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Abstract 

In this paper we established the Serret-Frenet equations in Minkowski space. These equations originally formulated in Euclidean space in 

, constitute a beautiful set of vector differential equations which contains all intrinsic properties of parameterized curve. From the local 

theory of curves in  states that a curve lies in a plane if and only if its torsion vanishes, which gives us clear geometrical insight in the 

notion of torsion. This theorem has two counterparts in Minkowski space that has been focused. 

I. Introduction 

The main objective of this paper is to look at some aspects 
of the differential geometry of curves in Minkowski space 
[2]. The article is organized as follows. In section 2 we start 
by setting up the Serret-Frenet equations in Minkowski 
space. The Serret-Frenet equation gives the derivatives with 
respect to the arc length parameter of the tangent, normal 
and binormal vectors of a curve in terms of each other. 
Though the Serret-Frenet equations, the evolution of a curve 
is completely determined, up to rigid motion, by two 

intrinsic scalars: the curvature  and the torsion . 

This result is known as the fundamental theorem of space 
curves [10]. An analogous theorem holds in Minkowski 
space, and proof is given in section 3.  The set of equations 

has a solution in terms of , curvature and  , the angle of 

rotation of the osculating plane, that indirectly solves the 

Frenet-Serret equations, with a unique value of for each 

specified value of , torsion. Explicit solutions can be 

generated for constant  .The equations breakdown when 
the tangent vector aligns to one of the unit coordinate 
vectors, requiring a reorientation of the local coordinate 
system  

II. The Serret-Frenet Equations 

In Euclidean space  the intrinsic geometric properties of 

a curve (parameterized by the arc length ) are described 

by the Serret-Frenet equations 

 

                          

                                                            (1) 

                         

 

Or, in matrix representation, 

                   =                        

where , ,  denote, respectively, the tangent, normal and 

binormal vectors of the curve , which is assumed to be 

smooth (at least of  class ). The triad of vectors  

constitute an orthonormal right handed frame defined at 

each point of   and the invariant scalars  and 

 are called, respectively, the curvature and 

torsion of . The equations  follows directly from the 

definition of the normal vector , the binormal vector 

 [10]. 

To adapt the above formalism to Minkowski space we need 
to replace the Euclidean metric for the Minkowski metric 

  and define a second 

binormal and a second torsion . Since usual 

vector products make no sense in four dimensional space we 

define our set of orthonormal four-vectors ( ) by 

concomitantly requiring them to satisfy a four dimensional 
extension of the Frenet-Serret equations, which then governs 
the evolution of the tetrad. It is also convenient to restrict 

ourselves to timelike curves , i.e. those for 

which , where now  denotes the arc 

length parameter in the sense of Minkowski metric . 

Accordingly, if we denote the tetrad vectors by 
, then the orthonormality conditions read  

 It can be shown  
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that if we chose , i.e.  being the components 

of the unit tangent vector, then we can easily construct an 

orthonormal basis vectors , defined along the curve, 

which obey the following four dimensional Serret-Frenet 
equations, given in matrix representation by 

                                

Of course the above procedure may be easily generalized to 

-dimensional Riemannian (or pseudo-Riemannian) spaces 

by changing from ordinary differentiation to absolute 
differentiation [4, 8]. Here, two points are worth 

mentioning. First, due to the Lorentzian signature, the  

matrix that governs the evolution of the tetrad vectors  

is not anti-symmetric, as in the case of Euclidean signature.  

Secondly, in order to construct of the tetrad  it is not 

necessary, as a matter of fact, to assume that the curvature 

and the torsions have non-zero values. If , then the 

curve is a timelike geodesic and a triad of constant spacelike 

orthonormal vectors  orthogonal to 

 may be chosen. In this case,  and  are 

zero, if , but , then we can choose an 

orthonormal basis   in such a way 

that  and   are constant spacelike vectors.  

III. The Fundamental Theorem in Minkowski Space 

A most important result in the local theory of curves in 

Euclidean space , known as the fundamental theorem of 

curves, states the following: 

Given differentiable functions  and , there 

exists a regular parameterized curve   such that  is the 

curvature,   is the torsion of . Any other curve  

satisfying the same conditions differs from  by a rigid 

motion . It would be natural to expect this theorem to 

hold when appropriately transposed to Minkowski space. In 
this case, a rigid motion would correspond to a Poincare 
transformation and the curve would be expected to be 
determined by the three differentiable functions 

 and . Here we give a simple proof of 

the fundamental theorem of curves in Minkowski space. We 
omit the proof of the existence part since it is almost the 

same as in the case of , requiring only minor 

modifications. The proof of the uniqueness part, however, 

differs from its counterpart in , since the latter makes use 

of the positiveness of the Euclidean metric. Let us first state 
the theorem. 

Theorem 1.  Given differentiable functions 

 and , there exists a regular 

parameterized timelike curve  such that  is the 

curvature,  and are, respectively, the first and 

second torsion of . Any other curve   satisfying the same 

conditions differs from  by a Poincare transformation. i.e., 

by a transformation of the type , where 

 represents a proper Lorentz matrix and  is a constant 

four vector. 

Proof. Let us assume that two time-like curves  and  

satisfy the conditions  

and , , where  is an open interval of . 

Let  and  be the Serret-Frenet tetrads 

at of  and , respectively. It is clear that it is 

always possible, by a Poincare transformation, to bring 

 of  into  of  in such a way 

that . Now, the two Serret-Frenet 

tetrads ,  satisfy the equations  

                              

and  

                   

which can be written in a more compact form as  

                                                              (6) 
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with  denoting the elements of the Serret-Frenet 

matrix. Clearly, the two tetrads ,  are 

related by an equation of the type  

                                                  (7) 

with the elements of the matrix  satisfying the 

condition , since we are assuming that 

. From (6) and (7) we obtain a system 

of first order differential equations for the elements of  

given by  

 

By assumption,  are differentiable functions of the 

proper parameter . From the theory of ordinary differential 

equations [11], we know that if we are given a set of initial 

conditions  , then the above system admits a unique 

solution  defined in a open interval  

containing . On the other hand, it is easily seen that 

 is a solution of . Therefore, we conclude 

that . 

Other extensions of known theorems of the differential 

geometry of curves in Euclidean space  can easily be 

carried over into Minkowski space. As an example, let us 

consider the following results on curves lying in : 

A curve, with non vanishing curvature, is plane if and only 
if its torsion vanish identically  Natural extensions of 

this result to Minkowski space are given by the following 
theorem: 

Theorem  A time-like curve , with non vanishing 

curvature, lies in a hyperplane if and only if the second 
torsion vanishes identically. 

Proof. Again we restrict ourselves to time-like curves. Let 

us start with the necessary condition. Suppose the curve  

lies in a hyperplane. Then, by a Lorentz rotation we can 
align one of the coordinate axes with the normal direction to 
the hyperplane. For the sake of the argument, let us assume 

that we can bring  to lie, say, in the -

hyperplane. Then the parametric equations of  are of the 

form . Let 

 denote the vectors of the canonical coordinate basis. 

Thus, in these coordinates, 

 and  

. From  we 

have . Given that  we conclude that 

 has no components in the -direction, i.e., 

. Thus 

hence from the 

equation  we conclude 

that . If , then  also must vanish, for in 

this case  is chosen to be constant. If , then 

, hence . From the 

equation  and 

the third Serret-Frenet equation  

we are led to conclude that . However,  

cannot be zero, otherwise the set of vectors 

 would not be linearly independent. 

Therefore,  must vanish. 

Let us turn to sufficient condition. Suppose that . 

Then, the fourth Serret-Frenet equation implies that  is a 

constant vector. Let us conveniently choose our coordinate 
system in such a way that . Now, since   is 

orthogonal to  we must have , which means 

that  lies in the hyperplane . This completes 

the proof.                                                                  

 Another extension of theorem 2 leads directly to the 
following proposition: 

Proposition.  A time-like curve , with non-vanishing 

curvature, is plane if and only if first and second torsions 
vanish identically.  

Since it follows the same lines of reasoning presented in the 
proof of theorem 2 that’s why we omit the proof. 

IV. Mathematical Development 

A local coordinate system having the property 

iT  supports the definition of N : 

        sincos kjN                                     (9) 

The curvature k and the angle of rotation   of the plane 

(containing N andT ) characterize the curve. When the 
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plane containing T  and the global coordinate j is normal 

to k  (figure 2) then 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Angular orientation of the local coordinate system 
with respect to the global coordinate system. 

 
21 j

ik

T

kTiT

jT

jT
k









                            (10) 

Equation (10) breaks down when jT  , requiring an 

alternate expression. However, when jT  , 

2

2

1

)1(

j

kjjji

T

TkTTjTiT
Tkj




              (11) 

Substituting (11) and (10) into (9): 

;
1

cossin1
2
j

jiki
i

T

TTT

ds

dT
N









                  

(12) 

;1cos
1 2

j

j

j T
ds

dT
N  


                                  (13) 

;
1

cossin1
2
j

kjik
k

T

TTT

ds

dT
N









                     (14) 

Equation (13) can be integrated directly: 

       ;cos
1 020

 


s

s

T

T
j

j
d

T

dTj

j

                  (15) 

Leading to   

 ;cossinsin
0

0
11

 
s

s
jj dTT   

;sincossinsin
0

0
1  





  


s

s
jj dTT  

 dkTdkTT
s

s
j

s

s
jj  

0

2

0
0 cossin1coscos

                                                               (16)  

 Equation (12) is solved by noting that 

2222 cos1 iijk TTTT   and introducing 

the variable  so that 

;coscos iT                                    (17) 

;sincos KT
  
                                                (18) 

Substituting into (12): 

ds

d

ds

dTi 
 sincoscossincos   

 




cos

sincoscoscossincossin 


         

.sincoscossinsin                       (19) 

Equation (19) simplifies to  

   
;

cos

sin






ds

d
                                  (20) 

Or, 

;
cos

cos
cos

sin 1

0
0 








 

 





 i

s

s

T
d                (21) 

so that 

;
cos

sin
cos

cos

cos

cos

sin
cos

cos

cos
0

0

0
0

0

0 
















dTdTT

s

s
k

s

s
ii  

                                                           (22) 

where 

.cossincoscos1cos
000

2
0  

s

sj

s

sj dTdT 

                                                               (23) 

The solution for kT follows from (18) and (20): 

i

j

k

i

j

k 
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;
cos

sin
cos

cos

cos

cos

sin
cos

cos

cos
0

0

0
0

0

0 
















dTdTT

s

s
i

s

s
kk  

                                                                             (24) 

It can be easily verified that (16), (22), and (24) meet the 
requirement: 

 .
ds

dT


 

                                   (25) 

Generating an expression for the torsion  requires first 

computing N by substituting (16) - (18) into (12) - (14): 

;sinsincossincos  iN                     (26) 

;coscos jN                                    (27) 

;sincossinsincos  kN                    (28) 

Next, :NTB   

;sincoscossinsin  iB
                        

(29) 

;sincos jB
 
                                  (30) 

;coscossinsinsin  kB
                       

(31) 

Equation (32) expresses the torsion as a function of :  

.sintan 


 
ds

d

ds

dB
                                  (32) 

Equation (33) expresses in terms of components 

ofT and B : 

.
1 2

j

jj

T

BT

ds

d







 

                                   (33) 

Integrating (33) leads to the following expression for : 

 
















s

s
j

jj
d

T

BT

0 20
1




 .                                   (34) 

Equation (34) indicates a unique value of  for each 

specified value of when 1jT . Thus, (18), (22), and 

(24) indirectly solve Serret-Frenet equations. 

The angle  can also be expressed in terms of components 

ofT , N , B : 

.tan
1

cos
1

sin 1

2

1

2

1

j

j

j

j

j

j

N

B

T

N

T

B
 







                                                  (35) 

An explicit solution often results when  is constant. 

Setting 10 iT , so that 000   (and setting 00 s ) 

leads to 

  ;cos 0
0

 d
s

                                                 (36) 

 ;2/tantanhtan2 1
0  

                                  
(37) 

so that 

     ;coscos2/tantanhtan2cos 0
0

1
0  dT

s

i 


                                                               (38) 

  ;cossin 0
0

 dT
s

j                                          (39) 

 
 

     ;coscos2/tantanhtan2sin 0
0

1
0  dT

s

k 


                                                               (40) 
The torsion becomes  

       dss
s

0
0

0 costansin                  (41) 

As an example, when 

,
0

2se                                                   (42) 

 

  )43(;cos
4
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coscos
2
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0
01

0

0
0










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

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
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 
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(44) 
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

 
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    )46(0
0

0

2

0 cos
2

tansin











  


 serfes s

 

When 0  but 0  , the solution will typically 

involve undetermined integrals. For example, when 

0  and s0  , 

 
 

;
sincos

sin
cossincos

0
0

00
0 




 dsT

s

i                 (47) 

 ;sinsin 0 sT j 
                                                        

 (48) 

 
 

;
sincos

sin
sinsincos

0
0

00
0 




 dsT

s

k                 (49) 

and 

    .sinsintan 0000 sss                            (50) 

When 0  and 0  , (38)-(41) 

become:

 

;cos
2

tantanhtan2

coscoscos

0
01

0

00













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













 






s

sTi

       

 (51) 

 ;cossin 00  sT j      
                                  (52) 

 

;cos
2
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sincoscos

0
01

0

00




























 






s

sTk

                      (53) 

   0000 costansin  ss 
                            

 (54) 

When 2/0   ,   0s , confiningT and N to a 

plane. WhenT align with ,j
 
in (54), and the 

equations break down. 

V.  Conclusion   

Due to the fundamental theorem of curves, if a curve 
represents the motion of a particle, one can look at the 
Serret-Frenet equations as containing complete information 
on the dynamics of the particle. Such correspondence 
between the geometry of curves and the dynamics of 
particle can be nicely explored in the context of special 
relativity to study the intrinsic geometry of world lines in 
Minkowski space. In fact, compared to the Newtonian 
formalism, special relativity is a more natural setting for a 
description of motion through the Serret-Frenet equations, 
since the worldliness of particles are usually parameterized 

by the arc length parameter , turning to the equations into a 

much simpler form.   
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