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Abstract 

A general method of constructing layout with single factorial effect confounded in 𝑝𝑝𝑛𝑛  factorial experiments is proposed. It becomes easier 
to construct the design of confounding a single factor in a 𝑝𝑝𝑛𝑛  factorial experiment, especially when the number of factors as well as the 
number of levels becomes larger. 
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I. Introduction 

When the number of factors as well as the number of levels 
of each factor is large, it becomes difficult to make 
homogeneous plots in practice. In such situations, we are 
bound to use a limited number of homogeneous plots to 
analyze the factorial effects. As a result, some factorial 
effects or interactions will be mixed up with block effect, 
i.e. confounding.  

Bose and Kishan1, Bose2 described the construction of 𝑝𝑝𝑛𝑛  
factorial design using finite geometries. The treatments are 
represented by 𝑛𝑛-tuples (𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛 ) where 𝑎𝑎𝑖𝑖  are 
elements of 𝐺𝐺𝐺𝐺(𝑝𝑝). The method is available only when 𝑝𝑝 is 
prime or prime power. Fisher3 discussed a method to 
develop the connection of the subject with that of Abelian 
groups, to prove a general proposition connecting the 
minimal size of block required with the number of factors 
involved, and to supply a catalogue of systems of 
confounding available up to fifteen factors. A system of 
simultaneous confounding in 2𝑛𝑛  factorial experiment has 
been described, where an intrablock subgroup is constructed 
with the common elements taken from the factorial effects 
of two incomplete blocks, each confounded with a single 
factorial effect4, 5. Das6 described an equivalent method of 
Bose2 in which some of the treatment factors are designated 
as basic factors and the others as added factors. Levels of 
added factors are derived by combination of levels of the 
basic factors over 𝐺𝐺𝐺𝐺(𝑝𝑝). S. C. Cotter7 proposed a general 
method of confounding for symmetrical factorial 
experiments. This paper considered the problem of 
conducting a 𝑝𝑝𝑛𝑛  factorial experiment in blocks size 𝑝𝑝1. 
These designs can be constructed for all values of p, 
although for certain values better confounding patterns are 
available. Also analysis of these designs was given, showing 
which components of the sum of squares were confounded 
with blocks. John and Dean8 described the construction of a 
particular class of single replicate block designs, which they 
call generalized cyclic designs. The essential feature of the 
method is that the 𝑛𝑛 −tuples giving the treatments of a 
particular block constitute an Abelian group, the intrablock 
subgroup. Patterson9 described a general computer 
algorithm, called DSIGN, in which levels of treatment 
factors are derived by linear combinations of levels of plot 
and block factors. The method provides finite-field, 
generalized cyclic and other designs. Mallick, S. A.10, 11 

developed two systems of designing factorial effects with 
simultaneous confounding of two effects, one for 3𝑛𝑛  and 
other for 4𝑛𝑛  - factorial experiments. In these systems of 
simultaneous confounding, the combination of levels was 
based on some manipulating manner. Jalil, et. al.12 
developed a matrix method of designing a single factorial 
effect confounded in a 𝑝𝑝𝑛𝑛  - factorial experiment, where the 
level combinations are obtained by matrix operations of the 
levels. This method is applicable only when 𝑝𝑝 is prime. In 
this article, we make moderation in taking adjustment factor 
using which we can construct a plan for a factorial effect to 
be confounded in a 𝑝𝑝𝑛𝑛  factorial experiment, where 𝑝𝑝 is 
prime or non prime.   

II. Method 

Consider a matrix 𝑀𝑀 of order 𝑝𝑝𝑛𝑛−1 × 𝑛𝑛𝑝𝑝, which represents 
the construction method of a 𝑝𝑝𝑛𝑛  f.e. confounded with a 
factorial effects as 𝑀𝑀 = �𝑀𝑀0 𝑀𝑀1 … …𝑀𝑀𝑝𝑝−1�𝑝𝑝𝑛𝑛−1×𝑛𝑛𝑝𝑝

   (1)                                                                                        

where, 𝑀𝑀𝑢𝑢 ; 𝑢𝑢 = 0, 1, … … … , (𝑝𝑝 − 1) resepresent incomplete 
block defined as, 

𝑀𝑀𝑢𝑢   = [𝑉𝑉1{𝑝𝑝0},𝑉𝑉2{𝑝𝑝1}, … … … ,𝑉𝑉𝑛𝑛−1{𝑝𝑝𝑛𝑛−2},𝑎𝑎𝑢𝑢 ]𝑝𝑝𝑛𝑛−1×𝑛𝑛   

with 

𝑉𝑉𝑖𝑖{𝑝𝑝𝑖𝑖−1} = 𝑝𝑝𝑖𝑖−1 �0𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖   , 1𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖  , … … … , (𝑝𝑝 −
1)𝐼𝐼𝑝𝑝𝑛𝑛− 1− 𝑖𝑖  ′,  

each is a column vector of dimension 𝑝𝑝𝑛𝑛−1. 

{𝑝𝑝𝑖𝑖−1} = 𝑝𝑝𝑖𝑖−1  times repetitions of the elements of 𝑉𝑉𝑖𝑖’s in 
ascending ordered levels.  

𝑖𝑖 = 1, 2, 3, … , (𝑛𝑛 − 1);     
𝐼𝐼𝑚𝑚 : sum vector of dimension 𝑚𝑚; and  

𝑎𝑎𝑢𝑢 = �𝑎𝑎𝑢𝑢1,𝑎𝑎𝑢𝑢2, … ,𝑎𝑎𝑢𝑢𝑝𝑝𝑛𝑛−1�′ is called the adjustment vector.  

At 𝑢𝑢 = 0, the adjustment vector 𝑎𝑎0 is called the key vector 
and resulting incomplete block represented by this key 
vector is called the key incomplete block. The key vector 𝑎𝑎0 
determines other adjustment vectors 𝑎𝑎𝑢𝑢  and hence the 
incomplete blocks 𝑀𝑀𝑢𝑢  , for all 𝑢𝑢 > 0. The elements of the 
key vector can be obtained by solving the symbolic equation 
such that ∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝 where 𝐺𝐺𝑘𝑘  represents the 
adjustment factor. 
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III. Limitation of The Method  

This method is applicable in a 𝑝𝑝𝑛𝑛  factorial experiment only 
if 𝑝𝑝 is prime. When 𝑝𝑝 is not a prime number, we cannot 
apply this method. As for example, suppose the factorial 
effect  𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4  is confounded in a 34 factorial experiment. 
In this case we can apply this method, because here 𝑝𝑝 = 3 
which is a prime number, but if we want to use this method 
to confound 𝐺𝐺1𝐺𝐺2𝐺𝐺3

2 in 43 factorial experiment considering 
𝐺𝐺3 as adjustment factor, we cannot solve the following 
equation 

∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝, 

where, 𝐺𝐺𝑘𝑘  represents the adjustment factor. 

IV. Illustration I 

Suppose the factorial effect  𝐺𝐺1𝐺𝐺2𝐺𝐺3𝐺𝐺4  is to be confounded 
in a 34 factorial experiment. Here, 𝑛𝑛 = 4;  𝐺𝐺1, 𝐺𝐺2,
𝐺𝐺3 𝑎𝑎𝑛𝑛𝑎𝑎 𝐺𝐺4 ;  

𝑝𝑝 = 3;  0, 1 𝑎𝑎𝑛𝑛𝑎𝑎 2.       

The suggested matrix is 

𝑀𝑀 = [𝑀𝑀0 𝑀𝑀1 𝑀𝑀2]34−1×4∗3 = [𝑀𝑀0 𝑀𝑀1 𝑀𝑀2]27×12 

where,  

𝑀𝑀𝑢𝑢   = [𝑉𝑉1{𝑝𝑝0},𝑉𝑉2{𝑝𝑝1}, … … … ,𝑉𝑉𝑛𝑛−1{𝑝𝑝𝑛𝑛−2},𝑎𝑎𝑢𝑢 ]𝑝𝑝𝑛𝑛−1×𝑛𝑛   

with 

𝑉𝑉𝑖𝑖{𝑝𝑝𝑖𝑖−1} = 𝑝𝑝𝑖𝑖−1 �0𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖   , 1𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖  , … … … , (𝑝𝑝 −
1)𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖  �′,  

each is a column vector of dimension 𝑝𝑝𝑛𝑛−1 . Therefore, we 
have, 

𝑀𝑀0 = [𝑉𝑉1{30},𝑉𝑉2{31},𝑉𝑉2{32},𝑎𝑎0] 33×4; 

𝑀𝑀1 = [𝑉𝑉1{30},𝑉𝑉2{31},𝑉𝑉2{32},𝑎𝑎1] 33×4; 

𝑀𝑀2 = [𝑉𝑉1{30},𝑉𝑉2{31},𝑉𝑉2{32},𝑎𝑎2] 33×4  

with  

𝑣𝑣1{1} = 1[0𝐼𝐼9, 1𝐼𝐼9, 2𝐼𝐼9] 27×1
′ , 

𝑣𝑣2{3} = 3[0𝐼𝐼3, 1𝐼𝐼3, 2𝐼𝐼3] 27×1
′ , 

𝑣𝑣3{9} = 9[0𝐼𝐼1, 1𝐼𝐼1, 2𝐼𝐼1] 27×1
′ . 

Now the elements of the adjustment vector are obtained 
from the equation ∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝, considering 
𝐺𝐺𝑘𝑘 = 𝐺𝐺3 we have, 
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  [Solving ∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝] 

Therefore,  
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Let us consider the factorial effect  𝐺𝐺1𝐺𝐺2𝐺𝐺3

2  is to be 
confounded in a 43 factorial experiment. 
Here, 𝑛𝑛 = 3;  𝐺𝐺1,𝐺𝐺2  𝑎𝑎𝑛𝑛𝑎𝑎  𝐺𝐺3;  
𝑝𝑝 = 4;  0, 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 3      
From the equation,  𝑀𝑀 = �𝑀𝑀0 𝑀𝑀1 … …𝑀𝑀𝑝𝑝−1�𝑝𝑝𝑛𝑛−1×𝑛𝑛𝑝𝑝

 , we 

have in this case, 
 𝑀𝑀 = [𝑀𝑀0  𝑀𝑀1  𝑀𝑀2  𝑀𝑀3 ]43−1×3∗4 

      = [𝑀𝑀0  𝑀𝑀1  𝑀𝑀2  𝑀𝑀3 ]16×12; 
where, 
 
𝑀𝑀𝑢𝑢   = [𝑉𝑉1{𝑝𝑝0},𝑉𝑉2{𝑝𝑝1}, … … … ,𝑉𝑉𝑛𝑛−1{𝑝𝑝𝑛𝑛−2},𝑎𝑎𝑢𝑢 ]𝑝𝑝𝑛𝑛−1×𝑛𝑛   
 
with 
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𝑉𝑉𝑖𝑖{𝑝𝑝𝑖𝑖−1} = 𝑝𝑝𝑖𝑖−1 �0𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖   , 1𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖  , … … … , (𝑝𝑝 −
1)𝐼𝐼𝑝𝑝𝑛𝑛− 1− 𝑖𝑖  ′,  

each is a column vector of dimension 𝑝𝑝𝑛𝑛−1 . Therefore, we 
have, 
𝑀𝑀0 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎0] 42×3;   
𝑀𝑀1 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎1] 42×3; 
𝑀𝑀2 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎2] 42×3 ;   
𝑀𝑀3 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎3] 42×3;  
with  
𝑉𝑉1{40} = 1[0𝐼𝐼4 , 1𝐼𝐼4  , 2𝐼𝐼4 , 3𝐼𝐼4 ]16×1

′ ,  
𝑉𝑉2{41} = 4[0𝐼𝐼1 , 1𝐼𝐼1  , 2𝐼𝐼1 , 3𝐼𝐼1 ]16×1

′ .  
 
Thus,  

𝑉𝑉1{40} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,    𝑉𝑉2{41} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Now 𝑎𝑎𝑢𝑢  is column vector of dimension 16, i.e. 
𝑎𝑎𝑢𝑢 = [𝑎𝑎𝑢𝑢1,𝑎𝑎𝑢𝑢2, … ,𝑎𝑎𝑢𝑢16]′ 

So, to get the elements of the key adjustment vector, 𝑎𝑎0, we 
have to solve the following equation  

𝑥𝑥1 + 𝑥𝑥2 + 2𝑥𝑥3 = 0 (𝑚𝑚𝑚𝑚𝑎𝑎 4) 
Here we consider 𝐺𝐺3 as adjustment factor. Thus we get, 

0 + 0 + 2𝑥𝑥3 = 0 (𝑚𝑚𝑚𝑚𝑎𝑎 4) = => 𝑎𝑎01 = 0 
  0 + 1 + 2𝑥𝑥3 = 0 (𝑚𝑚𝑚𝑚𝑎𝑎 4)                               

We cannot calculate 𝑎𝑎02. Thus we cannot calculate the key 
adjustment vector, 𝑎𝑎0.  
The reason is discussed in the next section. 

V. Reason 

We know that if we multiply an even number by any natural 
number the result will be an even number. For this reason if 
we take adjustment factor, 𝐺𝐺𝑘𝑘 , whose exponent is an even 
number, we cannot calculate the key adjustment vector 𝑎𝑎0. 
So we have to take adjustment factor 𝐺𝐺𝑘𝑘  whose exponent is 
odd number.   

VI. Moderation 

In this method, proposed by Jalil et. al.12, we have to take 
that factor as adjustment factor whose exponent is odd. If 
there is more than one factor whose exponents are odd, then 
any one can be considered as adjustment factor. After 
moderation, this method can be applied in 𝑝𝑝𝑛𝑛  factorial 
experiments, where 𝑝𝑝 is prime or non prime.  

VII. Illustration II 

Construct a confounding plan where the confounded effect 
is 𝐺𝐺1𝐺𝐺2𝐺𝐺3

2 in a 43 factorial experiment. 

Solution: Here, 𝑛𝑛 = 3;  𝐺𝐺1,   𝐺𝐺2  𝑎𝑎𝑛𝑛𝑎𝑎  𝐺𝐺3; 
𝑝𝑝 = 4;  0, 1, 2 𝑎𝑎𝑛𝑛𝑎𝑎 3      

From the equation,  𝑀𝑀 = �𝑀𝑀0 𝑀𝑀1 … …𝑀𝑀𝑝𝑝−1�𝑝𝑝𝑛𝑛−1×𝑛𝑛𝑝𝑝
 , we 

have in this case, 
𝑀𝑀 = [𝑀𝑀0  𝑀𝑀1  𝑀𝑀2  𝑀𝑀3 ]43−1×3∗4 
     = [𝑀𝑀0  𝑀𝑀1  𝑀𝑀2  𝑀𝑀3 ]16×12; 
where, 
 𝑀𝑀𝑢𝑢   = [𝑉𝑉1{𝑝𝑝0},𝑉𝑉2{𝑝𝑝1}, … … … ,𝑉𝑉𝑛𝑛−1{𝑝𝑝𝑛𝑛−2},𝑎𝑎𝑢𝑢 ]𝑝𝑝𝑛𝑛−1×𝑛𝑛    

with 

𝑉𝑉𝑖𝑖{𝑝𝑝𝑖𝑖−1} = 𝑝𝑝𝑖𝑖−1 �0𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖   , 1𝐼𝐼𝑝𝑝(𝑛𝑛−1)−𝑖𝑖  , … … … , (𝑝𝑝 −
1)𝐼𝐼𝑝𝑝𝑛𝑛− 1− 𝑖𝑖  ′,  

each is a column vector of dimension 𝑝𝑝𝑛𝑛−1 . Therefore, we 
have, 
𝑀𝑀0 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎0] 42×3;   

𝑀𝑀1 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎1] 42×3; 

𝑀𝑀2 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎2] 42×3 ;   

𝑀𝑀3 = [𝑉𝑉1{40},𝑉𝑉2{41},𝑎𝑎3] 42×3  

with  

𝑉𝑉1{40} = 1[0𝐼𝐼4 , 1𝐼𝐼4  , 2𝐼𝐼4 , 3𝐼𝐼4 ]16×1
′ ,  

𝑉𝑉2{41} = 4[0𝐼𝐼1 , 1𝐼𝐼1  , 2𝐼𝐼1 , 3𝐼𝐼1 ]16×1
′ .  

Now the elements of the adjustment vector are obtained 
from the equation ∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝 where 𝐺𝐺𝑘𝑘  
represents the adjustment factor.  Since the exponents of 
both 𝐺𝐺1 𝑎𝑎𝑛𝑛𝑎𝑎 𝐺𝐺2 are odd, anyone can be considered as 
adjustment factor. Here 𝐺𝐺1 is considered as adjustment 
factor. Now, we have 
 
 

𝑉𝑉1{40} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,    𝑉𝑉2{41} =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   and hence, 𝑎𝑎0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
2
0
2
3
1
3
1
2
0
2
0
1
3
1
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 [Solving ∑ 𝑎𝑎𝑖𝑖𝐺𝐺𝑖𝑖 + 𝑎𝑎𝑘𝑘𝐺𝐺𝑘𝑘 = 0𝑖𝑖  mod 𝑝𝑝]. 
𝑎𝑎1,𝑎𝑎2 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎3 can be obtained by solving 𝑎𝑎𝑢𝑢𝑘𝑘 = 𝑎𝑎0𝑘𝑘 + 𝑢𝑢 
where 𝑘𝑘 = 1, 2, … ,𝑝𝑝𝑛𝑛−1; 
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Therefore, 

𝑀𝑀0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
2
0
2
3
1
3
1
2
0
2
0
1
3
1
3

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,    𝑀𝑀1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
3
1
3
0
2
0
2
3
1
3
1
2
0
2
0

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,    𝑀𝑀2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2
0
2
0
1
3
1
3
0
2
0
2
3
1
3
1

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,   𝑀𝑀3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3
1
3
1
2
0
2
0
1
3
1
3
0
2
0
2

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

So, the desired plan is 

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
2
0
2
3
1
3
1
2
0
2
0
1
3
1
3

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

    

1
3
1
3
0
2
0
2
3
1
3
1
2
0
2
0

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

     

2
0
2
0
1
3
1
3
0
2
0
2
3
1
3
1

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

    

3
1
3
1
2
0
2
0
1
3
1
3
0
2
0
2

0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
VIII. Conclusion  

The method proposed by Jalil et. al.12 worked only when 𝑝𝑝 
is prime in 𝑝𝑝𝑛𝑛  factorial experiments. In this article, we have 
made modification in taking adjustment factor, using which 
we can construct confounding plan with single factorial 
effect in 𝑝𝑝𝑛𝑛   factorial experiments. The method is 
appropriate in general for any value of 𝑛𝑛, the number of 
factors and for any possible value of 𝑝𝑝, the levels of the 
factors. However, this method is restricted to 
𝑝𝑝𝑛𝑛  symmetrical factorial experiments. 
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