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Abstract 
In this paper, a three dimensional chemostat model with variable yields is studied. The properties of the steady state points, the local and 
global stability, the Hopf bifurcation and the positive invariant set for the system are investigated by qualitative analysis of differential 
equations. 
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I. Introduction 

Mathematical modeling is a branch of bioscience which is 
a process that makes a relation between biology and 
mathematics. The chemostat is both a laboratory device 
used in biological science, and a well established 
mathematical model that is important to fields as diverse 
as ecology, pharmacological compartmental modeling, 
chemical engineering and medicine. In ecology, it serves 
as the model of the simple lake where the populations 
compete for the available nutrient. The analysis of a big 
number of chemostat models can be found in the 
monograph Waltman and Smith [10]. 

Most of the models in chemostat assume that the yield 
coefficient is a constant. But the accumulation of 
experimental data suggests that a constant yield fails to 
explain the observed oscillatory behavior in the chemostat 
[3]. Cooke [1,2] suggested a linear function for the yield 
coefficient and declared that a limit cycle may exist in his 
model. Huang [11,12] and Pilyugin and Waltman [7] 
constructed the model with a general variable yield, and 
studied the multiple limit cycles and the hopf bifurcation 
for the model. However, all these model considered only 
one microorganism in the system. A three dimensional 
chemostat with two microorganisms which are both with 
linear yields was studied by [9]. In the model, the 
functional reaction functions were in the Monod type, and 
the yield coefficients were assumed linear function of the 
concentration of nutrient. The stability of the solution was 
obtained. Xucheng Huang and Lemin Zhu [5] studied a 
three dimensional chemostat with quadratic yields. A 
three dimensional continuous fermentation model with 
yield coefficients  훿 = 퐴 +퐵푆  and 훿 = 퐶 +퐷푆  was 
discussed in [6]. They studied the stability of the 
equilibrium points, the existence of limit cycles, the hopf 
bifurcation and the positive invariant set for their model. 

In this paper, we study a three dimensional chemostat 
model of which one yield coefficient is linear and another 
yield coefficient is cubic functions of the concentration of 
nutrient. In section II, we formulate the chemostat model 
with two microorganisms which are with variable yield 
coefficients and illustrate the process of non-
dimensionalization to simplify the system. In section III, 

we study the steady state points with their stability, the 
positive invariant set, the existence of limit cycles, and the 
Hopf bifurcation in the two dimensional stable manifold of 
one microorganism when the other is going to vanish in the 
competition. In section IV, MATHEMATICA is used for 
numerical simulation to illustrate the key points of our model. 
Finally, conclusion of the paper is carried out in section V. 

II. The Model 

At   time  푡, let  푆(푡) denote the concentration of  nutrient  in 
the vessel, 푥(푡) and 푦(푡) the concentration  of  two 
microorganism. The model takes the form 

  = (푆 − 푆)푄 − − 퐿 푥 − 푦
 
 

= 푥 − 퐿 −푄

=  푦 −푄

           (1) 

푆(0) > 0, 푥(0) > 0, 푦(0) > 0.  

where 푆  is the input concentration of nutrient, 푄 is the 
washout rate, 푚 , the maximal growth rates, 푘 , the Michaelis-
Menton constants, 훿 , the yield coefficients and 퐿, is the 
intrinsic consumption rate for the first    microorganism, which 
are all positive. This model is usually called the Monod model  
or the model with Michaelis Menten dynamics.  

Here we investigate the system (1) with yield coefficients 
훿 = 퐴 + 퐵푆 ,훿 = 퐶 + 퐷푆 , which means that the 
production of the microbial biomasses is very sensitive to the 
concentration of the nutrient. 

 In system (1) we have used the growth rate functions  

퐹 (푆) = , where 푖 = 1,2  

which have the following common features: 
 퐹 (0) = 0 
 퐹 (푆) is an increasing function of S. 
 퐹 (푆) approaches a constant value as S approaches 

infinity. 

Performing the standard scaling for the chemostat, let     

 푆̅ = , 푥̅ = , 푦 = , 푇 = 푄푡,푚 = ,  푘 = ,     
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퐿 =   

then drop the bars and replace 푇 with 푡, system (1) 
becomes 

= (1− 푆)− − 퐿 푥 − 푦

= − 퐿 − 1 푥

= − 1 푦

  

                   (2) 
The parameters have been scaled by the operating 
environment of the chemostat, which are determined by 
푆  and 푄. The variables are non-dimensional and the 
discussion is in 푅 = {(푆, 푥, 푦)|0 ≤ 푆 ≤ 1, 푥 ≥ 0,    푦 ≥
0}. 
To be biologically meaningful, it is important to prove 
that the solutions of the model (2), with positive initial 
data, will remain positive for all time 푡 > 0. The proof of 
the following lemma is similar to [8]. 
Lemma 1: The solutions 푆(푡), 푥(푡), 푦(푡) of (2) are 
positive for all 푡 > 0 and for large 푡, 푆(푡) < 1. 
Lemma 2: For the system (2) 

(i) if 푚 < 퐿 + 1, then < 0 and lim → 푥(푡) = 0 

(ii) if 푚 < 1, then < 0 and lim → 푦(푡) = 0. 

Proof:  Let 퐹 (푆) = . Since 퐹 (푆) > 0 with 퐹 (0) =
0 and  푚 = lim → 퐹 (푆), we have 퐿 + 1− 푚 > 0. 
Thus there is 
0 < 훼 = min {(퐿 + 1) −max |퐹 (푆)|} such that 

< −훼푥(푡) for sufficiently large 푡 by the second the 
equation of (2). This shows 푥(푡) < 푥(0) exp[−훼푡] and 
since 푥(푡) > 0 for 푡 > 0, so we have lim → 푥(푡) = 0. 
This completes the proof (i). Similarly, we can prove (ii). 
III. Steady State Points and Their Stability Analysis 
The system (2) has three steady state points in 푅 :  
퐸 = (1, 0, 0),  
퐸 = (휆 , (1− 휆 )(퐴 +퐵휆 푆 ), 0) and 
퐸 = (휆 , 0, (1 − 휆 )(퐶 + 퐷푆 휆 ))  

where 휆 = ( )
( )

 and  휆 =  are respectively 
unique solutions of 

 − 퐿 − 1 = 0  and   − 1 = 0.  

 퐸  , 퐸  and 퐸   will exist if they have non-negative 
components. The steady state point 퐸  always exists. The 
other 퐸 ’s exist if 0 < 휆 < 1 (푖 = 1,2). 
The parameter values 휆 , 휆  represent the break-even 
concentration of the nutrient for the microorganism 푥(푡) 
and the microorganism 푦(푡) respectively and play an 

important role in determining competitive ability. With the 
help of Lemma 1, we can prove the following lemma. 

Lemma 3:  (i) If 푚 > 퐿 + 1 and 휆 > 1 then < 0 and 

lim → 푥(푡) = 0;  (ii) If 푚 > 1 and 휆 > 1 then < 0 and 
lim → 푦(푡) = 0. 
So in order to avoid the microorganisms vanishing, we need to 
assume that 

0 < 휆 < 1,   푖 = 1,2  
(which implies 푚 > (푘 + 1)(퐿 + 1) and 푚 > 푘 + 1)   (3)     
Theorem 1: Let 

퐷 =

⎩
⎨

⎧
(푆, 푥,푦)|0 ≤ 푆 ≤ 푙 − 푥 − 푦,

0 ≤ 푥 ≤ (퐴 + 퐵푆 휆 )(1− 휆 ) + ℇ ,
0 ≤ 푦 ≤ (퐶 + 퐷푆 휆 )(1− 휆 ) + ℇ ,

0 < 푙 < ∞, ℇ > 0, ,constant ⎭
⎬

⎫
. 

 Then 퐷 is positively invariant under the system (2). In other 
words, any trajectory initiated (푆, 푥, 푦) ∈ 푅  enters into 퐷as 
푡 → +∞. 
Proof:   By the first equation of (2), any trajectory in 퐷 =
{(푆, 푥, 푦) ∣ 푆 < 0,푥 > 0, 푦 > 0} will cross the face  푆 = 0 into 
푅 . But the trajectory in 퐷 ⊂ 푅  will not cross 푆 = 0 and go 
to 퐷 . 
Consider the face 푊 = 푆 + 푥 + 푦 − 푙 = 0  (0 < 푙 < +∞) and 
it is easy to see that  

= + +   

             = 1− 푙 − 푥
( )

− 1 ( ) − 퐿 −

                       푦
( )

− 1 ( ) .  

Since 푥, 푦 are bounded and 퐴,퐵,퐶 ,퐷,푆 ,푚 , 푘 , 푖 = 1,2 are all 
positive, < 0 for sufficiently large 푙. Therefore, the 
trajectory of (2) will cross the face  푊 = 0 into 퐷 from outside 
to inside.  Moreover, both 푥 = 0 and 푦 = 0 are the solution 
faces of the system (2). Thus 퐷 is positively invariant under 
the system (2). The proof of Theorem 1 is completed. 
Let  

푅 = 푆 ( ) ( ) ( )
( ) ( )

푅 = 푆
( ) ( ) ( )

( ) ( )

            (4) 

III.A Local and Global Stability Analysis 
The Jacobian matrix of the system (2) is 
퐽(푆,푥,푦) =

⎣
⎢
⎢
⎢
⎡푇(푆, 푥, 푦) − − 퐿 −

( )
− 퐿 − 1 0

( )
0 − 1 ⎦

⎥
⎥
⎥
⎤
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where,   

푇(푆,푥,푦) = −1− ( ) + ( ) −

퐿 − ( ) + .  

At 퐸 , the eigenvalues of  퐽(퐸 ) are 

−1, − 퐿 − 1  and   − 1.  

Hence, 퐸   is stable if   휆 > 1  and  휆 > 1. 
At 퐸  , the characteristics equation  of 퐽(퐸 ) is 
(푟 − 푎 )(푟 + 푏 푟 + 푐 ) = 0                 (5)                                                                                    
where    

푎 = − 1  

푏 = 1 + (1− 휆 )
( ) −   

푐 = (1 − 휆 )
( )

> 0 .  

Therefore, 퐸  is stable iff the roots of (5) have negative 
real part. By Routh-Hurwitz criteria, the stability holds if 
and only if 푎 < 0  and 푏 > 0 or equivalently, 휆 < 휆   
and    > 푅 . 

At 퐸 , the characteristics equation of  퐽(퐸 ) is 
(푟 − 푎 )(푟 + 푏 푟 + 푐 ) = 0                                      (6) 
where    

푎 = − 퐿 − 1  

푏 = 1 + (1− 휆 )
( ) −   

푐 = (1 − 휆 )
( )

> 0 .  

Therefore, 퐸  is stable iff the roots of (6) have negative 
real part. By Routh-Hurwitz criteria, stability holds if and 
only if  푎 < 0  and  푏 > 0, or equivalently, 휆 < 휆   
and          > 푅 . 

From the above stability analysis of the steady state points 
of system (2), we can summarize the results in the 
following theorem. 
Theorem 2: The system (2) has three steady state points 
in 푅 : 퐸 , 퐸   and  퐸  in which 퐸  is stable if 휆 > 1 and  
휆 > 1; unstable if 휆 < 1 and 휆 < 1. 퐸  is stable if   
퐴 퐵⁄ > 푅  and  휆 < 휆 ; untable  if   퐴 퐵⁄ > 푅  and  
휆 > 휆 , or  퐴 퐵⁄ < 푅 . 퐸  is stable if   퐶 퐷⁄ > 푅  and  
휆 > 휆 ; untable  if   퐶 퐷⁄ > 푅  and  휆 < 휆  or  퐶 퐷⁄ <
푅 .  
Theorem 3: (a) If  휆 < 휆  ,and 퐴 퐵⁄ > 푅  ,the steady 
state point  퐸  is globally asymptotically stable in 푅 ; (b) 
If  휆 > 휆  ,and 퐶 퐷⁄ > 푅  ,the steady state point  퐸  is 
globally asymptotically  stable, too.        

Proof:   Let  

훩 =

⎩
⎨

⎧
(푆, 푥, 푦)|0 ≤ 푆 ≤ 푙 − 푥 − 푦,

0 ≤ 푥 ≤ (퐴 + 퐵푆 휆 )(1 − 휆 ) + ℇ ,
0 ≤ 푦 ≤ (퐶 + 퐷푆 휆 )(1 − 휆 ) + ℇ ,

0 < 푙 < ∞,ℇ > 0 ⎭
⎬

⎫
  

We first prove that 훩 is positively invariant set of  (2). 
Consider the face 푆 = 0, and by equation (2) , 

= 1 + > 0.  

Thus, any trajectory in {(푆,푥,푦) ∣ 푆 < 0, 푥 > 0,푦 > 0} will 
go through 푆 = 0  into 푅 , but the reverse is not true. 
Consider the face 푀 = 푆 + 푥 + 푦 − 푙 = 0  (0 < 푙 < +∞),  

= 1− 푙 − 푥 ( ) − 1 ( ) − 퐿 −

                      푦
( )

− 1 ( ) .  

Since 푥, 푦 are bounded and all the parameters are positive, 
< 0 for sufficiently large 푙. That is, any trajectory in 

푅  will cross 푀 = 푆 + 푥 + 푦 − 푙 = 0 into 훩 . 
Moreover, because both 푥 = 0 and 푦 = 0 are the solutions of 
the system (2). Thus 훩 is positively invariant set of the system 
(2). In other words, any trajectory initiating in 푅  will go to 훩 
when   푡 → +∞. Therefore, both   퐸  and  퐸  are globally 
asymptotically stable. The proof of Theorem 3 is completed.    
In the case when one of the microorganisms is going to vanish, 
some nonlinear oscillatory phenomena for the microorganism 
and the nutrient occur. In other words, in the corresponding 
stable manifold, a limit cycle exists. Regarding the dynamical 
system on the two dimensional faces  푥 = 0 or 푦 = 0, we have 
the following results.                                                      
For 퐸 , we study the phase portrait in the solution plane  
푥 = 0. In this case the system (2) takes the form  

= (1− 푆) − 푦

= − 1 푦
                    (7) 

We would like to point out that the system (7) is a special case 
of the simple chemostat system: 

= 1− 푆 − ( )
( )
푦

= (푔(푆) − 1)푦
            (8) 

if letting  퐹(푆) = 퐶 + 퐷푆 푆  ,푔(푆) =  . 

In the region {(푆,푦)|0 ≤ 푆 ≤ 1, 푦 ≥ 0 },  the system (8) has 
two steady state points (1,0) , and (푆∗,푦∗) if 푔(1) > 1, where 
 푦∗ = (1− 푆∗)퐹(푆∗),   푆∗ = 푔 (1). 
It is easy to see that (1,0) is globally asymptotically stable if  
푔(1) < 1, unstable if 푔(1) > 1.  Denote  
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푝 = 1 + 푦 ∗
∗
                                              (9) 

The following theorem is established [4]. 
Theorem 4: Assume 푔(1) > 1.  If  푝 > 0 then (푆∗, y∗) is 
stable; if  푝 < 0,  it is unstable and there exists at least one 
limit cycle in (8) surrounding the equilibrium(푆∗, 푦∗). 
Then, we have  
Theorem 5: Assume (3) or 푚 > 푘 + 1. The system (7) 
has two steady state points: 푀 (1,0), which is unstable, 
and  푀 휆 , (1 − 휆 )(퐶 +퐷푆 휆 ) , which is stable if 
퐶 퐷 > 푅 ,⁄  and unstable if  퐶 퐷 < 푅 .⁄  In the case when 
푀  is unstable, there exists at least one limit cycle in (7) 
surrounding 푀 . 
In the face 푦 = 0, the system (2) takes the form 

= 1− 푆 − − 퐿 푥

= − 퐿 − 1 푥
            (10)  

which is also a special case of  (8) with   

퐹(푆) = 퐴 + 퐵푆 푆,푔(푆) = − 퐿 and 푦 = 푥           (11) 

In 푅 = {(푆, 푥)|0 ≤ 푆 ≤ 1,푥 ≥ 0}, the system (10) has 
steady state points: 푁 (1,0) which is unstable, and  
푁 휆 , (1 − 휆 )(퐴 +퐵푆 푆) , if 푔(1) > 1. 

Calculating p in (9) and 푅  will result the following 
theorem. 
 Theorem 6: Assume (3) or 푚 > (푘 + 1)(퐿 + 1)). If  
퐴 퐵 > 푅⁄ , then 푁  is stable; If 퐴 퐵 < 푅⁄ , then  푁  is 
unstable and there exists at least one limit cycle in (10) 
surrounding 푁 . 
Regarding the bifurcation on the two dimensional stable 
manifolds, the following theorem is valid. 
Theorem 7:  The system (10) undergoes a Hopf 
bifurcation at  퐴 퐵⁄ = 푅   and so does the system (7) at 
퐶 퐷⁄ = 푅 . 
Proof:   Let 퐽(푁 ) be the Jacobian at 푁 . The 
corresponding characteristic equation is 
              푟 + 푏 푟 + 푐 = 0. 
Let 퐴 퐵⁄ = 휇. Denote 푏  , the coefficient of  푟 in the above 
equation, as 푡푟(퐴 퐵⁄ ), or 푡푟퐽(휇), where,  

푡푟퐽(휇) = 1 + (1− 휆 ) + ( ) .  

Since 

푡푟퐽(휇) = (1− 휆 )
( )

> 0,  

the function 푡푟퐽(휇) is increasing at 휇 = 푅 .  
Since 

  푡푟퐽(휇)
 < 0    if  휇 < 푅
= 0    if  휇 = 푅
< 0    if  휇 > 푅

  

the phase structure of  푁 = 휆 , (1 − 휆 )(퐴 + 퐵휆 푆 )  
changes from unstable to stable at 푅  as the  parameter 휇 
increases. So (10) undergoes a Hopf bifurcation at 퐴 퐵⁄ = 푅  
by the definition. 

Similarly, for the steady state point 푀 휆 , (1 − 휆 )(퐶 +
퐷푆 휆 ) , we can prove the bifurcation theorem for the system 
(7) at 퐶 퐷⁄ = 푅 .  
IV. Numerical Simulations  

The numerical experiments performed on the system (2) using 
experimental data confirm our theoretical findings. For the 
parameter values  푚 = 3.25,푘 = 2,푚 = 1.75,푘 =
2.5,퐿 = 0.5 ,퐴 = 0.75 ,퐵 = 5,퐶 = 3.75,퐷 = 2.25,     푆 =
0.4, we have 휆 > 1, 휆 > 1 and the solution curves tend to 
퐸  (see Fig-1) representing the extinction of both 
microorganisms. For  푚 = 3.25, 푘 = 0.2, 푚 = 2.5, 푘 =
0.3, 퐿 = 0.002  퐴 = 0.04 ,퐵 = 3, 퐶 = 0.0001, 퐷 = 0.2,
푆 = 0.4, we have 퐴 퐵⁄ > 푅  ,  휆 < 휆  and the solution 
curves tend to 퐸  (see Fig-2) representing the extinction of 
second microorganism.  For 푚 = 3.5, 푘 = 0.4, 푚 = 3,
푘 = 0.2, 퐿 = 0.001, 퐴 = 0.0005 , 퐵 = 0.3, 퐶 = 0.75,
퐷 = 3, 푆 = 0.4, we have 퐶 퐷⁄ > 푅  , 휆 > 휆  and the 
solution curves tend to 퐸  (see Fig-3) representing the 
extinction of first microorganism. For 푚 = 3.25,푘 =
0.2,퐿 = 0.002  퐴 = 0.0188496 ,퐵 = 2,   푆 = 0.4 , figures 4-
5 contain the solution curves and phase structure of 푁  of the 
system (10), resulting the system undergoes a Hopf bifurcation 
at 퐴 퐵⁄ = 푅 . The two plots in figures-6,7 have 퐴 퐵⁄ > 푅  and 
the the system (10) is unstable through limit cycle oscillation. 
The two plots in figure-8, 9 have 퐴 퐵⁄ < 푅  and all plotted 
trajectories tend to 푁 , resulting in a stable situation. 

 

Fig. 1. Solution curves of (2) tend to 퐸  
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Fig. 2. Solution curves of (2) tend to 퐸  

 
Fig. 3. Solution curves tend to 퐸  

 
Fig. 4. Solution curves of system (10) when 퐴 퐵⁄ = 푅  

 

  
 
Fig. 5. System (10) undergoes a Hopf bifurcation at  퐴 퐵⁄ = 푅  

 

 
Fig. 6. Solution curves of system (10) when 퐴 퐵⁄ > 푅  

 

  
Fig. 7. System (10) is unstable when 퐴 퐵⁄ > 푅  

 
Fig. 8. Solution curves of system (10) when 퐴 퐵⁄ < 푅  

 

 
   Fig. 9. System (10) is stable when 퐴 퐵⁄ < 푅  
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V. Conclusion 

In this paper, we considered a basic resource-based three 
dimensional chemostat model with variable yields. In this 
model, we assumed Monod type growth rate functions of 
which one yield coefficient is linear and another yield 
coefficient is cubic. The model (2) has three steady states. 
One is associated with extinction of both microorganisms, 
the other with survival of one microorganism. We studied 
the local stability of these steady states by using the 
Routh-Hurwitz criterion. We found that if the break-even 
concentration of one microorganism is larger than one 
then that microorganism dies out whether or not there is 
other competitor. If  퐸  is the only steady state point, we 
showed that 퐸  is LAS (this happens if both 휆 > 1, 
휆 > 1). When 퐸 ,  퐸  or 퐸  are the steady state points, 
we found that 퐸  is LAS (for 퐴 퐵⁄ > 푅 ,  휆 < 휆 ) and  
퐸  is LAS (for 퐶 퐷⁄ > 푅  , 휆 > 휆 ), i.e., the 
microorganism that survives is the one with the lowest 
break-even concentration.  

Thus, for a variable yield coefficients chemostat model, 
we found that the break-even concentrations 휆 , 휆  and 
parameters 퐴,퐵,퐶,퐷 in variable yields play an important 
role for the extinction and survival of the microorganisms, 
and the limit cycle oscillation of the system. 
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