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Abstract 
Forecasting of the Renewable Energy plays a major role in optimal decision formula for government and industrial sector in Bangladesh. 
This research is based on time series modeling with special application to solar energy data for Dhaka city. Three families of time series 
models namely, the autoregressive integrated moving average models, Holt’s linear exponential smoothing, and the autoregressive 
conditional heteroscedastic (with their extensions to generalized autoregressive conditional heteroscedastic) models were fitted to the data. 
The goodness of fit is performed via the Akaike information criteria, Schwartz Bayesian criteria. It was established that the generalized 
autoregressive conditional heteroscedastic  model was superior to the autoregressive integrated moving average model and Holt’s linear 
exponential smoothing  because the data was characterized by changing mean and variance.  
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I.  Introduction 

Renewable energy comes from natural resources such as 
sunlight, wind, rain, tides, and geothermal heat, which are 
renewable (naturally replenished). The main forms of 
renewable energy are solar energy, wind power, 
hydropower, geothermal energy, and biofuel. Among 
these, solar energy is being seriously considered for 
satisfying significant part of energy demand in 
Bangladesh, as in the world.  

Solar radiation data are a fundamental input for solar 
energy applications such as photovoltaic systems for 
electricity generation, solar collectors for heating, solar air 
conditioning climate control in buildings and passive solar 
devices. The solar radiation data should be measured 
continuously and accurately over the long term. Time 
series analysis of solar radiation data is useful in 
predicting long-term average performance of solar energy 
systems. Thus, many studies have been carried out on this 
subject.  

A comparative study on Box-Jenkins Autoregressive 
Integrated Moving Average (ARIMA) and Generalized 
Autoregressive Conditional Heteroscedastic (GARCH) 
models in forecasting natural resource (crude oil) prices 
was proposed by Yaziz et al. (2011)1, where GARCH is 
found to be a better model than ARIMA model. Akincilar 
et al. (2011)2 found that GARCH model exhibited superior 
forecasting efficiency to ARIMA and Holt’s smoothing 
models. Guo et. al. (2010)3 used both ARMA and 
GARCH models and its extension for forecasting wind 
speed. Bulut and Büyükalaca (2007)4 have developed a 
simple model for estimating the daily global radiation. 

In the study of Sulaiman et al. (1997)5, the Box-Jenkins 
approach was applied to daily solar radiation data from 
four different locations in Malaysia.  A time series is a 
series or sequence of data points measured typically at 

successive times. These data points are commonly equally 
spaced in time (Chatfield, 2004)6.  

ARIMA model has been studied extensively to time series 
analysis and forecasting. They were popularized by George E. 
P. Box and Gwilym M. Jenkins in the 1976s7, and their names 
have frequently been used synonymously with general 
ARIMA models. Exponential Smoothing is a very popular 
scheme to produce a smoothed time series. Whereas in moving 
averages the past observations are weighted equally, 
exponential smoothing assigns exponentially decreasing 
weights as the observation get older. In other words, recent 
observations are given relatively more weight in forecasting 
than the older observations. The related literature on 
exponential smoothing can be found in Brown (1962)8, Holt et 
al. (1960)9, Gardner (1985)10, Makridakis (1982)11. 

The autoregressive conditional heteroscedastic (ARCH) 
models, with its extension to generalized ARCH, (GARCH) 
models as introduced by Engle (1982) [12-13] and Bollerslev 
(1986)14 respectively, accommodates the dynamics of 
conditional heteroscedasticity. Campbell et al. (1997)15 argued 
that it is both logically inconsistent and statistically inefficient 
to use and model volatility measures that are based on the 
assumption of constant variance over some period when the 
resulting series moves or progress through time. The ARCH-
GARCH modeling considers the conditional error variance as 
a function of the past realization of the series. 

II. Data and Methodology 

This study was conducted for searching a univariate 
forecasting model for the solar radiation (in kWh per square 
meter) of Dhaka city. The data possess 36 observations during 
the time period 2003-2005. This secondary data were collected 
from Renewable Energy Research Centre (RERC), Dhaka 
University (DU) that covered the period January 2003 to 
December 2005 available from the source. The dataset provide 
monthly solar radiation rate of Dhaka city.  
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Box- Jenkins Methodology for ARIMA Model 

An autoregressive model of order p is conventionally 
classified as AR (p). A moving average model with q 
terms is classified as MA (q). If the object series is 
differenced d times to achieve stationarity, the model is 
classified as ARIMA (p, d, q), where the symbol ‘‘I” 
signifies “integrated”. 
The equation for the ARIMA (p, d, q) model is as follows: 

=C+ + +…+ + - - -
…-  

Or in backshift notation 
(1- B- -…- ) =  + (1- B- -…- 

)  

where  denotes constant, f denotes th autoregressive 
parameter,   denotes th  moving average parameter, 

denotes the error term at time ,   denotes the th 
order backward shift operator. 

Box and Jenkins proposed a Methodology that consists 
three phases are known as Box-Jenkins Methodology. 
Phases are identification, Estimation of Diagnostic 
checking, and Application.  Identification consists four 
steps (Step1: Stability in variance, Step2: Checking the 
Stationarity, Step3: Obtaining Stationarity, Step4: Model 
Selection) and estimation of Diagnostic checking consists 
three steps (Step1: Estimating the Parameters, Step2: 
selection of the Best Model, Step3: Diagnostic Checking) 

Holt’s Linear Exponential Smoothing Methodology 

In exponential smoothing procedures the weights assigned 
to observation are exponentially decreased, as the 
observations get older. The forecast for Holt’s linear 
exponential smoothing is found using two parameter 
smoothing constants, α and β with values between 0 and 
1, and three equation: 

 = +(1- ) ( )                                                                                                     

= ( - ) + ( 1- )                                                                                                   

 =  +       

Here  denotes an estimate of the level of the series at 
time t and  denotes an estimate of the slope of the series 
at time t and  is forecasted value at period  

To perform a Holt’s linear exponential smoothing method 
we have to go through the  three steps, namely Step 1: 
Initialization, Step 2: optimization, Step 3: Forecasting. 

The initialization process requires two estimates-one to 
get the first smoothing valued for  and the other to get 
the trend . 

One alternative is to set  =  and  = -     or   
=  ( - ) 3 

Another alternative is to use least squared regression on the 
first few values of the series for finding and  . 

 Methodology for GARCH Model 

The GARCH  is an generalization of GARCH (1,1) with 
p as the autoregressive lag and q is the moving average lag. 
Formally a process { } is GARCH  if 

=  

= + +  

     = +  (B) +  (B)  

where  is Gaussian white noise while (B) and (B) are 
polynomials in the backshift operator.  

Assuming the GARCH  process is second order 
stationary, that is 

Var ( ) = ( ) =  

The autocovariance of a GARCH  model for k ≥ 1 
where k is the lag is 

 ( ) = 0 

Considering writing  in terms of -   yields 

+  

      = +  

      + +  

Now let  then 

= + +  

where  for and  for . Thus the 
equation of  has an ARMA  representation. 

Therefore assuming  …, and , ,…,   are 
known, the conditional maximum likelihood estimates can be 
obtained by maximizing the conditional log-likelihood given 
by 

l =  f  θ,  …, 
, ,…,  )  

 = (2 )  

With θ= ( ) and  

Then the 1-step ahead volatility forecast is given by 

= ( )  

          = ( ) 

        ( ) 
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Furthermore, the l-step ahead forecast of the conditional 
variance in a GARCH  model is given by 

(l) = ( )  

          = ( )    

        ( ) 

III. Analysis and Results  

Estimation of an ARIMA Model 

 
Fig. 1. The Time-Plot of Solar energy 

From the observed time plot we found that over the time 
period of study solar energy is not stationary in the mean 
and variance. The data are not stationary and there exist 
seasonality which we observed from the autocorrelation 
function (ACF) of solar and the corresponding 
correlogram. Than the data set does not follow a white 
noise series since the values of Ljung-Box test are 
significant different from a null set. Now we have to take 
the differencing method. 

This study uses the Akaike information Criterion (AIC) to 
choose the best model among the class of plausible 
models. The model which has the minimum AIC value is 
our model of interest. 

Table. 1.  The AIC values for ARIMA  model  

  = 0 = 1 = 2 = 3 

= 0 115.65 91.54 91.87 93.73 

= 1 102.19 91.80 93.80 95.73 

= 2 97.08 93.79 93.28 95.36 

= 3 98.38 95.59 97.52 96.95 

 

From Table-1, we found that the AIC value for the model 
ARIMA (0, 2, 1) is minimum. This model includes no AR 
coefficients and one MA coefficient and takes the form: 

= -  

Or,  -2 +  = -  

Or, 2 - + -  

Now we have to test the signification of the parameter.    

Table. 2. The significance test of the parameters of 
ARIMA (0, 2, 1) 

Coefficient Parameters Stan-
dard 
error 

Z value Decision 

 -1.00 0.09 -10.88 Significant 

From the above table we see that  values corresponding to 
the coefficient  less than 0.05, which leads to the conclusion 
that this parameter is significant.  

Estimation of Holt’s Linear Smoothing Model 

Through computer programming, we obtain the set of value  
and  as smoothing parameters which gives the minimum 
Mean Square Error (MSE). Following this procedure we 
obtain the value of =0.800 and =0.000 which minimizes 
the MSE. 

Thus, our Holt’s linear model becomes, 

= 0.800 +(1-0.800) ( ) 

     = 0.800 +0.2( ) 

= 0.000( ) + (1-0.000)  

     =  

And  = +  where  =1,2,3,… 

Using =1. We get 

= +              

This model is used to forecast the future values.  

Estimation of the ARCH-GARCH Model  

From model selection criteria, the model which has minimum 
Akaike Information Criteria (AIC), and Schwartz Bayesian 
Criteria (SBC) value, is the best model. 

Table. 3. Comparison of ARCH-GARCH models  

Model AIC SBC 
GARCH(1, 1) 212.42 217.18 
GARCH(1, 2) 212.41 217.17 
GARCH(2, 1) 212.88 217.63 
GARCH(2, 2) 214.88 221.21 
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Therefore the GARCH (1, 2) in table 3 is chosen to be the 
most appropriate; hence we proceed to estimate the 
associated model parameters. 

Table. 4. Comparisons of the ARIMA, HOLT’S and 
ARCH-GARCH Models 

 

Measures of 
error 

 

 

 

ARIMA 
model 

Holt’s 
linear 
model 
with 

=0.80 
and 

=0.00 

 

GARCH (1,2) 

 model 

Mean 
Error(ME) 

     -0.17 0.03 4.44 10-6 

Mean 
Absolute 
Error(MAE) 

      0.66 0.67 0.66 

Sum Square 
Error(SSE) 

      
23.54 

22.31 22.29 

Mean 
Percentage 
Error(MPE) 

      -5.64 -1.61 -3.66 

Mean 
Absolute 
Percentage 
Error(MAPE) 

      
16.50 

16.42 16.41 

From the above table we see that for all measures of 
errors, GARCH (1,2) model gives the better  results over 
ARIMA (0,2,1) model, and Holt’s linear smoothing 
model on solar energy data. 

IV. Conclusion 

Generation of typical solar radiation is very important for 
the calculations concerning many solar applications. It is 
one of the most important economic sectors of a country, 
like Bangladesh. Day by day, the infrastructural 
development is improving and that’s why the solar 
radiation of this sector also shows increasing trend. This 
study focuses the extensive understanding of the theory of 
time series analysis and its application to a real life 
situation. Here although the ARIMA model captured 
these variations, the need to transform the data to 
stationary makes the model rely on some restricted 
assumptions resulting the GARCH model being superior. 
The GARCH model fits the data well. To formulate future 
development plan for this sector, it is essential to know 
the previous condition and also see the future trend. In 
this study, forecasting is done by using some sophisticated 
statistical tools so that the government and policy makers 
can easily realize about the future contribution of the solar 
radiation of Dhaka city to the overall solar radiation and 
could take initiatives to how to improve this sector.     
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