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Abstract 
The objective of this paper is to improve the subgradient optimization method which is used to solve non-differentiable optimization 
problems in the Lagrangian dual problem. One of the main drawbacks of the subgradient method is the tuning process to determine the 
sequence of step-lengths to update successive iterates. In this paper, we propose a modified subgradient optimization method with various 
step size rules to compute a tuning- free subgradient step-length that is geometrically motivated and algebraically deduced. It is well known 
that the dual function is a concave function over its domain (regardless of the structure of the cost and constraints of the primal problem), but 
not necessarily differentiable. We solve the dual problem whenever it is easier to solve than the primal problem with no duality gap. 
However, even if there is a duality gap the solution of the dual problem provides a lower bound to the primal optimum that can be useful in 
combinatorial optimization. Numerical examples are illustrated to demonstrate the method. 
 

Key Words: Relaxation, subgradient, optimization, IP 

I.  Introduction 

Linear and Integer programming1 deal with the optimization 
(maximization or minimization) of a function of variables 
known as objective function, subject to a set of linear 
equalities and/or inequalities known as constraints. The 
objective function may be profit, cost, production capacity 
or any other measure of effectiveness, which is to be 
obtained in the best possible or optimal manner. 

The constraints may be imposed by different sources such as 
market demand, production processes and equipments, 
storage capacity, raw material availability, etc. 

Integer programming2,3 (IP) is a valuable tool in operations 
research, having tremendous potential for applications. Such 
problems occur quite frequently in business and industry. 
All assignment and transportation problems are IP problems. 
In these problems, the decision variables are either zero or 
one. i.e. 

ݔ ൌ 0 or 1 

Other examples are capital budgeting and production 
scheduling problems. In fact, any situation involving 
decisions of the type “either to do a job or not to do” 
(“either-or”) can be viewed as an IP problem. In all such 
situations,   

=jx   1    ሺif jth activity is performed ሻ,
 0 ሺif jth activity is not performedሻ 

In addition, all allocation problems involving the allocation 
of men and machines give rises to IP problems, since such 
commodities can be assigned only in integers and not 
infractions. 

The focus of this paper is on the subgradient optimization 
methods4 which are used for solving IP problems using the 
methodology of Lagrangian relaxation and dualization. The 
goal of this paper is to employ the subgradient optimization 
techniques to solve a practical business related planning 
problem which involves certain difficult constraints but 

imbedded in some tractable nice mathematical structures. 
Therefore, in order to solve practical IP problems we may 
need to resort to approximation schemes and problem 
specific algorithms which can exploit some special 
structures of the problem at hand.  

In Section 2, we will review the relevant literature about the 
approach of the Lagrangian relaxation of IP problems and 
formulate the related Lagrangian dual problem. We also 
discuss properties of the dual problem, optimality conditions 
as well as the general structure of the dual objective 
function. In Section 3, we will propose an improved 
subgradient optimization method and an improved algorithm 
to solve practical business related problems using 
Lagrangean relaxation technique. Section 4 concludes the 
paper. 

II.  Lagrangean Relaxation and Duality 

In the last decade, Lagrangian Relaxation5 has been grown 
from a successful but largely theoretical concept to a tool 
that is the backbone of a number of large scale applications. 
There have been several surveys of Lagrangian relaxation in 
Geoffrin6 and Shapiro7. More extensive use of Lagrangian 
relaxation in practice has been hampered by the lack of a 
“how to do it” exposition similar to the treatment usually 
accorded for LP, dynamic programming (DP) and IP in 
operation research texts. This paper is intended to at least 
partially fill that void and should be of interest to both 
developers and users of Lagrangian relaxation algorithms. 
Lagrangian Relaxation is based upon the observation that 
many difficult integer programming problems can be 
modeled as a relatively easy problem complicated by a set 
of side constraints. To exploit this observation we create a 
Lagrangian problem in which the complicating constraints 
are replaced with a penalty term in the objective function 
involving the amount of violation of the constraints and 
their dual variables. The Lagrangian problem is easy to 
solve and provides an upper bound (for maximization 
problem) on the optimal value of the original problem. It 
can thus be used in place of a linear programming (LP) to 
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provide bounds in a branch and bound algorithm. The 
Lagrangian approach offers a number of important 
advantages over linear and integer programming relaxation. 
Lagrangian dual arises from a Lagrangian relaxation. 
Lagrangian relaxation is a useful technique in nonlinear 
programming, large-scale or structural linear, convex and 
IP. In this paper, we restrict ourselves to case of IP. We first 
formulate the Lagrangian relaxation8 concept in general 
terms and then demonstrate its use extensively on a 
numerical example. We begin with an IP problem of the 
following form: 
(IP)  Z =  max  ܿݔ  
subject to:  ݔܣ  ܾ 

ݔ א ܺ ൌ ሼݔ א Ժା
  ݔܦ  ݀ሽ 

where ܿ א Թ, (A,b) and (D, d) are ݉ ൈ ሺ݊  1ሻ ݎ ൈ ሺ݊ 
1ሻ matrices respectively and all other matrices have 
conformable dimension. Here ݔ א Ժା

  means that ݔ is an n-
dimensional vector of non-negative integers. X is a set of 
discrete (integral) points in polyhedral and assumed to be 
non-empty and bounded for convenience. We call the 
problem (IP) the primal problem and its solution a primal 
solution. Suppose that the constraints ݔܦ  ݀ are “nice” in a 
sense that an integer program with just these constraints, i.e 

min ሼܿҧݔ: ݔܦ  ݀, ݔ א Ժା
ሽ  

can be “easily” solved for any choice of ܿҧ while the whole 
problem which includes also the other constraints ݔܣ  ܾ 
may be significantly harder to solve. We call those 
constraints Ax ≥ b, which make a solution procedure 
diffcult, the complicating constraints. A common approach 
to solve this problem, perhaps approximately, is to solve its 
Lagrangian dual problem obtained via Lagrangian 
relaxation4,9,10,11. In the Lagrangian relaxation approach, the 
complicating constraints Ax ≥ b are relaxed by introducing a 
multiplier vector u א Թ, called Lagrangian multiplier, and 
the Lagrangian function 

,ݔሺܮ ሻݑ  ൌ  ݔܿ  ሺܾ െݑ   .ሻݔܣ 
Given ݑ א Թ, the Lagrangian relaxation problem is then to 
solve the subproblem: 
SP (u):  ߮ሺݑሻ  ൌ  min ܮሺݔ,         ሻݑ

.ݏ .ݐ א ݔ  ܺ 
yields the function φ determined pointwise by the optimal 
objective value of the subproblem. Note that, for any ݔ א
Թ, א ݔ ݔሼ  ܺ    ݔܣ   ܾሽ, and any optimal solution כݔ 
of the (IP) it holds that  

߮ሺݑሻ  ,ݔሺܮ  ሻݑ    and ݔܿ 
߮ሺݑሻ   ,כݔሺܮ  ሻݑ   כݔܿ   ൌ  .כݖ 

The relative simplicity of solving the subproblem and the 
fact that ߮ሺݑሻ    allows SP(u) to be used to provide כݖ 
lower bounds for (IP). In general, corresponding to different 
values of ݑ, one obtains different lower bound ߮ሺݑሻ to the 
primal optimal value zכ. Thus, to obtain the best (greatest) 
lower bound of כݖ, the best choice of ݑ would be any one 
which is an optimal solution to the Lagrangian dual (LD) 
problem: 
(LD)   ߮ ൌכ  max ሼ߮ሺݑሻ   ݑ   0ሽ   
where ߮ሺݑሻ is given pointwise by the subproblem SPሺݑሻ: 

߮ሺݑሻ  ൌ  min ܿݔ  ሺܾ െݑ   ሻݔܣ 

   subject to:      א ݔ  ܺ.     
The function ߮ is called the dual function. It may be noted 
that when m constraints that have been dualized are equality 
constraints of the form ݔܣ ൌ ܾ, the corresponding 
Lagrangian multipliers are unrestricted in sign and the 
Lagrangian dual becomes 
 

߮ ൌכ max
௨ א Թሼ߮ሺݑሻሽ  

Other possible relaxation problem of the IP is a LP 
relaxation. For the IP problem the LP relaxation is given by  
(LP)     ݖ

כ = min ܿݔ 
 subject to:     ݔܣ   ܾ 

ݔ א തܺ ൌ ሼ א ݔ  ܴା
    ݔܦ   ݀ሽ. 

There are three major questions in determining Lagrangian 
relaxation-based system12: (a) which constraints should be 
relaxed, (b) how to compute a good multiplierݑ, (c) how to 
deduce a good feasible solution to the original problem, 
given a solution to the relaxed problem. Roughly speaking, 
the answer to (a) is that the relaxation should make the 
problem easier, but not so easy. For (b) there is choice 
between a general purpose procedure called subgradient 
method and “smarter” methods which may be better but 
which are however, highly problem specific. Similarly the 
answer to (c) tends to be problem specific. 

III.  An Improved Subgradient Optimization Method 
In this section, we design a unique subgradient 
optimization13 procedure that can be used to solve the 
Lagrangian dual of 0-1 Integer Programming. We have 
already seen that the Lagrangian dual problem14 can be 
formulated as a linear programming problem whose 
numbers of constraints are equal to the number of elements 
of the set X that make the direct use of linear programming 
system impractical. The numerical approach which we used 
to solve the Lagrangian dual problem without using a linear 
programming system is a subgradient optimization method. 
The subgradient optimization method that we would like to 
consider is an iterative procedure that can be used to solve 
the problem of maximizing a non-differentable concave 
function φ (u) on a closed convex set Ω, i.e.,  
 max { φ (u):u א Ω} 
 Using the following generic procedure: 
• Choose an initial point ݑ א Ω. 
• Construct a sequence of points ሼݑሽ ك   Ω which 

eventually converges to an optimal solution using the 
rule 

ାଵݑ ൌ Ωܲ.ሺݑ    ሻݒߣ 
where Ωܲሺ. ሻ is a projection on the set Ω, ሺߣ   0) is a 
positive scalar called step length and ݒ is a vector, called 
step direction, which has to be determined at each iterate 
point. 
• Until (some stopping condition). 

We want to find out the direction of motion (step direction) 
at each iterate point in the procedure to obtain a desired 
outcome depending on a particular tolerance.  
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Improved Subgradient Algorithm for the Lagrangian Dual 

We have developed a modified subgradient optimization 
algorithm for the Lagrangean dual which is stated below: 
Step 0: (Initialization) choose a starting point ݑ   0 and 
let ݇ ൌ  1. 
Step 1: Determine a subgradient vector ݏ at ݑ by solving 
the subproblem SP (ݑ): 

߮ሺݑሻ  ൌ  min ܿݔ  ݑሺܾ െ  ሻݔܣ 
                   subject to: א ݔ  ܺ 

Let ݔ be a solution of this subproblem. Then, ݏ  ൌ  ܾ െ
 .ݔܣ 

Step 2: (Feasibility and Optimality Test) 

If ݏ   0, then ݏ is an ߝ -optimal solution to the primal 
problem with 

ൌ ߝ  .|ݏݑ| 

If ݏ   0 and  ݑݏ ൌ  0,  then ݔ  is an optimal solution of 
the primal problem and ݑ is an optimal solution of the 
Lagrangian dual problem. STOP. Otherwise go to Step 3. 

Step 3: Let ݑାଵ ൌ  ܲோశ
 ሺݑ    ሻ, whereݏߣ

ܲோశ
ሺݑሻ ൌ పഥݑ  ത for which its i-th componentݑ ൌ

൜ݑ     ݂݅ ݑ  0
0, otherwise  

and ሺߣ   0ሻ is a step length given by (4.4). 

Let ݇ ൌ  ݇   1, and return to step 1. 

Ideally the subgradient algorithm can be stopped when, on 
some iterate k, we find a subgradient which is a zero vector. 
However, in practice this can rarely happen since the 
algorithm just chooses one subgradient ݏ and has no way 
of showing 0 א  ߲߮ሺݑሻ as a convex combination of 
subgradients. The stopping criteria stated in the Step 2, i.e., 
ݏ   0 and ݑݏ  ൌ  0,  can happen only if the strong 
duality holds. However, this is not generally possible for 
integer programming problems. Hence the typical stopping 
rule is either to stop after a sufficiently large but fixed 
number of iterations or to stop if the value of the function 
has not increased (by at least a certain amount) within a 
given number of iterations. 

Implementation of Our Algorithm 

In this section, we use the subgradient optimization method 
in order to solve a real life business related problem by 
“relaxing” the side constraints as follows: 

 Stockco is considering four investments. Investment 1 will 
yield a net present value(NPV) of $16,000; Investment 2, an 
NPV of $22,000; investment 3, an NPV of $12,000; and 
investment 4, an NPV of $8,000; Each investment requires a 
certain cash outflow at the present time:  

Investment 1: $5000; investment 2: $7000; investment 3: 
$4000 and investment 4: $3000. At present, $14000 is 
available for investment. Formulate an IP whose solution 
will tell Stockco how to maximize the NPV obtained from 
investments 1-4.  

Solution: As in LP formulations, we begin by defining a 
variable for each decision that Stockco must make. This 
leads us to define a 0-1 variable:  

=jx  ቄ1, if investment j is made 
0                         otherwise

 

where  4,3,2,1=j  

For example, ݔଶ ൌ 1 if investment 2 is made and ݔଶ ൌ 0 if 
investment 2 is not made. 

The NPV obtained by Stockco (in thousands of dollars) is  

The total NPV of the Stockco = 16 ݔଵ  ଶݔ 22   ଷݔ 12  
 ସ (1)ݔ 8 

If  ݔ ൌ 1 , (1) includes the NPV of investment j, and if 
ݔ ൌ 0, (1) does not include the NPV of investment j. this 
means that whatever combination of investment is 
undertaken, (1) gives the NPV of that combination of 
projects. This reasoning implies that Stockco’s objective 
function is Maximize,  

ݖ ൌ ଵݔ 16  ଶݔ 22   ଷݔ 12    ସ        (2)ݔ 8 

Stockco faces the constraint that at most $14,000 can be 
invested. By the same reasoning used to develop (1), we can 
show that the total amount invested (in thousands of dollars) 
ଵݔ 5 =  ଶݔ 7   ଷݔ 4   ସݔ 3

Since at most $14,000 can be invested ݔଵ, ,ଶݔ  ସ mustݔ ଷ andݔ
satisfy   

ଵݔ 5  ଶݔ 7   ଷݔ 4  ସݔ 3  14      (3) 

 Combining (2) and (3) with the constraints 

ݔ ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ yields the following 0-1 IP:  

Max: ܼ ൌ ଵݔ 16  ଶݔ 22   ଷݔ 12    ସݔ 8 
s. t.  5 ݔଵ  ଶݔ 7   ଷݔ 4  ସݔ 3  14 

ݔ ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ 

Subgradient Optimization Procedure 
Here, we will use our numerical example to develop and 
demonstrate the subgradient optimization method for 
obtaining dual variable values that produce a tight bound. 
Ideally, we should solve the following dual problem: 
ܼ ൌ min௨ஹ ܼሺݑሻ 
Minimize:െ16 ݔଵ െ ଶݔ 22  െ ଷݔ 12  െ  ସݔ 8 

s.t.  5 ݔଵ  ଶݔ 7   ଷݔ 4  ସݔ 3  14 
ݔ         ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ 

If we relax the inequality, then integrality is easy: 
Min ܮሺݔ, ሻݑ ൌ െ16 ݔଵ െ ଶݔ 22  െ ଷݔ 12  െ ସݔ 8   ሺ5 ݔଵ 
ଶݔ 7  ଷݔ 4  ସݔ 3 െ 14ሻ 
s.t.   ݔ ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ 
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Initialize: Set iteration ݇ ൌ 1. Set the jump size ݐ ൌ 0.5. 
Set a small scalar ending tolerance ߝ  0, say ߝ ൌ 0.01 and 
pick ݑ ൌ 0 

Subgradient optimization procedure for ݇ ൌ 1 

Original problem: 
Minimize:െ16 ݔଵ െ ଶݔ 22  െ ଷݔ 12  െ  ସݔ 8 

s.t.  5 ݔଵ  ଶݔ 7   ଷݔ 4  ସݔ 3  14 
ݔ        ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ 
݇ ൌ 1, ݑ ൌ 0, ݐ ൌ 0.5 , ߝ ൌ 0.01  

Step1: Solve ܮሺݔ,  ଵሻݑ

Minimize: െ16 ݔଵ െ ଶݔ 22  െ ଷݔ 12  െ ସݔ 8   0ሺ5 ݔଵ 
ଶݔ 7   ଷݔ 4  ସݔ 3 െ 14ሻ 
s.t.  ݔ ൌ 0 or 1  ሺ݆ ൌ 1,2,3,4ሻ 
Set all ݔ ൌ 1 
Step 2: slack is 19 െ 14 ൌ 5 
Set ݑାଵ ൌ maxሼ0, 0  0.5 ൈ 5ሽ ൌ 2.5 

ାଵݐ                    ൌ 0.5 ൈ 0.9  
Step 3: If  ݑାଵ െ ݑ ൏ ݇ then stop else set ߝ ൌ ݇  1 and 
go to step 1. 
But |ݑାଵ െ |ݑ ൌ |2.5 െ 0|   ߝ
So go to step 1 with ݇ ൌ 2. 

 
The detailed result is shown as follows: 
Subgradient optimization 

Obj-coeffs -16 -22 -12 -8 row rhs Epsilon
row coeffs -5 -7 -4 -3 -14 0.001 

Step t(k) Lamda cost1 cost2 cost3 cost4 x1 x2 x3 x4 slack stop? 
1 0.5 0 -16 -22 -12 -8 1 1 1 1 5 
2 0.45 2.5 -3.5 -4.5 -2 -0.5 1 1 1 1 5 FALSE 
3 0.405 4.75 7.75 11.25 7 6.25 0 0 0 0 -14 FALSE 
4 0.364 0 -16 -22 -12 -8 1 1 1 1 5 FALSE 
5 0.328 1.8225 6.887 9.242 -4.71 2.5325 1 1 1 1 5 FALSE
6 0.295 3.46275 1.313 2.239 1.851 2.3885 0 0 0 0 -14 FALSE 
7 0.265 0 -16 -22 -12 -8 1 1 1 1 5 FALSE 
8 0.239 1.3286 -9.357 -12.7 -6.685 -4.014 1 1 1 1 5 FALSE 
9 0.215 2.52434 -3.378 -0.329 -1.902 -0.427 1 1 1 1 5 FALSE 
10 0.193 3.60051 2.002 3.203 2.402 2.8015 0 0 0 0 -14 FALSE 
11 0.174 0.88857 -11.55 15.78 -8.445 -5.334 1 1 1 1 5 FALSE 
12 0.156 1.76027 -7.198 -9.678 -4.958 -2.719 1 1 1 1 5 FALSE 
13 0.141 2.54479 -3.276 -4.186 -1.82 -0.365 1 1 1 1 5 FALSE 
14 0.127 3.25087 0.254 0.756 1.0034 1.7526 0 0 0 0 -14 FALSE 
15 0.114 1.47156 -8.642 -11.69 -6.113 -3.585 1 1 1 1 5 FALSE 
16 0.102 2.04348 -5.782 -7.695 -3.826 -1.869 1 1 1 1 5 FALSE 
17 0.092 2.5582 -3.209 -4.092 -1.767 -0.325 1 1 1 1 5 FALSE
18 0.083 3.0214 -0.892 -0.849 0.0858 1.0643 1 1 0 0 -2 FALSE 
19 0.075 2.85469 -1.726 -2.017 -0.581 0.564 1 1 1 0 2 FALSE
20 0.067 3.0047 -0.976 -0.966 0.0191 1.0143 1 1 0 0 -2 FALSE 
21 0.06 2.8697 -1.651 -1.912 -0.521 0.6091 1 1 1 0 2 FALSE 
22 0.054 2.9912 -1.043 -1.061 -0.034 0.9738 1 1 1 0 2 FALSE 
23 0.049 3.1007 -0.496 -0.295 0.4027 1.302 1 1 0 0 -2 FALSE 
24 0.044 3.0022 -0.988 -0.984 0.0088 1.0066 1 1 0 0 -2 FALSE 
25 0.039 2.9135 -1.432 -1.604 -0.345 0.7407 1 1 1 0 2 FALSE 
26 0.035 2.9933 -1.033 -1.046 -0.026 0.98 1 1 1 0 2 FALSE 
27 0.032 3.0651 -0.674 -0.544 0.2605 1.1954 1 1 0 0 -2 FALSE 
28 0.029 3.0005 -0.997 -0.996 0.0021 1.0016 1 1 0 0 -2 FALSE 
29 0.026 2.9423 -1.288 -1.403 -0.23 0.8271 1 1 1 0 2 FALSE 
30 0.023 2.9947 -1.026 -1.037 -0.021 0.9841 1 1 1 0 2 FALSE 
65 0 3.001 -0.993 -0.99 0.0052 1.0039 1 1 0 0 -2 FALSE
66 0 3.0001 -0.999 -0.999 0.0005 1.0003 1 1 0 0 -2 FALSE 
67 0 2.999 -1.004 -1.006 -0.003 0.9971 1 1 1 0 2 FALSE 
68 0 3 -0.999 -0.999 7.00E-50 1 1 1 0 0 -2 TRUE 

We change the step size (ݐ) and Lagrange multiplier (ݑ) for finding optimal value, using least iterations which are shown in Table 1. 
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Table 1. Solution for different step sizes and Lagrange multipliers for finding optimal iteration. 

Initial value of Lamda (u) Step size (t)  x1  x2  x3  x4  No. of Iterations 
0  0.5  1  1  0  0  68 
0  0.75  1  1  0  0  72 

100  0.65  0  1  0  0  87 
50  0.65  1  1  0  77 
40  1.25  1  1  0  0  79 
10  1  1  1  1  0  75 
60  0.2  0  0  0  0  78 
60  0.3  0  0  0  0  82 
60  0.4  1  0  0  1  84 
30  0.4  1  1  1  0  66 
35  0.4  1  1  0  0  66 

 
From Table 1, we conclude that the computational results 
show that our algorithm for Lagragian dual finishes in better 
solution than the general primal solution. Therefore, we are 
accomplished to reduce duality gap15 which is ultimately the 
amount of discrepancy from the complementary slackness 
condition for the Lagrangian relaxation equation. Numerical 
implementations show that our solution method reduces 
computational time. Furthermore, comparisons of numerical 
results of our new algorithm with that of other alternative 
algorithms show its various improved features. 

Graphical representation of our problem 

We may obtain the optimal value from the graph. If we 
substitute any ݔ into the objective function for the 

Lagrangian dual problem, we obtain a linear function in ݑ 
(Lagrangian multiplier). Figure 1 exhibits this family of 
linear function for all Lagrangian relaxation solutions that 
are optimal for at least one value of ݑ. The fact that we must 
maximize the Lagrangian objective means that for any 
particular value of u, ܮሺݔ,  ሻ  is equal to the largest of theseݑ
linear functions. Thus, the ܮሺݔ,  ሻ function is given by theݑ
upper envelope of this family of linear equations that is 
shown as a darkened piecewise linear function in Figure1. 
From this figure it is easy to see that ݑ ൌ 1 minimize 
,ݔሺܮ  .ሻݑ
 

 

 
Fig. 1. The piecewise linear ܮሺݔ,  .ሻ functionݑ
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Computational Results 
In this study, some stopping rules were applied to enhance 
the computational efficiency of the algorithm. Practically, 
however, there is no way of proving the optimality by this 
Lagrangian relaxation using subgradient optimization 
method as long as the positive duality gap exists. It is 
hopeful to find a feasible solution close to an optimal value 
more rapidly by making stopping rules appropriate to each 
problem. Therefore the subgradient method oscillates 
around dual optimal solution resulting in slow convergence. 
Nonetheless, the proposed solution algorithm found all the 
optimal solutions. Besides, it is simple to understand and 
easy to execute. 
 
IV. Conclusion 

In this paper, a unified subgradient optimization method has 
been developed which can completely eliminate the main 
drawback of different subgradient optimization methods. 
The subgradient methods have also been employed to solve 
a business (Investment) related practical problem. The 
foundation of this work is the methodology of Lagrangian 
relaxation and dualization of a 0-1 integer programming 
problem. The method helps to remove a set of complicating 
constraints of an integer programming problem and give a 
frame work to exploit any available “nice” mathematical 
structure embedded in the Knapsack problem in order to 
solve the problem approximately. One of the central points 
of this research is to develop a subgradient procedure which 
deals with the construction of primal solutions directly from 
the information generated in the process of deflected or 
conditional subgradient optimization methods. We deduced 
a method that can produce a near-optimal primal solution 
for an integer programming problem. The goal of this paper 
has been to employ the subgradient optimization echniques 
to solve real life problems. 
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