Γ𝜆𝜆𝑣𝑣𝑘𝑘 Ω𝜇𝜇𝑘𝑘 �𝑑𝑑𝑒𝑒𝜆𝜆 ∧ 𝑑𝑑𝑒𝑒𝜇𝜇 ∧ 𝑑𝑑𝑒𝑒𝑣𝑣  

Since Γ is symmetrical, so we get 

=
1
2
𝜕𝜕𝜆𝜆Ω𝜇𝜇𝑣𝑣 𝑑𝑑𝑒𝑒𝜆𝜆 ∧ 𝑑𝑑𝑒𝑒𝜇𝜇 ∧ 𝑑𝑑𝑒𝑒𝑣𝑣 = 𝑑𝑑Ω 

Now, 

(∇𝑍𝑍Ω)(𝑋𝑋,𝑌𝑌) = ∇𝑍𝑍[Ω(𝑋𝑋,𝑌𝑌)] − Ω(∇𝑍𝑍𝑋𝑋,𝑌𝑌) − Ω(𝑋𝑋,∇𝑍𝑍𝑌𝑌) 

= ∇𝑍𝑍[𝑔𝑔(𝐽𝐽𝑋𝑋,𝑌𝑌)] − 𝑔𝑔(𝐽𝐽∇𝑍𝑍𝑋𝑋,𝑌𝑌) − 𝑔𝑔(𝐽𝐽𝑋𝑋,∇𝑍𝑍𝑌𝑌) 

= (∇𝑍𝑍𝑔𝑔)[(𝑋𝑋,𝑌𝑌] − Ω(∇𝑍𝑍𝐽𝐽𝑋𝑋,𝑌𝑌) − Ω(𝐽𝐽∇𝑍𝑍𝑋𝑋,𝑌𝑌 

= 𝑔𝑔(∇𝑍𝑍𝐽𝐽𝑋𝑋 − 𝐽𝐽∇𝑍𝑍𝑋𝑋,𝑌𝑌) 

= 𝑔𝑔((∇𝑍𝑍𝐽𝐽)𝑋𝑋,𝑌𝑌), where ∇𝑍𝑍𝑔𝑔 = 0 is used. 

This is obvious for any 𝑋𝑋,𝑌𝑌,𝑍𝑍. So it follows that ∇𝑍𝑍Ω = 0 
if and only if ∇𝑍𝑍J = 0. Which completes the prove. 

VI. Conclusion

Complex geometry is difficult but fecund thing. It amazed 
us both in its at the first sights limitless altitude. It is very 
amazing that the toughest classical mechanics can be easily 
described with the help of geometry of manifolds and which 
are very close to complex geometry through Kähler manifolds. 
Complex and Kähler manifolds have great applications in 
theories of physics12,13. Our lesion on complex geometry 
seemed that it is an extension of differential geometry.

We are further interested to continue this study especially on 
the Kähler manifolds and will try to extend our research to 
Calabi-Yau manifolds and Hyper Kähler manifolds.
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