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Abstract 

This paper deals with minimizing average of loss functions using Gradient Descent (GD) and Stochastic Gradient 
Descent (SGD). We present these two algorithms for minimizing average of a large number of smooth convex functions. 
We provide some discussions on their complexity analysis, also illustrate the algorithms geometrically. At the end, we 
compare their performance through numerical experiments. 
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I. Introduction  

This paper presents two basic approaches for solving an 
unconstrained optimization problem of the form, 

min
௫∈ℝ೏

 (1)                                                (ݔ)݂

where,݂(ݔ) = ଵ
௡

∑ ௜݂(ݔ)௡
௜ୀଵ  

where ௜݂ ∶ ℝௗ → ℝ, is a smooth convex function. Many 
problems in data science (e.g. machine learning, 
optimization and statistics) can be cast as loss minimization 
problems3,4,7,1,6 of the form (1).  There are several methods 
available for solving problem of the type (1). Some of these 
methods require second order derivatives of ݂(ݔ) while 
some other requires only first order derivatives. However, 
this paper will focus only on first order optimization 
algorithms, that is, the algorithms which do not require 
second order derivative of ݂(ݔ). We present two well-
known first order algorithms namely, GD and SGD, for 
solving problem of the form (1). One of the oldest and well-
known first order iterative algorithms for solving the above 
problem is GD that calculates the gradient of the function to 
have an update at each iteration. However, if the problem 
size becomes larger that is, if the number of functions 
included in the average is very large then minimizing 
average of those functions using GD would become very 
costly since it needs to evaluate the gradient of all the 
functions and consequently becomes less efficient. One 
remedy of this problem can be the use of SGD which, 
instead of considering all functions, estimates the gradient 
on the basis of a randomly chosen function in each iteration.  

The rest of the paper is organized as follows. In section II, 
we discuss GD algorithm with some theoretical results on 
their complexity analysis and illustrate the algorithm 
geometrically. In section III, we discuss SGD algorithm 
with some theoretical results on their complexity analysis 
and illustrate it geometrically. Section IV, performs 
numerical experiments to compare the performance of GD 
and SGD. Finally, we draw a conclusion in section V. 

II. Gradient Descent 

Gradient descent5 (also known as steepest descent) is an 
optimization technique for minimizing unconstrained 

multidimensional smooth convex function which starts 
with some initial parameters and performs a number of 
iterations (until expected accuracy is attained) towards the 
direction in which the value of the function decreases. 
Consider the problem (1), if ݔ =  (ݔ)݂,ො is a given pointݔ
can be approximated by the linear expansion 

ොݔ)݂             + ݀) ≈ (ොݔ)݂ + સ݂(ݔො)்݀                       (2) 

Where ݀ is small, i.e. ‖݀‖ is small. If the approximation 
in the expression (2) is good, then onewould want to 
choose ݀ so that the inner product સ݂(ݔො)்݀ is as small as 
possible. It is easy to verify that the direction 

ሚ݀ =  −
સ݂(ݔො)

‖સ݂(ݔො)‖ 

makes the smallest inner product with the gradient સ݂(ݔො). 
This follows from the inequalities: 

સ݂(ݔො)்݀ ≥ −‖સ݂(ݔො)‖‖݀‖ =  સ݂(ݔො)் ቆ
−સ݂(ݔො)
‖સ݂(ݔො)‖ቇ 

=  −સ݂(ݔො)் ሚ݀ . 

This is why, the un-normalized direction: 
ሚ݀ = −સ݂(ݔො) 

is called the direction of steepest descent at the point ݔො. 
Therefore, the idea is to take point ݔ௝  at iteration ݆, 
compute the gradient સ݂(ݔ௝) and update 

௝ାଵݔ = ௝ݔ − ℎ௝સ݂(ݔ௝) 

Where ℎ௝  is scalar step size. A natural consequence of this 
is the Algorithm of GD. 

Existing Algorithm of GD 
Step 1: Input: Initial point ݔ଴, gradient norm tolerance 

߳. 

Step 2: Set ݆ = 0 

Step 3: whileฮસ݂(ݔ௝)ฮ ≥ ߳ do 

Step 4: ݔ௝ାଵ = ௝ݔ − ℎ௝સ݂(ݔ௝) 
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Step 5: ݆ = ݆ + 1 

Step 6: end while 

Step 7: Return:ݔ௝  

Complexity Analysis of GD 

To analyze the complexity of GD algorithm, we restrict to 
the case of convex-Lipschitz functions2 as many problems 
lend themselves easily to this setting. 

Definition 2.1 

A differentiable convex function ߮ is said to have a 
Lipschitz continuous gradient, if there exists a constant 
ܮ > 0, such that 

‖સ߮(ݔ) − સ߮(ݕ)‖ ≤ ݔ‖ ܮ − ,ݔ ∀    ,‖ݕ  ݕ

Definition 2.2 

A convex function ߮ is strongly convex if and only if, 
there exist a constant ߤ > 0 such that the function 
(ݔ)߮ + ఓ

ଶ
 .ଶ is convex‖ݔ‖

Different variants of gradient descent depend on how ℎ௝  is 
chosen. Smaller step size may lingerthe computational 
time (i.e. requires lots of iterations) whereas, larger step 
size can over shoot the minimum point, it may fail to 
converge, or even diverge. Choice of step sizes depends 
on the behaviour of the function. In addition to that it can 
give an estimation on the number of iterations needed. 
Note that, gradient descent can converge to a local 
minimum, even with the fixed step size. It is observed that 
as the iterates approach a local minimum, gradient descent 
will automatically take smaller steps. Therefore, no need 
to decrease the step size over time. The following results9 

gives an estimation of the number of iterations when the 
step size is constant. 

Theorem 2.1 

Suppose ݂ has a Lipschitz continuous gradient with 
modulus ܮ. Then the Algorithm of GD with a fixed step 
size ℎ௝ = ଵ

௅
 will return a solution ݔ௝  with ฮસ݂(ݔ௝)ฮ ≤ ߳ in 

at most ܱ(1/߳ଶ) iterations. 

In addition to having a Lipschitz continuous gradient, if f 
is ߤ-strongly convex, then the rate of convergence can be 
strengthened which yields the following theorem. 

Theorem 2.2 

Consider the assumptions of Theorem 2.1. Moreover, 
assume that ݂ is ߤ-strongly convex, and let ܿ = 1 − ఓ

௅
. 

Then ݂(ݔ௝) − (∗ݔ)݂ ≤ ߳ after at most 

                      ୪୭୥((௙(௫బ)ି௙(௫∗))/ఢ 
୪୭୥(ଵ/௖) 

                             (3) 

iterations. 

If GD is applied to a problem that is not strongly convex, 
it yields a low accuracy solution within a few iterations. 
However, as the iterations progress the algorithm stalls 
and no further increase in accuracy is obtained because of 

the ܱ(1/߳ଶ) rates of convergence. On the other hand, if ݂ 
is strongly convex, then GD converges linearly in 
ܱ(log(1/߳)) iterations. It can be observed from the 
expression (3) that the number of iterations depends 
inversely on log(1/ܿ). Approximating the denominator in 
(3) as log(1/ܿ) = − log(1 − (ܮ/ߤ  ≈  hence, the ,ܮ/ߤ
algorithm requires atmost ܱ(௅

ఓ
log(1/߳)) iterations. 

Clearly, the convergence depends on the ratio ߢ =  .ߤ/ܮ
This ratiois called the condition number of a problem. If 
the problem is well conditioned, i.e., ߤ ≈  then GD ܮ
converges extremely fast. Conversely, if ߤ <<  then GD ܮ
requires many iterations. Since GD calculates the gradient 
of n component functions per iteration, total complexity 
of the algorithm becomes ܱ(݊ߢ log(1/߳)). 

Now if we do not want to use a constant step size for 
every iteration, then one can use the well known exact 
line search strategy2 to get a proper step size. This strategy 
solves the following optimization problem for each 
iteration: 

min
௛வ଴

௞ݔ)݂ − ℎસ݂(ݔ௞)) 

However, it is not always easy to solve this problem, 
specially when the function is non linear. In that case, 
inexact methods are commonly used in practice. These 
methods do not solve the problem exactly but estimate a 
good step size instead. However, we skip these methods 
as they are beyond the scope of this dissertation. Figure 
2.1 illustrates the algorithm geometrically. 

 

Fig.૛. ૚ An illustration of the GD algorithm. The function to be 
minimized is ݂(ݔ) = ଵ

௡
∑ ଵ

ଶ
௡
௜ୀଵ ൫ܽ௜

ݔ் − ܾ௜൯ଶ, where ݔ ∈ ℝଶ and 
ܽ௜ ∈ ℝଶ, ܾ௜ ∈ ℝ are chosen arbitrarily. 

In every iteration of GD, the iterates are pointing toward 
the greatest decrease of the function. Consequently, the 
algorithm shows a faster convergence. However, the 
algorithm becomes computationally expensive as the 
problem size increases. In that case, the well-known 
Stochastic Gradient Descent (SGD) is found to be more 
efficient than GD algorithm. 
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III. Stochastic Gradient Descent 

The Stochastic Gradient Descent3 (SGD) is a commonly 
used algorithm for minimizing an objective function that 
is written as the sum of differentiable functions such as, 
(1). It is drastic simplification of GD algorithm as it 
requires to compute the gradient of a single component 
function among all the admissible functions whereas, GD 
algorithm considers all the component functions to have a 
full gradient at each iteration. The idea of the algorithm is 
to choose a function randomly in every iteration and only 
compute the gradient of that function. Therefore, SGD 
picks a function ௜݂  randomly from ݊ component functions 
at each iteration and update 

௝ାଵݔ = ௝ݔ − ℎ௝સ ௜݂൫ݔ௝൯, ݅ ∈ {1, 2, 3, . . . , ݊} 

Clearly, this strategy reduces the amount of work 
drastically in each iteration because the complexity per 
iteration is now only 1. The following algorithm is a basic 
version of SGD. 

Existing Algorithm of SGD 
Step 1: Input: Initial point ݔ଴, gradient norm                  

tolerance ߳. 

Step 2: Set ݆ = 0 

Step 3: whileฮસ݂(ݔ௝)ฮ ≥ ߳ do 

Step 4: Choose a function ௜݂(ݔ) randomly  

            (uniform) 

Step5: ݔ௝ାଵ = ௝ݔ − ℎ௝સ ௜݂(ݔ௝) 

Step 6: ݆ = ݆ + 1 

Step 7: end while 

Step 8: Return: ݔ௝ 

Since, ۳(સ ௜݂(ݔ௝)) = સ݂(ݔ௝), we have an unbiased 
estimator of the gradient (full gradient). Therefore, the 
gradients of the component functions ଵ݂, ଶ݂, . . . , ௡݂  are 
referred to as stochastic gradients12. 

Complexity Analysis of SGD 

The consecutive stochastic gradients may vary a lot or 
even point in opposite directions from the minimum point. 
Therefore, the convergence can be slow. The algorithm 
inherits the following convergence result3: 

(௝ݔ)݂ − (∗ݔ)݂ ≤ ܱ(1/݆)  if ℎ௝ = 1/݆, 

which depicts the slow convergence rate of SGD. 
Convergence results of SGD require step sizes satisfying 
the conditions ∑ ℎ௝

ଶ
௝ < ∞ and ∑ ℎ௝௝ = 0. The convergence 

speed is in fact limited by the noisy approximation of the 
true gradient. When the step sizes decrease too slowly, the 
variance of the parameter estimate ݔ௝  decreases equally 
slowly. When the step sizes decrease too quickly, the 
expectation of the parameter estimate ݔ௝  takes a very long 
time to approach the optimum3. Usually iterates of SGD 
keep oscillating around the minimum of ݂(ݔ) but in 

practice, most of the values near the true minimum would 
be reasonably good approximations. Situations where low 
accuracy solutions are sufficient, i.e. small number of full 
gradient evaluations are sufficient to find an acceptable ݔ, 
SGD works very well comparing to GD. That is why, 
SGD is extremely popularin the field of machine 
learning6. To be precise, in machine learning, usually a 
small number of passes over the data, which is actually 
the work equivalent to a small number of full gradient 
evaluations, are enough to get an acceptable solution. 

In machine learning, the functions ௜݂(ݔ) in (1) are called 
loss functions which measure how well (or how poorly) 
the hypothesized function performs. The cost function 
 is then the average of the loss function. The (ݔ)݂
computation of such a cost function takes a time 
proportional to the number of examples n. Since GD 
considers the complete cost function ݂(ݔ) at every 
iteration; as ݊ becomesvery large, it would require a huge 
amount of efforts. The stochastic gradient instead updates 
the learning system, i.e. ݔ௝  on the basis of a single loss 
function. The algorithm works because the averaged 
effect of these updates is the same. Although the 
convergence can be much more noisy, the elimination of 
the constant ݊ in the evaluation of cost function can be a 
huge advantage for large scale problems. 

 

Fig.૜. ૚ An illustration of the SGD algorithm. The function to 
be minimized is ݂(ݔ) = ଵ

௡
∑ ଵ

ଶ
௡
௜ୀଵ ൫ܽ௜

ݔ் − ܾ௜൯ଶ, where ݔ ∈ ℝଶ and 
ܽ௜ ∈ ℝଶ, ܾ௜ ∈ ℝ are chosen arbitrarily. 

 

Figure 3.1 show how SGD behaves geometrically. The 
same function (as in GD) is used to see how the iterates of 
SGD converge to the minimum. Cleary the iterates are not 
always pointing toward the greatest decrease of the 
objective function, consequently, showing noisy updates. 

Step Size Choice 

Choosing the proper step size and changing its value over 
time can be challenging in SGD. In most SGD, the step 
size h is typically held constant. If we want the updates of 
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SGD to converge very close to the global minimum with 
less oscillation, we can slowly decrease the step size over 
time. A typical way to do that is to set the step size ℎ as 

௔
௛ା௕

, where ܽ and ܾ are two constants dictating the initial 
step size and time to change the step size respectively10. 
One needs to run the algorithm several times to determine 
these constants, therefore, takes more time than usual. 
However, if one can manage to have a proper estimation 
of these constants, SGD would give pretty good 
convergence to the global minimum. The more 
sophisticated method is to use back tracking line search 
method to find the optimal update. The following result8 
gives more intuition of the step size (constant) choice for 
SGD. 

Theorem 3.1 

Let ܤ > 0 & Lipschitz constant, ܮ > 0. Let ݂ be a convex 
function and let ݔ∗ ∈ argmin௫: ‖௫ ‖ஸ஻  Assume that .(ݔ)݂

SGD is run for T iterations with ℎ = ට ஻మ

௅మ்
. Assume also 

that for all ݆, ݔ௝ ≤  with the probability 1. Then the ܮ
output vector ݔ෤ satisfies, 

(෤ݔ)݂]۳ − [(∗ݔ)݂ ≤
ܮܤ
√ܶ

 

 

Therefore, for all ߳ > 0, to achieve 

(෤ݔ)݂]۳ − [(∗ݔ)݂ ≤ ߳ 

it is sufficient to run the SGD algorithm for a number of 
iterations that satisfies, 

ܶ ≥
ଶܮଶܤ

߳ଶ  

A way to choose the variable step size is by setting 
ℎ௝ = ஻

௅ඥ௝
 to achieve a similar bound in Theorem 3.1. The 

idea is to choose the step sizes more carefully when we 
are closer to the minimum of the function so as not to 
“overshoot” the minimum point. 

IV. Performance Comparison of GD and SGD 

It is seen earlier that GD algorithm gives stable solution 
of a problem, that is, it can provide solutions to the 
expected accuracy. However, the algorithm is not efficient 
for the larger problems. SGD works well for the problems 
where solutions near the minimum is sufficient but it may 
not give more accurate solutions as the iterates of SGD 
usually oscillate around the minimum. Now let us 
consider a function of the form defined in (1), where 

௜݂(ݔ) = ଵ
ଶ

(ܽ௜
ݔ் − ௜ܾ)ଶ. We choose an instance with 

ܽ௜ ∈ ℝଶ, ௜ܾ ∈ ℝ as random and ݊ = 100. Running both 
GD and SGD for several iterations gives the following 
figure which compares the performance of both 
algorithms. 

As ݊ = 100, running GD algorithm for a single iteration 
is equivalent to running SGD for 100 iterations. 
Moreover, one iteration of GD can be treated as a single 

pass over the data, therefore, running SGD for 100 
iterations is equivalent to a single pass over the whole 
data set. Figure 4.1 represents a plot regrading the number 
of passes over data versus the difference between the 
functional value of the iterates and the optimum value. 

 

Fig. 4.1 Performance comparison of GD and SGD algorithms 

The optimum value is evaluated using cvx (a MATLAB 
toolbox for convex optimization). We take the logarithm 
of the differences so that we can observe the differences 
in more narrow region. It is seen that SGD performs better 
than GD up to certain passes. After that it converges very 
slowly. In fact it may not converge to the exact minimum 
perhaps oscillates near the minimum point. However, the 
difference between the functional values of GD iterates 
and optimum value is consistently decreasing which 
dictates the stability of the algorithm. Therefore, 
whenever low accuracy solutions are sufficient, SGD 
could be a good choice but if more accurate solutions are 
required GD would perform better. However, as the 
problem size increases GD becomes more costly.  

V. Conclusions 

Minimizing the average of a large number of smooth convex 
loss functions frequently arises in practice. Classical 
approaches for solving these optimization problems are the 
GD and SGD. However, GD becomes computationally 
expensive for large problems, on the other hand, SGD is 
computationally cheap but not stable. We describe both 
algorithms with some theoretical results on their 
convergence. Moreover, we perform numerical experiments 
to compare their performance. It is observed that SGD 
performs better than GD at the beginning but after some 
iterations the iterates start oscillating. On the other hand, 
iterates of GD consistently move towards the minimum. The 
loss function we considered here is a least square function. 
It would be interesting to examine the performance of these 
algorithms for L2-regularized least squares as well as for 
logistic regression. 
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