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Abstract 

In this paper we have proposed a Weibull Markov renewal process to model earthquakes occurred in and around Bangladesh from 1961 to 
2013. The process assumes that the sequence of earthquakes is a Markov chain and the sojourn time distribution is a Weibull random variable 
that depends only on two successive earthquakes. We estimated the parameters of the models along with transition probabilities using 
maximum likelihood method. The transient behavior of earthquake occurrences was investigated in details and probability forecasts were 
calculated for different lengths of time interval using the fitted model. We also investigated the stationary behavior of earthquake occurrences 
in Bangladesh region. 
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I. Introduction 

Bangladesh has become tectonically active due to its 
position adjacent to the very active Himalayan front and 
continuing deformation in nearby parts of South-east Asia. 
The country is exposed to strong shaking from a variety of 
earthquake sources that may produce tremors of magnitude 
8 or greater on Richter scale. Therefore, many cities of 
Bangladesh are vulnerable to major earthquake disaster 
(Cummins1; Sarker et al. 2). 

In Bangladesh, devastating large earthquakes occur less often. 
Nevertheless, if it occurs, it may affect larger areas and have 
substantial long-term economic effects. On the contrary, 
moderate sized earthquakes occur in every few years. 
Thereupon, the government has given special emphasis on 
growing awareness about earthquake among mass people. 
The government has also improved the national earthquake 
monitoring system. However, practically the country is still 
far behind from the least preparedness level to face such a 
hazard. This study has developed a forecasting model based 
on a stochastic counting process approach deeming the 
earthquakes occurred in and around Bangladesh during the 
period of 1961 to 2013. 

Earthquake modeling and forecasting through stochastic 
processes have received immense attention in the past 
couple of years (e.g., Vere-Jones3; Ogata4,Ogata5, Ogata6; 
Zhuang et al. 7; Ogata et al. 8; Schoenberg9; Alvarez10; 
Garavaglia and Pavani11). Ogata5 investigated trigger and 
epidemic type models for evaluating aftershock sequences 
emerging from earthquakes using a Japanese data set. 
Subsequently, adding the spatial components, i.e. latitude 
and longitude, Ogata6 proposed a point-process model for 
earthquake occurrences. Zhuang et al.7 proposed a space-
time branching process model to decluster earthquake 
occurrences. Besides these intensity based models, Markov 
renewal models have also become popular for modeling 
earthquake occurrences (e.g., Alvarez10; Garavaglia and 
Pavani11). A sequence of earthquakes for a given seismic 
region can be modeled by either Poisson or renewal model. 
Since the Poisson process is inherently memory-less, it may 
not be appropriate to capture the characteristics of 
earthquake occurrences. A Markov renewal process is 
preferable as it assumes that the sequence of earthquakes is 

pertained to the phases of accumulation and release of 
energy characterizing a given seismogenetic source. 
Therefore, a Markov renewal model fits this conjecture 
better in comparison with other approaches available in the 
literature. The physics of earthquake generation states that 
the risk of an immediate strong earthquake increases after a 
certain elapsed time. Under these assumptions, Alvarez10 
developed a Markov Renewal model to forecast earthquakes 
in Turkey assuming stationarity of the process. While 
emphasizing on transient forecasting of earthquakes in 
Turkey, Garavaglia and Pavani11 proposed a modified version 
of the Markov renewal model developed by Alvarez11. 
Markov renewal models have also been employed in many 
areas, for instance, in natural hazards analysis (Foufoula-
Georgiou and Lettenmaier12; Asaduzzaman and Latif13), 
survival analysis (Dabrowska et al. 14), transportation (Gilbert 
et al. 15), engineering (Ghosn and Moses16), etc. 

In this paper, we have developed a stationary Weibull 
Markov renewal model to forecast earthquake occurrences 
in Bangladesh. The following section narrates the Markov 
renewal chain (MRC), the Weibull Markov renewal model 
and its likelihood construction and parameter estimation. A 
brief description about source of data, variables and 
exploratory analyses of the variables is given in section 3. A 
Weibull MRP model is fitted using the data and results are 
discussed in section 4. The detailed probability forecasts of 
earthquake occurrences are specified and asymptotic 
properties are also demonstrated in this section. Finally, 
some concluding remarks are mentioned in section 5. 

II. Markov Renewal Chain 

Consider a random system that evolves in time and visits 
some states from a finite state space � = �1, … , �	. Let  
 =  �
� ∶ � ≥ 0	 be a chain with state space � which 
represents the system state at the nth jump, and � =��� ∶ � ≥ 0	 to be the time until the nth jump has occurred 
with � ∈ �. We suppose that  �� = 0 and 0 < �� < �� <. . . < �� < ���� … We define  �� = �� − ���� for all � ≥ 0, and  �� = 0 as such the random variable � =��� ∶≥ 0	 is the sojourn time in state 
��� before the nth 
jump. The process �ℐ, �� = ��
� , ��� ∶ � ≥ 0	 is said to be 
a Markov renewal chain (MRC) for all � ≥ 0, �, � ∈ Ε, 
and �� ∈ ℛ�  if it satisfies the following condition 
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 ℙ#
��� = �, ���� − �� = $���%
�,…,
�; ��,…,��'= ℙ�
��� = �, ���� − �� = $���|
� = �� 
 
Assuming �
, �� as a homogeneous Markov renewal chain, 
we see that  �
� ∶ � ≥ 0	  is also a homogeneous Markov 
chain known as the embedded Markov chain (EMC) 
associated with the MRC �
, ��. The transition probability 
matrix of 
�, denoted by ) = *#)��', �, � ∈ Ε+, is defined as 
follows:    )��: = ℙ�
��� = �|
� = ��, �, � ∈ -, � ≥ 0, 
 
Assuming that the process is homogeneous by time and 
aperiodic (i.e. ergodic), there exists one and only one 
stationary distribution . = #.�,…,.ℳ' where 
 .0 = lim4→6 ℙ�
� = �|
� = 7� = lim4→6 )����� 
is independent of i. Then .0 is the unique non-negative 
solution of 

.� = 8 .09��
ℳ

0:�
, 8 .0 = 1,

;

0:�
  7, < ∈ �.                            �1� 

In MRC, we are interested in two types of sojourn time 
distributions: the conditional distributions depend on the 
next state to be visited and the sojourn time distributions in a 
given state. The conditional distributions of sojourn times 
can be given by 

1. =>0�∙�, the conditional distribution of @4��, =>0�A4��� = ℙ�@4�� = A4��|
4 = 7, 
4�� = <�, 
and 

2. B>0�∙�, the conditional cumulative distribution of @4��, B>0�$4��� = ℙ�@4�� ≤ $4��|
4 = 7, 
4�� = ��
= 8 =>0�D�.

E

F:�
 

Let G = �G�H�; I ∈ J�be the cumulative semi-Markov 
kernel defined, for all 7, < ∈ � and K ∈ �,by 

L>0�K� = ℙ�M��� = <, @4�� ≤ K|M4 = 7� = 8 N>0�D�
E

F:�
. 

Then we obtain, =>0�K� = OPQ�E�
RPQ , )>0 ≠ 0                           �2� 

 
Using equation (2) the semi-Markov kernel verifies the 
following relation 
 N>0�K� = 9>0=>0�K�,  For all 7, < ∈ � and K ∈ ℕ such that  )>0 ≠ 0.                                                                                        �3�  

 
The sojourn time distributions in a given state is given by 
 

1. ℎ>�∙�, the sojourn time distribution in state 7, ℎ>�A4��� ∶= ℙ�@4�� = A4��|M4 = 7� 
and 
 

2. X>�∙�, the sojourn time cumulative distribution in 
state 7, 

X>�A4��� ∶= ℙ�@4�� ≤ A4��|
4 = 7� = 8 ℎ>�D�.
E

F:�
 

Now using the conditional expectation, we can express the 
unconditional distribution functions in terms of the 
conditional distribution functions (see Pyke17; Limnios and 
Oprian18 for details) in simplified notation as follows: 

X>�A� = 8 )>0B>0�A�
;

0:�
.                               �4� 

 
The means of the conditional �Z>0� and unconditional �[>� 
distributions of sojourn times can be expressed respectively 
as follows Z>0 = \ A]B>0�A� and  [> = \ A]X>�A�;  7, < = 1, … , � 
The equation (4) leads to the following relation: 

                               [> = 8 )>0Z>0 .
;

0:�
                                          �5� 

Likelihood Estimation of Weibull Markov Renewal Model 

Let #<�, <�, A�, … , A_��, <_, A_' be a realization of the Markov 
renewal process over the time window `0, ab, where c 
represents the number of states visited during `0, ab and 
_ 
indicates the last event. The sojourn time between the last 
event and a is A_ that can be treated as censored, i.e. A_ >`a − �A� + ⋯ + A_���b. Then the conditional likelihood, 
given
 � = <g, can be expressed using equation (3) as 
follows 

h�<�� = ij )0P,0Pkl=0P,0Pkl�A>���_��

>:�
m ∙ 8 )0nE

o

E:�
p1 − B0nE�A_�q. 

The corresponding log-likelihood function can be expressed 
by the following equation 

D�<�� = 8 ln#)0P,0Pkl' + 8 lnp=0P,0Pkl�A>���q
_��

>:�

_��

>:�
+ ln i8 )0n,E#1 − B0n,E�A_'

o

E:�
m .               �6� 

 

We have chosen the Weibull distribution to model inter-

occurrence times of earthquakes due to having the capability 

of generalization that makes it able to examine the fit of the 

nested sub- models. For a Weibull MRP, the probability 

density function of inter-occurrence times for transition from 

7 to < are given by 

=>0�A� = tPQuPQ vwPQuPQxtPQ��
exp yv− wPQuPQxtPQz,   {>0 , |>0 > 0, 7, < ∈

�1,2, … , �	.                                                                                   �7� 

where {>0 and |>0  are shape and scale parameters, 
respectively. Using equation (7) in equation (6), we obtain 
the conditional log-likelihood function of a Weibull Markov 
renewal model that takes the following form 
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D�<�� = ∑ ln )>0 +_��0:� ∑ ln �tPQuPQ vwPQuPQx
tPQ��� − ∑ vwPQuPQx

tPQ  +_��>:�_��>:�
              lnK=1�)<c, Kexp−Ac|<c,K{<c,K                                        
(8) 

The maximum likelihood estimates of the parameters )>0, {>0 and |>0 are obtained by maximizing the conditional log-
likelihood function given in equation (8). 

Probability of Occurring an Event during a Time Interval 

Once a Markov renewal model is fitted, it is possible to 
forecast the probability that the next state of the process is < 
after time �∗ being known that the last state was 7 and the 
time  �� passed by the last occurred event. Under these 
postulates, the probability of the next event can be given by 
 

ℙ��∗ , <|��, 7� = ℙ�
4�� = <,  @4�� < �� + �∗|M4 = 7, @4�� ≥ ���  
                        7, < ∈ �1,2, … , �	              (9) 

where M4 is the state of the last event, M4�� is the state of the 
next event, @4�� is the time already passed by the last 
occurrence to the moment at which the forecast is made, �∗is 
the time period for which the forecast would be obtained. 
Therefore, equation (9) becomes 
 

ℙ>0���,����∗� = p�PQ�����∗���PQ����qRPQ∑ `���P�����bRP����l .                     (10) 

Average Recurrence Time 

The expected number of steps to return to the state < for the 
first time, starting from the same state < is defined as the 
mean recurrence time for the state <. The mean return time 
of a Markov renewal process for state 7 can be obtained by 

)> = 1.> 8 .E[E.                                                                 �11�
o

E:�
 

Where [E , K = 1,2, … � is defined in equation (5), and . = �.�, … , .;� is the unique stationary distribution of the 
embedded Markov chain  �M4, � ≥ 0	. 
III. Data Source, Variables and Exploratory Statistics 

The data used in this study were collected from Advanced 
National Seismic System (ANSS) catalog which is hosted by 
the Northern California Earthquake Data Center (NCEDC – 
http://www.ncedc.org/anss/cata log-search.html). The earth-
quakes occurred in Bangladesh and its surrounding area 
(18°N – 29°N Latitude and 86° E – 95° E Longitude) during 
the period of 1961 to 2013 were taken into account to model 
earthquake occurrences.  

Table 1. Frequency distribution of earthquakes 

Type Symbol Magnitude(Mb) Number of 
earthquakes 

Small S < 4.5 875 

Medium M 4.5 - 5.75 693 

Large L > 5.75 28 

Total   1596 

The number of earthquakes in the aforementioned period 
was 1596. We have mainly focused on two variables, 
namely, the inter-event time (the time interval between two 
successive events) and magnitude measured in terms of body 
wave magnitude scale. The body wave magnitude ���� 
refers to the way of determining the size of an earthquake 
using the amplitude of the initial P-wave to calculate the 
magnitude. In general, this measurement scale of magnitude 
is used to calculate the severity of those earthquakes which 
are measured at distances greater than 600 km.  

In accordance with the severity measured on ��, we define 
earthqaukes of our dataset into three categories: small 
earthquakes��� ≤ 4.5�, medium earthquakes�4.5 < �� <5.75 and large earthquakes ��>5.75. According to this 
classification, the data contain 875 small earthquakes, 693 
medium earthquakes and 28 large earthquakes (Table 1). 
The magnitudes of earthquakes are plotted against time in 
Fig 1. The histogram of magnitude of earthquakes (Fig 2) 
shows that moderate size earthquakes occurred frequently in 
Bangladesh. 

 
Fig. 1. Histogram of magnitude of earthquakes 

 
Fig. 2. Plot of magnitudes of earthquakes against time 

The following matrices present the number of observed 
transitions from one state to another state and mean inter-
occurrence times (rounded in days): 

Number of transitions = SML
S    M   L

�559 307 8307 369 178 17 3  , 

 Mean inter– occurence times = SML
S  M  L

�10 12 1115 17 2611 18 43  
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It is observed from the transition matrix that maximum 
transitions occurred in state S to S and minimum number of 
transitions occurred in state L to L. Consequently, 
inter-occurrence time became shorter between two smaller 
earthquakes (S→S) whereas it became longer between two 
large earthquakes (L→L). 

IV. Fitting an MRC and Forecasting Earthquakes

We have provided some descriptive measures in the 
previous section to understand the nature of earthquake 
occurrences in Bangladesh. The following assumptions are
made while fitting an MRC to our dataset. 

1. The sequence of earthquakes is a Markov chain and 
the inter-occurrence time depends only on the types 
of the last and the next event; 

2. sojourn or inter-occurrence time is a random variable 
which follows Weibull distribution; and

3. The longer the inter-occurrence time for transition 
from the state i to the state j is, the higher the 
probability that the transition happens. 

The definition of the states visited by the process during its 
evolution is required to know to apply a Markov renewal 
model. In this study, three different states have been defined 
based on the severity of earthquakes: small (S) earthquakes 
with magnitude less equal to 4.5, medium (M) earthquakes 
with magnitude ranging from 4.5 to 5.75 and large (L) 
earthquakes with magnitude greater equal to 5.75. These 
three states S, M and L constitute the Markov chain of the 
Markov renewal process. With a view to satisfying the 
above assumptions made, we have opted to treat the process 
from a parametric perspective by proposing that inter
occurrence times follow Weibull distribution with specific 
scale and shape parameters depending on the type of 
transitions. Owing to three types of earthquake category (S, 
M, L) = {1,2,3}, the number of possible transitions is nine. 

Table 2. Tests for a sequence of nested models

Model Description Number of 
parameters 

log 

Weibull 
MRC 

(Model 1) 
Full Weibull 24 -1406

Reduced 
Weibull 
MRC 

(Model 2) 

{��= {�� ={�� = {��= {�£ and {£� ={£� ={££ 
18 -1410

Reduced 
Weibull 
MRC 

(Model 3) 

{��= {�� ={�� = {��= {�£; {£� ={£� ={££ and  |��= |�£ =|£� 

16 -1410

Reduced 
Weibull 
MRC 

(Model 4) 

{��= {�� ={�� = {��= {�£; {£� ={£� ={££ and 
 |��= |�£ =|£� |�� =|�� 

15 -1412

Reduced 
Weibull 
MRC 

(Model 5) 

{��= {�� ={�� = {��= {�£; {£� ={£� ={££;   |��= |�£ =|£� |�� =|�� 

14 -1418
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The definition of the states visited by the process during its 
evolution is required to know to apply a Markov renewal 
model. In this study, three different states have been defined 

the severity of earthquakes: small (S) earthquakes 
with magnitude less equal to 4.5, medium (M) earthquakes 
with magnitude ranging from 4.5 to 5.75 and large (L) 
earthquakes with magnitude greater equal to 5.75. These 

Markov chain of the 
Markov renewal process. With a view to satisfying the 
above assumptions made, we have opted to treat the process 
from a parametric perspective by proposing that inter-
occurrence times follow Weibull distribution with specific 

shape parameters depending on the type of 
transitions. Owing to three types of earthquake category (S, 
M, L) = {1,2,3}, the number of possible transitions is nine.  

Table 2. Tests for a sequence of nested models 

log L P 
value 

1406 - 

1410 0.173 

1410 0.830 

1412 0.051 

1418 <0.001 

Therefore, a full Weibull MRC model 
this study requires six parameters for transition probability 
matrix corresponding to nine transitions (the remaining 
parameters can be obtained under the 
sum equals to one), nine scale and nine shape parameters 
corresponding to nine different transitions for the inter
occurrence times. We have also fitted different models by 
reducing the number of parameters of the Weibull 
distribution. Five such important models are given in 
Table 2. 

  

Fig. 3. Comparison between empirical (step
estimated (dashed line) distributions of the inter
earthquakes 

We have performed the likelihood ratio test and p
show that Model 1 (full Weibull) can be transformed to 
Model 4 by appropriately choosing the scale and shape 
parameters. However, 6 further reduction of parameters 
(Model 5) is not feasible as it dec
significantly (p-value < 0.001). Therefore, we deem Model 4 
the best model for further analysis. A graphical comparison 
is also made to check the fit of the Weibull distributions 
through plotting empirical distributions along with the
estimated distributions of the inter
earthquakes for each transition type (Fig 3). 
line is closer to the empirical line, it may be inferred that the 
data do not contradict the choice of Model 4.Using the fitted 
model (Model 4), we obtain the following estimates of 
parameters of the transition probability matrix (TPM) P, 
shape parameters α and scale parameters 
 

P¥ = SML
S       M   

�0.640 0.3510.443 0.5320.286 0.607
 

α§ = SML
S     M  

�1.07 1.071.07 1.071.43 1.43
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model for the data used in 
this study requires six parameters for transition probability 
matrix corresponding to nine transitions (the remaining three 

 restriction that the row 
sum equals to one), nine scale and nine shape parameters 
corresponding to nine different transitions for the inter-
occurrence times. We have also fitted different models by 
reducing the number of parameters of the Weibull 

tion. Five such important models are given in    

Comparison between empirical (step-function) and 
estimated (dashed line) distributions of the inter-event times of 

We have performed the likelihood ratio test and p-values 
show that Model 1 (full Weibull) can be transformed to 
Model 4 by appropriately choosing the scale and shape 
parameters. However, 6 further reduction of parameters 
(Model 5) is not feasible as it decreases the likelihood 

value < 0.001). Therefore, we deem Model 4 
the best model for further analysis. A graphical comparison 
is also made to check the fit of the Weibull distributions 
through plotting empirical distributions along with the 
estimated distributions of the inter-event times of 
earthquakes for each transition type (Fig 3). As the fitted 
line is closer to the empirical line, it may be inferred that the 
data do not contradict the choice of Model 4.Using the fitted 

, we obtain the following estimates of 
parameters of the transition probability matrix (TPM) P, 

 and scale parameters μ. 

       L0.0090.0250.107  

   L1.941.071.43 , 
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¨�] |̂ = SML
S       M       L

� 9.88 12.37 12.3716.88 16.88 26.4312.37 20.56 46.97 . 
Fitted mean inter-occurrence times (in days) for each 
transition type are given in the following matrix 

Mean inter– occurence times�in days� = SML
S  M  L

�10 12 1116 16 2611 19 43  

The estimates of transition probabilities (P¥) show that the 
likelihood of occurring a small earthquake (S) is higher than 
that of a medium earthquake (M) or a large earthquake (L) 
given that the last event is S. We see that the next 
earthquake will be of type S with 64% chances or of type M 
with 35% chance or of type L with 0.9% chance if the last 
earthquake is a small one according to the TPM. Medium 
earthquakes (M) are more likely to occur being known that 
the last event is M or L. The stationary probabilities 
(equation 1) of a small, a medium and a large earthquake are 
55%, 43% and 2%, respectively. It may be noted that the 
mean observed inter-occurrence times nearly coincides to 
the fitted mean inter-occurrence times for each category of 
earthquakes.One of the major objectives of this study is to 
obtain the probability forecast (equation 10) of next event 
using the fitted model. The probability of occurring a 
specific type of earthquake (S/M/L), being known that the 
last earthquake was S or M or L, has been evaluated for 
different values of elapsed time ���� and time ahead ��∗�(Table 3). The probabilities of occurring an S 
immediately (t0 = 0) after the last earthquake that was an S 
are 0.369; 0.450; 0.464 and 0.467 for �∗= 15; 30; 45 and 60 
days, respectively. We see that the probability of occurring 
an S is higher than the probability of occurring an M or an L 
knowing that last event was an S for different values of �� 
and �∗. On the other hand, the probability of occurring an L 
is higher than that of an S or an M given that the last 
earthquake was an L. The situation remains the same for all 
the values of �� and �∗ considered in this study. 

Table 3. Probability of occurrence of next event for 
different t* and different t0 given the last state 

  Forecast probability 
  Last event in S Last event in M Last event in L 

t0 
t* 

(days) S-S S-M S-L M-S M-M M-L L-S L-M L-L 

0 
days 

15 0.34 0.23 0.16 0.14 0.21 0.17 0.05 0.08 0.14 
30 0.45 0.30 0.21 0.20 0.30 0.28 0.06 0.14 0.31 
45 0.46 0.32 0.21 0.22 0.34 0.34 0.07 0.17 0.46 
60 0.47 0.32 0.21 0.23 0.35 0.37 0.07 0.17 0.58 

30 
days 

15 0.39 0.24 0.21 0.15 0.23 0.19 0.06 0.13 0.26 
30 0.46 0.31 0.21 0.21 0.31 0.29 0.07 0.16 0.45 
45 0.47 0.32 0.21 0.23 0.34 0.35 0.07 0.17 0.58 
60 0.47 0.32 0.21 0.23 0.35 0.38 0.07 0.17 0.66 

60 
days 

15 0.39 0.23 0.21 0.15 0.23 0.19 0.06 0.14 0.31 
30 0.46 0.31 0.21 0.21 0.31 0.30 0.07 0.17 0.51 
45 0.47 0.32 0.21 0.23 0.34 0.36 0.07 0.17 0.63 
60 0.47 0.32 0.21 0.23 0.35 0.40 0.07 0.17 0.69 

The forecast probabilities that the transition of the type M to 
M will happen within 15 and 30 days immediately after the 
last event that was an M are 0.209 and 0.301, respectively. 
The probability of occurring an M is higher than that of an S 
or an L when the last earthquake was an M for �� = 0 and  �∗ = 15 and 30. For �� = 0 and �∗ = 15 and 60, the 

probability of occurring an L is higher than that of an S or an 
M when the last event was an M. Both situations remain the 
same for �� = 30and 60 days.  

Table 4. Probability of occurrence of next event 
evaluated for different t* with t0=45 days given last event 
was an S 

Forecast probability 

t* S-S S-M S-L 

15 days 0.391 0.246 0.209 

30 days 0.455 0.305 0.209 

45 days 0.466 0.320 0.209 

60 days 0.467 0.323 0.209 

It is observed that the likelihood of occurring any type of 
earthquake goes high with the increase of �∗. In accordance 
with our data set, the last earthquake occurred was an S. 
Therefore, it would be interesting to forecast the next event 
given that the last event was an S for different values of �∗and �� = 45 since 45 days have been elapsed since the last 
earthquake. Results are presented in Table 4. The probability 
of occurring an S within the next 15 days is the highest 
which is 0.391 given that the last event was a small 
earthquake (S).The corresponding probabilities of happening 
an M and an L are 0.246 and 0.209, respectively and the 
situation remains the same for �∗ = 30, 45 ¨�] 60 days. 

The average recurrence times (equation 11) for each type of 
earthquake (S/M/L) using Markov renewal model have been 
computed (Table 5). The results indicates that the mean 
recurrence period for a large earthquake is the highest which 
is about 2 years and it becomes the lowest for a small 
earthquake(24 days) . 

Table 5. Recurrence periods for each type of earthquake 

Types of 
earthquake 

  Average recurrence period (in days) 

Small (S) 24 

Medium (M) 31 

Large (L) 758 

V Conclusions 
Earthquake occurrence has become a great threat for 
Bangladesh as several major cities of the country are 
exposed to high risk of large earthquakes. A Weibull 
Markov renewal model has been proposed to capture the 
earthquake occurrences in Bangladesh. The model is capable 
of testing several nested hypotheses, for instance, whether 
the process can further be reduced to a sub-model. An 
optimal model has been chosen to obtain probability 
forecasts of different types (small, moderate or large) of 
earthquakes for various lengths of time interval using the 
dataset of earthquakes occurred from 1961 to 2013. The 
results indicate that the probability of occurring moderate 
earthquakes is considerably high in the Bangladesh area. 
Furthermore, the country has also a high risk of occurring 
large earthquakes in every two years. We believe that the 
results emerged from this paper would be helpful to the 
planners for drawing inference and taking necessary 
measures to face earthquake hazards. 
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