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Abstract 

For building a linear prediction model, Backward Elimination (BE) is a computationally suitable stepwise procedure for sequencing 

the candidate predictors. This method yields poor results when data contain outliers and other contaminations. Robust model selection 

procedures, on the other hand, are not computationally efficient or scalable to large dimensions, because they require the fitting of a 

large number of submodels. Robust version of BE is proposed in this study, which is computationally very suitable and scalable to 

large high-dimensional data sets. Since BE can be expressed in terms of sample correlations, simple robustifications are obtained by 

replacing these correlations by their robust counterparts. A pairwise approach is used to construct the robust correlation matrix −  not 

only because of its computational advantages over the d -dimensional approach, but also because the pairwise approach is more 

consistent with the idea of step-by-step algorithms. The performance of the proposed robust method is much better than standard BE.  
 
Key words: Computational complexity, Pairwise robust correlation, Robust model selection, Stepwise procedure, Winsorization.  
 
I. Introduction 

When the number d  of candidate covariates is small, one 
can choose a linear prediction model by computing a 
reasonable criterion (e.g., Mallows CP, AIC, FPE or cross-
validation error) for all possible subsets of the predictors. 
However, as d increases, the computational burden of this 
approach increases very quickly. This is one of the main 
reasons why step-by-step model-building algorithms like 
Backward Elimination (BE) or Stepwise (SW) are 
popular1,2,3.  

Classical BE procedure yields poor results when the data are 
contaminated. This algorithm attempts to select the 
covariates that will fit well all the cases (including the 
outliers), and often fails to select the model that would have 
been chosen if those outliers were not present in the data. 
Moreover, aggressive deletion of outliers is not desirable, 
because we may end up deleting a lot of observations which 
are outliers only with respect to predictors that will not be in 
the model. Our goal is to develop a robust-step-by-step 
algorithm that will select important variables in the presence 
of outliers, and predict well the future non-outlying cases.  

Available literature on robust model selection focuses 
mainly on robustification of selection criteria to compare all 
possible subsets of covariates. Important examples are 
Ronchetti4, Ronchetti et al.5, Maronna et al.6, and Ronchetti 
et al.7 which introduced robust versions of ,AIC  ,PC  

FPE  and cross-validation, respectively. Sommer et al.8 
proposed robust model selection based on Wald tests. 
Morgenthaler et al.9 constructed a selection technique to 
simultaneously identify the correct model structure as well 
as any unusual observations. A major drawback of most 
robust model selection methods is that they are very time-
consuming, because they require the robust fitting of a large 
number of submodels.  

We show that the list of variables selected by classical BE 
procedure is a function of sample means, variances and 
correlations. We express the classical algorithm in terms of 

these quantities, and replace them by robust counterparts to 
obtain simple robust version of the algorithm. Once the 
covariates are selected by using this simple robust selection 
algorithm, we can use a robust regression estimator on the 
final model.  

Robust correlation matrix estimators for d -dimensional 
data sets are usually derived from affine-equivariant, robust 
estimators of scatter. Hence, this is very time-consuming, 
particularly for large values of .d  Moreover, the 
computation of such robust correlation matrices becomes 
unstable when the dimension d  is large compared to the 
sample size .n  To avoid this complexity, we use an affine-
equivariant bivariate M-estimator of scatter proposed by 
Khan et al.10 to obtain robust correlation estimates for all 
pairs of variables, and combine these to construct a robust 
correlation matrix which is called the pairwise correlation 
approach. Interestingly, this pairwise approach is 
computationally suitable as well as more convenient for 
robust step by step algorithms.  

Variable selection methods are often based on correlations 
among variables. Therefore, robust variable selection 
procedures need to be robust against correlation outliers, 
that is, outliers that affect the classical correlation estimates 
but can not be detected by looking at the individual 
variables separately. Our approach based on pairwise 
correlations is robust against correlation outliers and thus 
suitable for robust variable selection. We consider the 
problem of “selecting” a list of important predictors. The 
final model resulting from the selection procedure usually 
contains only a small number of predictors compared to the 
initial dimension ,d  when d  is large. Therefore, to robustly 

fit the final model we propose to use a highly robust 
regression estimator such as an MM-estimator proposed by 
Yohai11 that is resistant to all types of outliers. Note that we 
always use models with intercept.  

The rest of the article is organized as follows. In section II, 
we decompose the classical BE procedure in terms of the 
correlation matrix of the data. In section III, we present 

*Author for Correspondence. e-mail: rsiddiq11@yahoo.com 
 



88 Md Siddiqur Rahman and Jafar A. Khan 

 
robust version of this algorithm, along with its numerical 
complexities. In section IV, we present a Monte Carlo study 
that compares our robust method with the classical one by 
their predicting powers. Section V contains a real-data 
application. We conclude in section VI.  

II. BE Algorithm Expressed in Correlations 

In this section we review the classical BE procedure. For 
clarity of exposition, we show how this procedure can be 
expressed only in terms of correlations between pair of 
variables.  

BE expressed in correlations 

Let the d  covariates dXXX ,,, 21   and the response Y  

be standardized using their mean and standard deviation. Let 

jYr
 
denote the correlation between jX  and ,Y  and XR  be 

the correlation matrix of the covariates. We call the 
predictors that are in the current regression model “active” 
predictors. Suppose without loss of generality 1X  has the 

minimum absolute partial correlation with Y after 

eliminating the linear effect of dXXX ,,, 32   on .1X  

Then, 1X  is the first variable that is dropped from the 

regression model. This candidate predictor is called 
“inactive” predictor. Thus to find out the inactive predictor 
(say, 1X ), we need to compute the partial correlation 

between  1X
 
and Y after eliminating the linear effect of 

dXXX ,,, 32   on 1X  and we denote this partial 

correlation by .23.1 dYr    

 

The partial correlations expressed in terms of original 
correlations 

 

Let ξγγγ ++++= dd XXXX 33221  (1) 

Thus, the residue vector dZ 23.1   is as follows 
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Using (2), the numerator of (3) can be written as 
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Using (2), the squared denominator of (3) can be written as 
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Now the normal equations for the model (1) are 
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From (7) we have,
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From equations (8) we have the following form:
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Thus,  dγγγ ,, , 32    and  hence dYr 23.1  are expressed in 
terms of original correlations.  

In general, the partial correlation between lX
 
and Y after 

eliminating the linear effect of dll XXXXX ,,,,, 1121  +−

on lX  can be written as 
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BE steps in correlations 
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BE algorithm is summarized in terms of correlations among 
the original variables as follows: 

1. Let D
 
be the set of all covariates and P  be the subset 

not containing thj
 
covariate. To remove the first covariate 

,1mX  let us calculate partial correlation PjYr .  between jX

and Y after eliminating the linear effect of covariate 

belonging to P
 
on .jX  Determine 1m  = .minarg .PjYr  

 

2. Let C
 
be a subset containing )1( −k  variables that has 

been removed from D  after )1( −k steps ( ),3 ,2=k
 
and 

P  be the subset not containing thj
 
covariate and .C   To 

remove the kth covariate ,mkX  PjYr .  between jX  and Y  

may be calculated after eliminating the linear effect of 

)1(21 ,, , −kmmm XXX   on ,jX  and then determine 

.minarg .PjYk rm =
 

Stopping rule 

At each BE step, once the “weakest” covariate (among the 
remaining covariates) is identified, we can perform a partial 
F -test to decide whether to drop this covariate from the 
model (and continue the process) or to stop. The new 
“weakest” covariate is dropped from the model only if the 
partial F -value, denoted by partialF , is smaller than 

)1,1,95.0( −− knF   (say), where k  is the current size of 

the model excluding the new covariate. Here, the required 
quantities can be expressed in terms of correlations among 
the original variables, as shown below. 

Suppose that 2  covariates 2,1 XX
 
are in the model, and 

2X  has the smallest absolute partial correlation with Y after 

adjusting 2X for .1X  To decide whether 2X  should be 

deleted from the model we perform a partial F -test using 

the statistic PartialF   given by 
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where 1.2Yr  is expressed in correlations in (10) 

Similarly, when k  covariates kXXX ,,, 21    
are in the 

model, and w.l.o.g. kX
 
has  the smallest absolute partial 

correlation with Y after adjusting kX  for ,,,, 11 2 −kXXX 
 

the partial F -statistic for kX
 
can be expressed as   
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III. Robustification of BE Algorithm 

In the last section, the BE algorithm has been expressed in 
terms of sample means, variances and correlations. Because 
of these non-robust building blocks, this algorithm is 
sensitive to contamination in the data. A simple 
robustification of this algorithm can be achieved by 
replacing the non-robust ingredients of the algorithm by its 
robust counterparts. For the initial standardization, the 
choices of fast computable robust center and scale measures 
are straightforward: median (med) and median absolute 
deviation (mad). As mentioned earlier, most available robust 
correlation estimators are computed from the d-dimensional 
data and therefore are very time consuming12. Robust 
univariate approaches13 are very sensitive to correlation 
outliers.  

One solution is to derive correlations among pairs of 
variables from an affine equivariant covariance estimator. A 
computationally efficient choice is a bivariate M-estimator 
proposed by Maronna14. Maronna’s bivariate M-estimator of 
the location vector t  and scatter matrix V  is defined as the 
solution of the system of equations: 
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are 

functions satisfing a set of general assumptions. The 
estimator is affine equivarient and has breakdown point 1/3 
in two dimensions14. To further simplify computations, we 
use the coordinatewise median as the bivariate location 
estimate10 and only use the second equation to estimate the 
scatter matrix and hence the correlation. In this equation we 
used the function ( ) ( )1 ,/min2 tctu =  with ,21.9=c  the 

99% quantile of a 
2
2χ  

distribution. Finally, BE algorithm is 

implemented using these robust pairwise correlations. 

Robust stopping rule 

We replace the classical correlations in the partial F  
statistic by their robust counterparts to form a robust partial 
F  statistic. For the stopping rule, we use the standard F  
distribution as in section II. Since robust pairwise 
correlation estimator (due to the choice of the constant c ) 
behaves very similar to the classical correlation estimator in 
the absence of outliers, the standard F  distribution seems 
appropriate.  
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Time-complexity of the algorithms 

Since classical BE procedure sequences all the d  

covariates, it requires ( )2ndO  time. So the complexity of 

BE is ( ).2ndO  Since we used the coordinatewise median as 

the bivariate location estimate, the correlation based on 
Maronna’s M-estimate can be computed in ( )bnnnO +log  

time, ( b  is the number of iterations required). Assuming 

that b  does not exceed ( )nnO log (convergence was 

achieved after 3 to 5 iterations in our simulations), the 
complexity of this estimate is ( ).log nnO  So, the 

complexity of robust BE is ( )( ).log 2dnnO  Classical BE 

takes approximately 20 seconds with Dual CPU T3400, 
while robust BE takes approximately 25 seconds for 
implementation. This is a very small price to pay in order to 
achieve robustness. It should be mentioned that existing 
robust algorithms would take several days. 

Limitation of the proposed algorithm 

The robust BE procedure based on robust pairwise 
correlations is resistant to bivariate (correlation) outliers. 
However, it may be sensitive to three or higher-dimensional 
outliers, that is, outliers that are not detected by univariate 
and bivariate analyses. Also, the correlation matrix obtained 
from the pairwise correlation approach may not be positive 
definite, forcing the use of correction for positive 
definiteness in some cases15. 

IV. A Simulation Study 

To compare the robust method with the classical one, we 
carried out a simulation study similar to Frank and 
Friedman16. The total number of variables is .50=d  A 

small number 9=a  of them are non-zero covariates. We 
considered 2 correlation structures of these non-zero 
covariates: “no correlation” case and “moderate correlation” 
case. 

For the no-correlation case (a true correlation of 0 between 

the covariates), independent predictors 1) ,0(~ NX j  
are 

considered, and Y  is generated using the a  non-zero 
covariates, with coefficients (7, 6, 5) repeated three times 
for .9=a  The variance of the error term is chosen such 
that the signal-to-noise ratio equals 2. 

For the moderate-correlation case, we considered 3 
independent ‘unknown’ processes, represented by latent 

variables 3, 2, 1, , =iLi  which are responsible for the 

systematic variation of both the response and the covariates. 
The model is 

,Signal567 321 ∈+∈=+++= σσLLLY   (12) 

where iL  and ∈  are independent standard normal variables. 

The value of σ  is chosen such that the signal-to-noise ratio 

equals 2, that is ( ) .4/110=∈σVar  The non-zero 

covariates are divided in 3 equal groups, with each group 

related to exactly one of the latent variables by the following 
relation 

 ,jij LX δ+=  

where ).1 ,0(~ Njδ  Thus, we have a true correlation of 

0.5 between the covariates generated with the same latent 
variable. 

For each case we generated 5000 data sets each of which 
was randomly divided into a training sample of size 100 and 
a test sample of size 100. 

Contamination of the training data 

Each of the ad −  noise variables are contaminated 
independently. Each observation of a noise variable is 
assigned probability 0.003 of being replaced by a large 
number. If this observation is contaminated, then the 
corresponding observation of Y  is also replaced by a large 
number to generate bad leverage point. Thus, the probability 
that any particular row of the training sample data matrix 

will be contaminated is ( ) ,003.011 ad −−−  which is 

approximately 11.6% for .9=a   

For each of the 2 selection procedures (1 classical and 1 
robust), we fitted the selected model (including the 
intercept) on the training data, and then used it to predict the 
test data outcomes. We used a regression MM estimator11 to 
fit the model obtained by the robust method, because of its 
high breakdown point and high efficiency at the normal 
model. For each simulated data set, we recorded (1) the 
average squared prediction error on the test sample 
considering )30 ,,2 ,1( =mm  first sequenced variables 
in the model, and (2) the total number of target variables 
selected in the model. 

To summarize the simulation results, the average (SD) of 
mean squared prediction error (MSPE) on the test set, and 
the number mt of target variables included in the first m
sequenced variables was determined for each sequence, with 
m  ranging from 1 to 30. The left panels of Figs. 1 through 
4 (Panels 1(a), 2(a), 3(a)  and 4(a) ) show the MSPE (over 
5000 data sets) and the right panels of  Figs. 1 through 4 
(Panels 1(b), 2(b), 3(b) and 4(b)) show the average of mt  
(over 5000 data sets).  

For the clean data, the MSPE produced by robust and 
classical methods shown in left panels of Figs. 1 and 3 
(Panels 1(a) and 3(a)) are almost the same. Also, the robust 
and classical methods contain almost the same average of 

mt  shown in right panels of Figs. 1 and 3 (Panels 1(b) and 
3(b)). For the contaminated data, the MSPE produced by 
robust method is much smaller than for the classical method 
shown in panels of Figs. 2 and 4 ((Panels 2(a) and 4(a)). 
Also, the model obtained by robust met hod contains more 
target variables than the classical method shown in panels of 
Figs. 2 and 4 (Panels 2(b) and 4(b)).   
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Fig. 1. (a). MSPE for Classical and Robust BE Methods for 9=a  non-zero covariates (no correlation case) in clean data.  

 (b). Average of mt  for Classical and Robust BE methods for 9=a  
non-zero covariates  (no correlation case) in clean data. 

 
 

 
Fig. 2. (a). MSPE for Classical and Robust BE Methods for 9=a  non-zero covariates (no correlation case) in contaminated data. 

(b). Average of mt for Classical and Robust BE methods for 9=a  non-zero covariates  (no correlation case) in contaminated data.  
 

  

Fig. 3. (a). MSPE for Classical and Robust BE Methods for 9=a  
non-zero covariates  (correlation case) in clean data. 

(b). Average of mt  for Classical and Robust BE methods for 9=a  
non-zero covariates (correlation case) in clean data. 
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Fig. 4. (a).  MSPE for Classical and Robust BE Methods for 9=a  non-zero covariates  (correlation case) in contaminated data. 

 (b). Average of mt  for Classical and Robust BE methods for 9=a  non-zero covariates  (correlation case) in contaminated data. 

V. Real Data Application 

In this section, we used a real-data example to show the 
robustness and scalability of our algorithm. 

Executive data 

This data set is obtained from Mendenhall et al.17. The 
annual salary of 100 executives is recorded as well as 10 
potential predictors (7 quantitative and 3 qualitative) such as 
education, experience etc. We label the candidate predictors 

from 1 to 10. Classical BE (with 95.0F  as the deletion 

criterion) selects the covariates: (1, 3, 4, 2, 5, 9). Robust BE 

(also with 95.0F
 

as deletion criterion) selects almost the 

same model (1, 3, 4, 2, 5) except the last covarite of model 
selected by the classical BE. 

We then contaminated the data by replacing one small value 
of predictor 1 (less than 5) by a large value 100. When BE is 
applied to the contaminated data, it now selects a larger set 
of variables: (7, 3, 4, 2, 1, 10, 6). Thus, changing a single 
number in the data set drastically changes the selected 
model. On the other hand, robust BE selects almost the same 
model, (1, 3, 4, 2), when applied to the contaminated data set. 

VI. Conclusions 

BE is a popular and computationally suitable algorithm for 
building linear prediction models, but they are sensitive to 
outliers. We express this algorithm in terms of sample 
means, variances and correlations, and obtained a simple 
robust version of BE by replacing these sample quantities by 
their robust counterparts.  

For the construction of the robust correlation matrix of the 
required covariates we used robust correlation estimates 
between pairs of variables, because it is computationally 
suitable, and more convenient for (robust) step-by-step 
algorithms. We used robust correlations derived from 
Maronna’s bivariate M-estimator of the scatter matrix. 

Though our method may be sensitive to three– or higher–
dimensional outliers, this is a very little small price to pay to 
make the selection of covariates for large values of .d

 
Our robust method has much better performance compared 
to the classical BE algorithm. Also it is computationally 
very suitable, and scalable to large dimensions. 
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