
Dhaka Univ. J. Sci. 64(2): 141-145, 2016 (July)

* Author for correspondence. e-mail: arefin.math@du.ac.bd

Minimizing Average of Loss Functions Using Gradient Descent and Stochastic Gradient Descent
Md. Rajib Arefin* and M. Asadujjaman

Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh
(Received: 29 December 2015; Accepted: 6 April 2016)

Abstract

This paper deals with minimizing average of loss functions using Gradient Descent (GD) and Stochastic Gradient
Descent (SGD). We present these two algorithms for minimizing average of a large number of smooth convex functions.
We provide some discussions on their complexity analysis, also illustrate the algorithms geometrically. At the end, we
compare their performance through numerical experiments.

Keywords: Gradient Descent, Stochastic Gradient Descent, Convex Function, Unconstrained Optimization Problems.

I. Introduction

This paper presents two basic approaches for solving an
unconstrained optimization problem of the form,

min
∈ℝ

() (1)

where, () = ∑ ()

where ∶ ℝ → ℝ, is a smooth convex function. Many
problems in data science (e.g. machine learning,
optimization and statistics) can be cast as loss minimization
problems3,4,7,1,6 of the form (1). There are several methods
available for solving problem of the type (1). Some of these
methods require second order derivatives of () while
some other requires only first order derivatives. However,
this paper will focus only on first order optimization
algorithms, that is, the algorithms which do not require
second order derivative of (). We present two well-
known first order algorithms namely, GD and SGD, for
solving problem of the form (1). One of the oldest and well-
known first order iterative algorithms for solving the above
problem is GD that calculates the gradient of the function to
have an update at each iteration. However, if the problem
size becomes larger that is, if the number of functions
included in the average is very large then minimizing
average of those functions using GD would become very
costly since it needs to evaluate the gradient of all the
functions and consequently becomes less efficient. One
remedy of this problem can be the use of SGD which,
instead of considering all functions, estimates the gradient
on the basis of a randomly chosen function in each iteration.

The rest of the paper is organized as follows. In section II,
we discuss GD algorithm with some theoretical results on
their complexity analysis and illustrate the algorithm
geometrically. In section III, we discuss SGD algorithm
with some theoretical results on their complexity analysis
and illustrate it geometrically. Section IV, performs
numerical experiments to compare the performance of GD
and SGD. Finally, we draw a conclusion in section V.

II. Gradient Descent

Gradient descent5 (also known as steepest descent) is an
optimization technique for minimizing unconstrained

multidimensional smooth convex function which starts
with some initial parameters and performs a number of
iterations (until expected accuracy is attained) towards the
direction in which the value of the function decreases.
Consider the problem (1), if = is a given point, ()
can be approximated by the linear expansion

 (+) ≈ () + () (2)

Where is small, i.e. ‖ ‖ is small. If the approximation
in the expression (2) is good, then onewould want to
choose so that the inner product () is as small as
possible. It is easy to verify that the direction

= −
()

‖ ()‖

makes the smallest inner product with the gradient ().
This follows from the inequalities:

() ≥ −‖ ()‖‖ ‖ = ()
− ()
‖ ()‖

= − () .

This is why, the un-normalized direction:

= − ()

is called the direction of steepest descent at the point .
Therefore, the idea is to take point at iteration ,
compute the gradient () and update

= − ℎ ()

Where ℎ is scalar step size. A natural consequence of this
is the Algorithm of GD.

Existing Algorithm of GD
Step 1: Input: Initial point , gradient norm tolerance

.

Step 2: Set = 0

Step 3: while () ≥ do

Step 4: = − ℎ ()

142 Md. Rajib Arefin and M. Asadujjaman

Step 5: = + 1

Step 6: end while

Step 7: Return:

Complexity Analysis of GD

To analyze the complexity of GD algorithm, we restrict to
the case of convex-Lipschitz functions2 as many problems
lend themselves easily to this setting.

Definition 2.1

A differentiable convex function is said to have a
Lipschitz continuous gradient, if there exists a constant

> 0, such that

‖ () − ()‖ ≤ ‖ − ‖, ∀ ,

Definition 2.2

A convex function is strongly convex if and only if,
there exist a constant > 0 such that the function

() + ‖ ‖ is convex.

Different variants of gradient descent depend on how ℎ is
chosen. Smaller step size may lingerthe computational
time (i.e. requires lots of iterations) whereas, larger step
size can over shoot the minimum point, it may fail to
converge, or even diverge. Choice of step sizes depends
on the behaviour of the function. In addition to that it can
give an estimation on the number of iterations needed.
Note that, gradient descent can converge to a local
minimum, even with the fixed step size. It is observed that
as the iterates approach a local minimum, gradient descent
will automatically take smaller steps. Therefore, no need
to decrease the step size over time. The following results9

gives an estimation of the number of iterations when the
step size is constant.

Theorem 2.1

Suppose has a Lipschitz continuous gradient with
modulus . Then the Algorithm of GD with a fixed step
size ℎ = will return a solution with () ≤ in
at most (1/) iterations.

In addition to having a Lipschitz continuous gradient, if f
is -strongly convex, then the rate of convergence can be
strengthened which yields the following theorem.

Theorem 2.2

Consider the assumptions of Theorem 2.1. Moreover,
assume that is -strongly convex, and let = 1 − .
Then () − (∗) ≤ after at most

 ((() (∗))/
(/)

 (3)

iterations.

If GD is applied to a problem that is not strongly convex,
it yields a low accuracy solution within a few iterations.
However, as the iterations progress the algorithm stalls
and no further increase in accuracy is obtained because of

the (1/) rates of convergence. On the other hand, if
is strongly convex, then GD converges linearly in

(log(1/)) iterations. It can be observed from the
expression (3) that the number of iterations depends
inversely on log(1/). Approximating the denominator in
(3) as log(1/) = − log(1 − /) ≈ / , hence, the
algorithm requires atmost (log(1/)) iterations.
Clearly, the convergence depends on the ratio = / .
This ratiois called the condition number of a problem. If
the problem is well conditioned, i.e., ≈ then GD
converges extremely fast. Conversely, if << then GD
requires many iterations. Since GD calculates the gradient
of n component functions per iteration, total complexity
of the algorithm becomes (log(1/)).

Now if we do not want to use a constant step size for
every iteration, then one can use the well known exact
line search strategy2 to get a proper step size. This strategy
solves the following optimization problem for each
iteration:

min (− ℎ ())

However, it is not always easy to solve this problem,
specially when the function is non linear. In that case,
inexact methods are commonly used in practice. These
methods do not solve the problem exactly but estimate a
good step size instead. However, we skip these methods
as they are beyond the scope of this dissertation. Figure
2.1 illustrates the algorithm geometrically.

Fig. . An illustration of the GD algorithm. The function to be
minimized is () = ∑ − , where ∈ ℝ and

∈ ℝ , ∈ ℝ are chosen arbitrarily.

In every iteration of GD, the iterates are pointing toward
the greatest decrease of the function. Consequently, the
algorithm shows a faster convergence. However, the
algorithm becomes computationally expensive as the
problem size increases. In that case, the well-known
Stochastic Gradient Descent (SGD) is found to be more
efficient than GD algorithm.

Minimizing Average of Loss Functions Using Gradient Descent and Stochastic Gradient Descent 143

III. Stochastic Gradient Descent

The Stochastic Gradient Descent3 (SGD) is a commonly
used algorithm for minimizing an objective function that
is written as the sum of differentiable functions such as,
(1). It is drastic simplification of GD algorithm as it
requires to compute the gradient of a single component
function among all the admissible functions whereas, GD
algorithm considers all the component functions to have a
full gradient at each iteration. The idea of the algorithm is
to choose a function randomly in every iteration and only
compute the gradient of that function. Therefore, SGD
picks a function randomly from component functions
at each iteration and update

= − ℎ , ∈ {1, 2, 3, . . . , }

Clearly, this strategy reduces the amount of work
drastically in each iteration because the complexity per
iteration is now only 1. The following algorithm is a basic
version of SGD.

Existing Algorithm of SGD
Step 1: Input: Initial point , gradient norm

tolerance .

Step 2: Set = 0

Step 3: while () ≥ do

Step 4: Choose a function () randomly

 (uniform)

Step5: = − ℎ ()

Step 6: = + 1

Step 7: end while

Step 8: Return:

Since, (()) = (), we have an unbiased
estimator of the gradient (full gradient). Therefore, the
gradients of the component functions , , . . . , are
referred to as stochastic gradients12.

Complexity Analysis of SGD

The consecutive stochastic gradients may vary a lot or
even point in opposite directions from the minimum point.
Therefore, the convergence can be slow. The algorithm
inherits the following convergence result3:

() − (∗) ≤ (1/) if ℎ = 1/ ,

which depicts the slow convergence rate of SGD.
Convergence results of SGD require step sizes satisfying
the conditions ∑ ℎ < ∞ and ∑ ℎ = 0. The convergence
speed is in fact limited by the noisy approximation of the
true gradient. When the step sizes decrease too slowly, the
variance of the parameter estimate decreases equally
slowly. When the step sizes decrease too quickly, the
expectation of the parameter estimate takes a very long
time to approach the optimum3. Usually iterates of SGD
keep oscillating around the minimum of () but in

practice, most of the values near the true minimum would
be reasonably good approximations. Situations where low
accuracy solutions are sufficient, i.e. small number of full
gradient evaluations are sufficient to find an acceptable ,
SGD works very well comparing to GD. That is why,
SGD is extremely popularin the field of machine
learning6. To be precise, in machine learning, usually a
small number of passes over the data, which is actually
the work equivalent to a small number of full gradient
evaluations, are enough to get an acceptable solution.

In machine learning, the functions () in (1) are called
loss functions which measure how well (or how poorly)
the hypothesized function performs. The cost function

() is then the average of the loss function. The
computation of such a cost function takes a time
proportional to the number of examples n. Since GD
considers the complete cost function () at every
iteration; as becomesvery large, it would require a huge
amount of efforts. The stochastic gradient instead updates
the learning system, i.e. on the basis of a single loss
function. The algorithm works because the averaged
effect of these updates is the same. Although the
convergence can be much more noisy, the elimination of
the constant in the evaluation of cost function can be a
huge advantage for large scale problems.

Fig. . An illustration of the SGD algorithm. The function to
be minimized is () = ∑ − , where ∈ ℝ and

∈ ℝ , ∈ ℝ are chosen arbitrarily.

Figure 3.1 show how SGD behaves geometrically. The
same function (as in GD) is used to see how the iterates of
SGD converge to the minimum. Cleary the iterates are not
always pointing toward the greatest decrease of the
objective function, consequently, showing noisy updates.

Step Size Choice

Choosing the proper step size and changing its value over
time can be challenging in SGD. In most SGD, the step
size h is typically held constant. If we want the updates of

144 Md. Rajib Arefin and M. Asadujjaman

SGD to converge very close to the global minimum with
less oscillation, we can slowly decrease the step size over
time. A typical way to do that is to set the step size ℎ as

, where and are two constants dictating the initial
step size and time to change the step size respectively10.
One needs to run the algorithm several times to determine
these constants, therefore, takes more time than usual.
However, if one can manage to have a proper estimation
of these constants, SGD would give pretty good
convergence to the global minimum. The more
sophisticated method is to use back tracking line search
method to find the optimal update. The following result8
gives more intuition of the step size (constant) choice for
SGD.

Theorem 3.1

Let > 0 & Lipschitz constant, > 0. Let be a convex
function and let ∗ ∈ argmin : ‖ ‖ (). Assume that

SGD is run for T iterations with ℎ = . Assume also

that for all , ≤ with the probability 1. Then the
output vector satisfies,

[() − (∗)] ≤
√

Therefore, for all > 0, to achieve

[() − (∗)] ≤

it is sufficient to run the SGD algorithm for a number of
iterations that satisfies,

≥

A way to choose the variable step size is by setting
ℎ = to achieve a similar bound in Theorem 3.1. The
idea is to choose the step sizes more carefully when we
are closer to the minimum of the function so as not to
“overshoot” the minimum point.

IV. Performance Comparison of GD and SGD

It is seen earlier that GD algorithm gives stable solution
of a problem, that is, it can provide solutions to the
expected accuracy. However, the algorithm is not efficient
for the larger problems. SGD works well for the problems
where solutions near the minimum is sufficient but it may
not give more accurate solutions as the iterates of SGD
usually oscillate around the minimum. Now let us
consider a function of the form defined in (1), where

() = (−) . We choose an instance with
∈ ℝ , ∈ ℝ as random and = 100. Running both

GD and SGD for several iterations gives the following
figure which compares the performance of both
algorithms.

As = 100, running GD algorithm for a single iteration
is equivalent to running SGD for 100 iterations.
Moreover, one iteration of GD can be treated as a single

pass over the data, therefore, running SGD for 100
iterations is equivalent to a single pass over the whole
data set. Figure 4.1 represents a plot regrading the number
of passes over data versus the difference between the
functional value of the iterates and the optimum value.

Fig. 4.1 Performance comparison of GD and SGD algorithms

The optimum value is evaluated using cvx (a MATLAB
toolbox for convex optimization). We take the logarithm
of the differences so that we can observe the differences
in more narrow region. It is seen that SGD performs better
than GD up to certain passes. After that it converges very
slowly. In fact it may not converge to the exact minimum
perhaps oscillates near the minimum point. However, the
difference between the functional values of GD iterates
and optimum value is consistently decreasing which
dictates the stability of the algorithm. Therefore,
whenever low accuracy solutions are sufficient, SGD
could be a good choice but if more accurate solutions are
required GD would perform better. However, as the
problem size increases GD becomes more costly.

V. Conclusions

Minimizing the average of a large number of smooth convex
loss functions frequently arises in practice. Classical
approaches for solving these optimization problems are the
GD and SGD. However, GD becomes computationally
expensive for large problems, on the other hand, SGD is
computationally cheap but not stable. We describe both
algorithms with some theoretical results on their
convergence. Moreover, we perform numerical experiments
to compare their performance. It is observed that SGD
performs better than GD at the beginning but after some
iterations the iterates start oscillating. On the other hand,
iterates of GD consistently move towards the minimum. The
loss function we considered here is a least square function.
It would be interesting to examine the performance of these
algorithms for L2-regularized least squares as well as for
logistic regression.

Minimizing Average of Loss Functions Using Gradient Descent and Stochastic Gradient Descent 145

References

1. Bams D., T. Lehnert, and C. Wolff, 2005. Loss functions
in option valuation: A framework for model selection.
CEPR Discussion Papers 4960.

2. Bertsekas D. P., 1999. Nonlinear Programming, 2nd
edition. Athena Scientific, Belmont, MA.

3. Bottou L., 2012. Stochastic gradient descent tricks. In
Neural Networks: Tricks of the Trade (2nded.), 421–436.

4. Buja A., W. Stuetzle, and Y. Shen, 2005. Loss functions
for binary class probability estimation and classification:
Structure and applications, manuscript, available at www-
stat.wharton.upenn.edu/ buja.

5. Freund R. M., 2004. Lecture note on the steepest descent
algorithm for unconstrained optimization and a bisection-
line search method. Massachusetts Institute of Technology.

6. Konečný J. and P. Richtárik, 2013. Semi-stochastic gradient
descent methods. arXiv:1312.1666v1.

7. Schmidt M. W., N. L. Roux, and F. R. Bach, 2013.
Minimizing finite sums with the stochastic average
gradient. CoRR, abs/1309.2388.

8. Shalev-Shwartz S. and S. Ben-David, 2014. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press, New York, NY, USA.

9. https://www.coursehero.com/file/6810633/Optimization/

10. Lecture on Machine learning by Andrew Ng,
https://class.coursera.org/ml-005/lecture/preview

