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Abstract 
In this paper, Corwin Greenleaf multiplicity functions for special unitary group have been studied in the light of the Kirillov–Kostant 
Theory. This was pioneered by the famous mathematician L. Corwin and F.Greenleaf. The multiplicity function is defined as 

 In the case where , it has been shown that  is at most one. 
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I. Introduction 
The orbit method pioneered by Kirillov and Kostant4 seeks to 
understand irreducible unitary representation by analogy with 
“quantization” procedures in mechanics. Physically, the idea of 
quantization is to replace a classical mechanical model (a phase 
space modeled by a symplectic manifold ) with a quantum 
mechanical model (a state space modeled by a Hilbert space ) 
of the same system. The natural quantum analogue of the action 
of a group  on  by symplectomorphisms is a unitary 
representation of  on . 

For a Lie group  coadjoint orbits are symplectic manifolds, 
and the philosophy of the orbit method says that there 
should be a method of “quantization” to pass from coadjoint 
orbits for  to irreducible unitary representations of . 
Kirillov proved that this works perfectly for nilpotent Lie 
groups. But many specialists have pointed out that the orbit 
method does not work very well for semisimple Lie 
groups4,5,6. However, we can still expect an intimate relation 
between the unitary dual of  and the set of (integral) 
coadjoint orbits even for a semi simple Lie group.  

One of the fundamental problems in representation theory is to 
decompose a given representation into irreducible5. Branching 
laws are one of the most important cases. Here, by branching 
laws we mean the irreducible decomposition in terms of a 
direct integral of an irreducible unitary representation   of a 
group  when restricted to a subgroup : 

 

Such a decomposition is unique, and the multiplicity 
:  makes sense as a measurable function on 

the unitary dual . There are two basic questions on 
multiplicities: 

Problem 1.1. (Problem 1.1, [9]) 

(a)  For which ( ), the restriction  is multiplicity-
free? 

(b)  Relate quantum and classical pictures in the spirit of 
Kirillov Kostant orbit method. 

As for (a), T. Kobayashi7 has established a unified theory on 
multiplicity-free theorem of branching laws for both finite 
and infinite dimensional representations in a broad setting. 
This theorem gives a uniform explanation for many known 
cases of multiplicity-free results and also presents many new 
cases of multiplicity-free branching laws. 

As for (b), it is well-known that the orbit method works well 
for nilpotent Lie groups, but only partially for reductive 
groups4.  

II. Corwin Greenleaf Multiplicity Function 

For simply connected nilpotent Lie group , building on the 
Kirillov isomorphism 

 

Corwin and Greenleaf introduced the function 1. 
For coadjoint orbits  and , the 
Corwin Greenleaf multiplicity function  is the 
number of -orbits in the intersection   If   
is attached to and  is attached to , then one expects 
that  coincides with  . Research in this 
direction has been done extensively for nilpotent Lie groups 
and for certain solvable groups by Kirillov, Corwin, 
Greenleaf, Lipsman, and Fujiware among others1. 

III. Statement of Results 

The multiplicity free theorems of branching laws of unitary 
representation theory and other considerations motivated by 
the Corwin Greenleaf multiplicity function lead Kobayashi 
to pose a general conjecture (below) for reductive 
symmetric spaces. Mainly, as a combination of questions (a) 
and (b) (Problem 1.1), Kobayashi posed the following 
conjecture on the base of Corwin Greenleaf multiplicity 
function. 
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Conjecture 3.1. (Conjecture 1.2, [10]) Let  be a 
reductive symmetric pair. Then under certain condition 

 

A positive answer to the above conjecture has  been given  
for an arbitrary Riemannian symmetric pair8,9,10. The 
following result has been proved therein. 

Theorem 3.1. (Theorem 2.8 [8]) Conjecture 3.1 is true 
if . 

Example 3.1. (Example 2.7, [8]) Suppose 
, respectively and . Let  be a central 

element in , the Lie algebra of . Then in each case, for any 
 

 

In8, the proofs have been provided on the structure theory of 
Hermitian symmetric spaces and their root systems2,3. In this 
paper an alternative and independent proof has been given 
by elementary matrix computation. Thus, the main result (of 
this paper) can be stated briefly as follows: 

Theorem 3.2. Conjecture 3.1 is true when .  

This section is for the purpose of (or deals with) obtaining a 
key result (Proposition 3.1 below). This is done by reducing 
the main theorem Theorem 3.2 to various Lie algebra 
formulations. 

Suppose  is a real reductive group with Cartan involution 
, maximal compact subgroup  and 

Lie algebra . Then the Cartan decomposition corresponding 
to the Cartan involution , can be written as . 

Contrary to nilpotent Lie groups, there is no reasonable 

bijection between  and (a subset of) . Therefore, it is 
not obvious if an analogous statement of 
Corwin Greenleaf’s theorem makes sense for a semi simple 
Lie group . But, the orbit method still gives a good 
approximation of the unitary dual . For example, to an 
‘integral’ elliptic co-adjoint orbit  one 
can associate a unitary representation, denoted by   of 2. 
Furthermore,  is nonzero and irreducible for ‘most’  of 
both geometric and algebraic results in this direction2. 
Namely, to such a co-adjoint orbit , one can naturally 
attach an irreducible unitary representation   

In particular, if   is Hermitian, associated to an 
(integral) co-ad-joint orbit that goes through 

, the corresponding unitary representation becomes a 
highest weight module of scalar type. 

By the identification  the co-ad-joint orbit 

 

Corresponds to the ad-joint orbit given by 

 

Where  is a non-zero central element in . Also write 
 for the projection instead of . 

Now, consider the projection  or simply, denoted 
by . Then the pullback 

 is stable. Then Theorem 3.2 can be 
rewritten precisely as follows: 

Theorem 3.3. Let  be a Hermitian symmetric space of 
non-compact type, and  a central element in . Then the 
intersection  is a single K-orbit for any ad-
joint orbit , whenever it is non-empty. 

In fact, the above theorem will be reduced in this section. 

The global Cartan decomposition is  

 

Then, take a maximal abelian subspace  of , and a positive 
system  of the restricted root system . 

Let { } be the set of simple roots. Then the 
corresponding Weyl chamber2,3 is defined by 

, 

and the generalized Cartan decomposition can be written as  

 where  . 

A key lemma in proving the main theorem is: 

Proposition 3.1. (Proposition 3.2., [8])  For any   
p and  are conjugate 

under  if and only if . 

Proposition 3.2. 

Proposition 3.1 implies Theorem 3.3. 

Proof: It is obvious that for any 
  Then for any  we have, 

 

This implies that for any  there 
exist  and  such that 

 and  

Now,  under  implies that there exist some 
 satisfying 

. 

Substituting the value of  and  the claim follows. 
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IV. Matrix Computations of Corwin-Greenleaf Multiplicity 

Function. 

In this section, Proposition 3.1 has been proved 
independently by elementary matrix computations.  

The most interesting and complicated case where 
 is considered. The group 

+ ,ℂ: ∗ , = ,  is the group of complex matrices 
of size  preserving the Hermitian form on 

 given by 

 and  is the subgroup of members of 
 of determinant 1. Here, write  for conjugate 

transpose and put  (  denote the 

identity matrices of order  and , respectively). 

Therefore,  can be realized as the special indefinite 
unitary group in : 

 

A maximal compact subgroup  is given by 
. Then the Lie algebra  of  will be identified with 

 

Corresponding to the Cartan involution  (which is defined 
by , the Cartan decomposition of the Lie 
algebra  of  is written as  Here, 

 

 is a complex  matrix  

The decomposition 

 

shows that  is isomorphic to the sum 
where  is the center of . Also 

 and the corresponding symmetric space is 
. 

Without loss of generality, from now one may assume that    
 Consider the matrix unit  to be 1 in the  

place and 0 elsewhere. Then, a maximal abelian subspace of 
 is given by 

 

Consequently, the rank is . Suppose  denotes the 
connected subgroup of  having the Lie algebra  and is 
defined by 

 

=1 ℎ , + + + , : 1,… ∈ℝ}.  

The space  is  Hermitian 
symmetric means that the center  is one dimensional. Let 
the center of  be defined by 

 

 

Remark 4.1. The normalization of the central element  is 
different from the previous sections. 

Now let us take  and for  write  
as 

=1 ℎ , + + + , : 1,… ∈ℝ. 

Then, 
ℎ2 + ℎ2 + , + + = +1 , + =1 (−

+ ℎ ℎ , + + + ℎ ℎ + , )) 

Let us define the functions 

 

by  
 
 

Then,  can be written as 
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The Cartan projection  is given as follows: 

 

Therefore, 

 

Likewise, for   , let us take  such that 

 
= +1 , )…………(4.2)          

Then defining  a positive system  such that the 
corresponding dominant Weyl chamber is given by  

 

Put  Now let us assume that 
 for  Then the following 

result is obtained. 

Lemma 4.1.  and  are conjugate 
under  if and only if 

 

under the permutation group  and  
=1 ( ′) + , +  under the permutation group . 

 

Proof: 

The Cartan subgroup  in  can be taken as 

 

Then in the computations (4.1), (4.2) we observe that  

 

Whence, the lemma easily follows. 

Now by the lemma 4.1, it follows that there exist some 
  

  

 for . 

Again it follows from 

, and  that  

 and  

 and  

Hence in either case it can be concluded that  
for any . 

Whence it is easily proved that  for any   

Therefore Proposition 3.1 in the case where  
has been proved. 

V. Conclusion 

Recently around the world many experiments and 
theoretical observations have been made to understand how 
orbit method, multiplicity function are applied to another 
fields of science. This paper has made and attempt to 
describe first: the essence of the special unitary Lie groups 
for non-experts and second: to attract the younger 
generation of mathematicians to some old and still unsolved 
problems in multiplicity function where we believe the orbit 
method could be helpful. This paper could be a guideline of 
studying of modern approach in this area of matrix 
computations of Corwin Greenleaf multiplicity function for 
special unitary group. 
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