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Abstract 
In the present paper some aspects of exterior derivative, graded algebra, cohomology algebra, de Rham cohomology algebra, singular 
homology, cohomology class are studied. Graded subspace, smooth map, a singular - simplex in a manifold , oriented - manifold , the 
space of - cycles and - boundaries,  singular homology and homology class are treated in our paper. A theorem 3.03 is established which 
is related to orientable manifold. 
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I. Introduction  

The emergence of differential geometry as a distinct 
discipline is generally credited to Carl Friedrich Gauss and 
Bernhard Riemann. Riemann first described manifolds in his 
famous habilitation lecture before the faculty at Gottingen. 
He motivated the idea of a manifold by an intuitive process 
of varying a given object in a new direction. The concept of 
graded manifolds is developed by Manin. In the de Rham 
cohomology algebra of a smooth manifold is constructed by 
means of the calculus of differential forms which in turn is 
the natural global version of the usual differential calculus 
in ℝ . In the present paper, we have been discussed 
Cohomology Algebra, Singular Homology, Cohomology 
Class with some important theorems, lemmas, corollaries, 
propositions and examples. 

II. Cohomology Algebra  

Given an - manifold  of     and we consider the graded 
algebra [2] 

( ) = ( ) 

of differential forms on  .  

It follows that the exterior derivatives makes  ( ) into a 
graded differential algebra. The co cycles in this differential 
algebra consist of the differential forms  Φ which satisfy the 
condition  Φ = 0. Such a differential form is called closed. 
Since    is an antiderivation, the closed forms are a graded 
subalgebra  ( )  of   ( ). 

Definition 1.01 Let  ⊆   be an open subset. Since  
( ) = ( ), we defined the exterior derivative by  
∶ ( ) → ( ). For  ≥ 1, we can define the exterior 

derivative 

∶ ( ) → ( ). 

by the following formula: 

..… ∧ … … ∧
⋯

 

= ( ..… ) ∧ ∧ … … ∧
⋯

. 

It is clear that this operation is ℝ-linear. 

Definition 1.02 The subset  ( ) = ( )  is a graded 
ideal in  ( ). The differential forms in  ( )  are called 
exact or coboundaries. The corresponding cohomology 
algebra is given by 

( ) = ( )/ ( ). 

It is called the de Rham cohomology algebra [7] of   . 

Lemma1.03 The composition 

( ) → ( ) → ( ) 

is trivial ( = 0). 

Proof. The equation  = 0  is equivalent to the equality of 
mixed partials which in turn, is equivalent to  , = 0,  
the commutatively of coordinate fields. By the 
antisymmetry of exterior multiplication, d   gives the same 
answer whether or not the indices are in increasing order or 
even are distinct. Thus 

  ∧ … … ∧  

= ∧ ∧ … … ∧  

= ∧ ∧ ∧ … … … 

 ∧ , 

and this vanishes by the equality of mixed partials and the 
antisymmetry of exterior multiplication. Hence, the 
composition is trivial. 

Corollary 1.04 If   ⊆ ℝ   and   ⊆ ℝ   are open subsets, 
and  ∶  →    is smooth, then   ∘  ∗ = ∗ ∘ ∶
 ( ) → ( ),  for all  ≥ 0. 
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Proof.  Let   ⊆ ℝ    and   ⊆ ℝ   are open subsets and  

∶  →    is open. Now, 

∗ ∧ … … ∧  

= ∗( ) ∗( ) ∧ … … ∧ ∗  

= ∗( ) ∗( ) ∧ … … ∧ ∗  

= ∗( )) ∧ ( ∗( )) ∧ … … ∧ ( ∗  

= ∗( ) ∧ ∗( ) ∧ … … ∧ ∗   

= ∗ ∧ ∧ … … ∧  

= ∗ ( ∧ … … ∧ ) . 

Since every  ∈ ( )  is a sum of forms of the type used 
in the above computation, the claim follows. 

Definition 1.05  For each integer  ≥ 0, the  th (de Rham) 
cohomology space of    is the real vector space ( ) =

( )/ ( ). If   ∶ →    is smooth, the formula  
∗ ∘ = ∘ ∗  implies that 

∗( ( )) ⊆ ( ) 

 ∗( ( )) ⊆ ( ), 

so  ∗  induces an  ℝ-linear map  ∗: ( ) → ( ). 

Lemma 1.06 The graded   ℝ- algebra  ∗( ) is connected if 
and only if     is a connected manifold [6]. 

Proof.  The space    consists of all  ∈ ( )  such that   
= 0. That is,  ( )   is the space of locally constant, 

real-valued functions on   . Identifying  ℝ  with the space 
of constant functions in   ( )  we have   ℝ ⊆ ( ). 
The product in  ∗( )  of a constant function and a form 
becomes naturally identified with scalar multiplication. But 
locally constant functions are all constant of and only if     
is connected. This completes the proof. 

Corollary 1.07 The space ( ) is one-dimensional if and 
only if   is connected. In this case, ( ) = ℝ   
canonically. Generally,  ( )  is a direct product of copies 
of   ℝ, one for each component of   . 

Proof. The space  ( )  consists of all   ∈ ( )   such 
that   = 0. That is,  ( )  is the space of  locally 
constant, real valued functions on  . Identifying  ℝ  with 
the space of constant functions in  ( ), we have   
ℝ ⊆ ( ). Indeed, 

( ) = ( )/ ( ) = ( ), 

the space of locally constant functions and all the claims 
follow easily. Hence, the proof is complete.  

Lemma 1.08 If = , then  ( ) = 0, ∀ > . 

Proof.  Let = . We have to prove that  ( ) =
0, ∀ > . Indeed, ( ) = 0 for all integers    greater 
than the dimension of  . This means that  ( ) =
0, ∀ >   where = . This completes the proof. 

Definition 1.09 The graded algebra  ∗( )  is called the (de 
Rham) cohomology algebra  of  . Whether or not it is 
connected,   ∗( )   has a unity, namely the constant 
function  1 ∈ ( ) = ( ). 

Theorem 1.10 The graded cohomology construction defines 
a contravariant  ∗  from the category of differentiable 
manifolds and smooth maps to the category of 
anticommutative graded algebra over  ℝ  and graded algebra 
homeomorphisms. The graded algebra  ∗( )   is 
connected iff      is connected. 

Lemma 1.11  The graded subspace   ∗( ) ⊆ ∗( )  is a  
2-sided ideal, hence   ∗( ) = ∗( )/ ∗( )  is a graded , 
anticommutative algebra over the field  ℝ. 

Proof.  If   ∈ ( )  and   ∈ ( ), ≥ 1, then   
=   for some   ∈ ( ),  hence 

  ∧  = ∧  

            = ∧ (−1) + (−1) ∧ ((−1) ) 

            = ( ∧ (−1) ). 

Since   ∧ = (−1)  ∧  ,   it  follows that   ∗( )   is 
a 2-sided ideal in   ∗( ). 

Definition 1.12 The (de Rham) cohomology algebra [1] with 
compact supports is   ∗( ) = ∗( )/ ∗( ). Now,  

∗( ) = ∗( )   if and only if     is compact. 

Definition 1.13 A smooth map  ∶  →   is proper, if for 
each compact set  ⊆ ,  the set   ( )  is also compact. 

Example 1.14  ∶ →   is always proper. If     is 
compact,    is always proper. 

Definition 1.15  The space of compactly supported  p-forms  
on    is denoted by  ( ). Thus each  ( )  is a 
module over  ( ). The exterior product of two 
compactly supported forms is compactly supported. 

Definition 1.16  If   ∶ →    is proper and if   ∈
( ), then 

∗( ) ∈ ( ). 

As usual  ∗ ∘ = ∘ ∗,  so the induced homomorphism 
of graded algebras [2] is 

∗ ∶  ∗( ) → ∗( ). 

III. Singular Homology 

A singular  -simplex in a manifold    is a smooth map  
∶  ∆ → . Thus each point of    can be thought of as a 

singular 0-simplex and smooth curves, up to 
parametrization, are singular 1-simplices. Now for  0 ≤ ≤

, the    face of the singular  ( − 1)-simplex   ∶
 ∆ → ∆    defined by 

( , … … , )

=
( , … … , , 0, , … … , )             > 0,
(1 − − ⋯ − , , … … , )      = 0.
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The  0   face of    ∆   is empty. If   ∶  ∆ →   is a 
singular  -simplex, the    face of   s   is the singular  
( − 1)-simplex   = ∘ . 

Definition 2.01  The orientation of    induces an 
orientation of  . Let   { , , … … , } ∈    be an   ℍ - 
atlas  on    respecting the orientation. Let   =
{ ∈ | ∩ ≠ ∅}   and consider the  ℝ - atlas 

{ ∩ , , … … , } ∈  

of    . This  ℝ - atlas on    defines an orientation  
of   . 

Theorem 2.02 For each oriented  - manifold   [3], there is 
unique  ℝ-linear function 

∫ ∶  ( ) → ℝ, 

called the integral and having the following property: 

if   ( , )   is an- orientation respecting coordinate chart, if   
∈ ( )   has   ( ) ⊂ ,  and if 

∗( ) = ⋀ … … ⋀ ∈ ( ( )), 

then  ∫ = ∫ ( )   (The Riemann integral). 

Proof.  First we prove the uniqueness. Let  {( , )}    
be smooth  ℍ - atlas on    respecting the orientation. Let  
{ }     be a smooth partition of unity subordinate to the 
atlas. If  ∈ ( ),  then  ∈ ( )  and   ≠ 0  
for only a finite number of     . This is because ( )  
is compact and the partition of unity is locally finite. Thus 

=
  

 

and this sum is actually finite. Then, if  ∫    exists, linearity 
gives 

∫ = ∫  
  

 

and  ( ) = ( ) ∩ ( )  is a compact 
subset of  . By the local property of  ∫ ,  each  ∫     
is uniquely given as 

∫   = ∫
 ( )(  ∘   )  , 

where     ⋀ … … ⋀ =  
∗(  | ). 

If   ∈ ( ),  only finitely many      are not 
identically  0. Define  

∫   = ∫
 ( )(  ∘   )  , 

where     ⋀ … … ⋀ =  
∗(  | ). Then we 

define a finite sum 

∫  = ∫  
  

, 

where,  ∫ ∶  ( ) → ℝ   is a  ℝ  linear map. 

We must check that, if   ( ) ⊂ ,  where ( , )  is an 
arbitrary orientation respecting coordinate chart and if 

∗( ) =  ⋀ … … ⋀ , 

then  ∫  = ∫ ( ) . 

First we remark that 

∫  = ∫
 ( )(  ∘   )  

  

 

= ∫
 ( ∩ )(  ∘   )  ,

  

 

since   ( ) ⊂ . Now, 

∫
 ( )(  ∘   )    

= ∫ ( ∩ )(  ∘   ) , 

for each    . The fact that the charts are compatibly 
oriented is essential. Thus, 

∫  = ∫ ( ∩ )(  ∘  )
  

 

= ∫ ( )(  ∘ )
  

 

= ∫ ( )  ∘  
  

    

                 = ∫ ( ) . 

           ∴ ∫  = ∫ ( ) .           

Theorem 2.03 Let     be an oriented  - manifold and let   
∶  ↪   be the inclusion. Then if   ∈ ( ),  

∫  = ∫  ∗( ), 

where if   = ∅,  the right hand side is interpreted as 0. 

Theorem 2.04 Let     be an oriented  - manifold with   
= ∅. Then  ∫ ∶  ( ) → ℝ is a well defined  ℝ-

linear surjection. 

Proof.  We know that   ( ) = 0, then we have, 

( ) = ( ). 

 

If   = ∈ ( ), then Stokes theorem and the fact that  
= ∅  imply that 

 

∫ = ∫ = ∫ = 0. 

Thus, the linear map 

∫ ∶  ( ) → ℝ, 

induces a well defined linear map 

∫ ∶  ( ) → ℝ. 

To prove surjectivity, we only need prove that this map is 
nontrivial. Let   ( , , … … , )   be a compatibly oriented 
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chart and let   ∈ ( )   have compact support contained 
in  , with  ≥ 0  everywhere and  > 0   somewhere. 
Thus  = ⋀ … … ⋀  can be interpreted as an 
element of  ( )  and of   (ℝ ), so,  ∫  = ∫ℝ   >
0. 

This completes the required proof. 

Definition 2.05 If   ∶  →   is a singular   - simplex 
and   ∈ ( ),  then  ∗( )  has the form   

⋀ … … ⋀    and we set 

∫  = ∫∆  , 

where the right hand side is the Riemann integral [4]. If   
∶  {0} →    is a singular  0-simplex and  = ∈ ( ),  

the integral is interpreted to mean 

∫  = ( (0)) . 

Definition 2.06 The standard  −   ∆ ⊂ ℝ   is the 
covex hull of the set   , , … … , , where    is the    
standard basis vector,  1 ≤ ≤   and  = 0. 

Corollary  2.07  A form  ∈ ( )   is closed if and only 
if   ∫  = 0, for every singular  ( + 1) − simplex     in  

.    

Proof. Let  ∈ ( ). If   w   is closed, then  

∫  = ∫  = ∫  0 = 0. 

For the converse, suppose that  = ≠ 0. Choose a point  
∈   such that ≠ 0.Choose vectors   , … … . , ∈
( )   such that  ( ∧ … … ∧ ) > 0. These vectors 

must be linearly independent, so we find a local coordinate 
chart  ( , , … … , )  about  x  in which    is the value of   
ith  coordinate field  = /   at  x,  1 ≤ ≤ + 1. By 
making this chart is sufficiently small, we can guarantee that  

( ∧ … … ∧ ) > 0  on all of  U. Let   ∶  ∆ →   be 
orientation-preserving, smooth imbedding into the 
coordinate  ( + 1) −plane  {( , … … , ) ∈ | =
…= =0. It follows that  

∫  = ∫  = ∫  = 0. 

This completes the poof. 

Definition 2.08 The space  ( ) ⊆ ( )  of all   p-cycles 
is the  kernel  of the boundary operator   ∶  ( ) →

( ).   The space  ( ) ⊆ ( )  of all   p-
boundaries is the  image  of the boundary operator    ∶
 ( ) → ( ). 

Definition 2.09 The     singular homology of    is the 
vector space 

( ) =
( )
( ). 

If    ∈ ( ),   the homology class [5] of      is the coset   
[ ] ∈ ( )   represented by the cycle  . 

Theorem 2.10 If    is a contractible  n-manifold, then   

( ) = ℝ, = 0
0, > 0  

in particular, this is true for  = ℝ . 

Proposition 2.11  If    ∈ ( )   and    ∈ ( ),  then 
the real number    ∫    depends only on the cohomology 
class  [ ] ∈ ( )   and the homology class  [ ] ∈ ( ). 

Proof.  Indeed,   [ ]   is the set of all closed   - forms   
+ ,  where  ∈ ( ).  We have 

∫  = ∫  = ∫  = 0, 

by Stokes theorem and the fact that      is a cycle, so 

∫  + = ∫  . 

Similarly,  [ ]  is the set of all   -cycles of the from   
+ ,   where   ∈ ( ). Since   ∫  = ∫  =

∫  0 = 0,   we obtain, 

∫  = ∫  + ∫  = ∫  . 

This completes the proof. 

IV. Cohomology Class  

Definition 3.01 The unique cohomology class  ∈ ( )   
which satisfies 

#
= 1 

is called the orientation class for  . 

Theorem 3.02 Let    be a oriented  - manifold. Then 

: ( )
#

→ ℝ 

is a linear isomorphism. Moreover, 

ker ∫  = ( ( )). 

Theorem 3.03  = ( ) ; ( ) = 0. 

Proof. Since    is connected and orientable [6],  
dim = 1. Since 

 = ( ) ⨁( ) , 

it is sufficient to prove that  ( ) ≠ 0. 

Orient    and let  Ω ∈  ( )  be positive. Since    
reverses orientations, 

Φ = Ω = ∗Ω 

is again positive. Hence  ∫   Φ > 0;  i. e.  Φ  represents a 
nontrivial cohomology class 

∈  . But  ∗Φ = −Ω; Thus 

∈  ( )     and  so    ≠ 0. 

Hence the Theorem is proved. 
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V. Conclusion 

We have focused some important preliminaries and 
fundamental definitions, examples  and  theorems which is 
essential to present this paper. By using de Rham 
cohomology algebra,  grade  cohomology   construction, 
space  of  compactly  supported   - forms on  manifolds,  
singular - simplex  of  a   manifold,  oriented - manifold 
the theorem 3.03 is established and so on. 
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