
Dhaka Univ. J. Sci. 65(2): 91-96, 2017 (July) 
 

* Author for correspondence. e-mail:  nepal@du.ac.bd    

Natural Convection Flow of MHD Micropolar Fluid Along a Vertical Wavy Surface  
S. Sultana and Nepal C. Roy* 

Department of Mathematics, Dhaka University, Dhaka-1000, Bangladesh 

(Received: 18 July 2016; Accepted: 2 March 2017) 

Abstract 

We study the boundary layer characteristics of natural convection flow of an electrically conducting micropolar fluid along a vertical wavy 
surface. The dimensionless governing equations have been solved numerically. Results are presented in terms of the local skin-friction 
coefficient, the local Nusselt number and the local couple stress with the variation of amplitude-wavelength ratio, magnetic parameter, 
vortex viscosity parameter and spin-gradient viscosity parameter. Due to increase of the amplitude wave-length ratio, the skin-friction and 
the couple stress are found to decrease whereas the Nusselt number increases. The skin friction and the couple stress increase but the 
Nusselt number decreases for increasing values of vortex viscosity parameter. In addition, when the spin-gradient viscosity is increased, the 
maximum values of the Nusselt number and the couple stress significantly increase but the skin-friction decreases. The magnetic parameter 
considerably reduces the skin-friction, Nusselt number and couple stress. 

I. Introduction 

The fluids with microstructures are called micropolar fluids. 
These belong to a class of fluids with non-symmetric stress 
tensor. Physically, this fluid consists of rigid, randomly 
oriented particles with their own spins and micro rotations, 
suspended in a viscous medium. Micropolar fluids have 
attracted much attention of many researches due to their 
industrial and engineering applications. Examples of 
micropolar fluids are ferrofluids, polymeric fluids, liquid 
crystals, animal blood, dirty oils, exotic lubricants, colloidal 
suspensions and so on. 

The Navier-stokes equations of Newtonian and non-
Newtonian theory cannot explain the characteristics of several 
physiological fluids which exhibit microscopic effects arising 
from the local structures and micromotions of the fluid 
elements. For this reason, many constitutive models have been 
suggested by several researchers. Among these models the 
theory of micropolar fluids and thermomicropolar fluids 
developed by Eringen1,2 has attracted considerable attentions. 
Ariman et al.3,4 provided an excellent review about micropolar 
fluid mechanics. However, Yao5 used the transformation 
method to study the natural convection flow along a 
sinusoidal wavy surface. Chiu and Chou6 investigated the free 
convection in the boundary layer flow of a micropolar fluid 
along a vertical wavy surface. A simple transposition theorem 
and cubic spline collocation numerical method have been used 
to solve the governing equations. They observed that 
increasing the micropolar fluid parameter results in decreasing 
heat transfer rates and increasing local skin friction as well as 
hydrodynamic and thermal boundary layer thicknesses. Also, 
transient analysis of natural convection along a vertical wavy 
surface in micropolar fluids has been studied by Chiu and 
Chou7. Moreover, Ishak et al.8 studied MHD stagnation-point 
flow of a micropolar fluid with prescribed wall heat flux. A 
steady two-dimensional MHD mixed convection flow of 
micropolar fluid toward a stretching/shrinking vertical surface 
with prescribed surface heat flux has been examined by 
Adhikari9. 

The objective of the present work is to analyze the natural 
convection flow along a vertical wavy surface in the 
presence of magnetic field. The governing equations are first 
transformed into a non-dimensional form by using 
appropriate non-dimensional variables. These equations are 
then transformed into a system of non linear partial 
differential equations and finally the equations are solved 

numerically by using finite difference method. Numerical 
results of local skin-friction coefficient, local Nusselt 
number and local couple stress under the effect of 
amplitude-wavelength ratio, magnetic parameter, vortex 
viscosity parameter and spin-gradient viscosity parameter 
are presented. 

II. Mathematical Formulation 

We consider a vertical wavy surface immersed in a 
micropolar fluid at the ambient temperature T∞. The 
schematic diagram of the flow configuration is shown in Fig. 
1. It is assumed that the surface temperature of the wavy 
plate, Tw, is greater than the ambient temperature, T∞. We 
also consider that the surface is described by 

( ) ( )sin 2y x a x Lσ π= =  where a is the dimensional 

amplitude of wavy surface, L the characteristic length scale 
associated with the waves and the origin of the coordinate 
system is placed at the leading edge of the vertical surface. 

 

Fig. 1. Schematic diagram of the flow 

Let us consider a two-dimensional, steady, laminar, 
incompressible micropolar fluid flow along a vertical wavy 
surface. Following6, the dimensionless governing equations 
for such a flow in the presence of magnetic field can be 
expressed as: 
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and Pr = ν/α is the Prandtl number, 

( ) 2 3 2
T wGr g T T Lβ ρ µ∞= −  is the Grashof number, 

2 1 2 2
0cM B LGrσ ρ−=  is the dimensionless magnetic 

parameter, K κ µ=  is the vortex viscosity parameter, 

( )2 1 2B L jGr=  is the material parameter and 

( )jλ γ µ=  is the spin-gradient viscosity parameter.  

In the above variables and parameters, u and v are the 
velocity components in the x and y directions respectively, T  

is the temperature of the fluid, p is the pressure,cσ is the 

electrical conductivity, D is the diffusivity, ρ is the density 

of the fluid, N is the component of the micro-rotation vector 
normal to the xy-plane, γ  is the spin gradient viscosity, κ  

is the thermal conductivity and g is the acceleration due to 
gravity.  

It should be mentioned that equation (11) indicates that 

p y∗ ∗∂ ∂  is of order 41Gr , which implies that the lower 

order pressure gradient along the x  axis is determined from 
the inviscid solution. However, for the present problem this 

gives 0p x∗ ∗∂ ∂ = . Further, we multiply equation (11) by 

σ ′ and the resulting equation is added to equation (10) in 

order to eliminate the term ( )1 4Gr p y∗ ∗∂ ∂  from 

equations (10) and (11). After some manipulation, we get 
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The boundary conditions become 

at 0=y , 0u∗ ∗= =v  and ( )1 21
2

u
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 (8)

at ∞=y , 0* =u , 0=θ  and  * 0h =  (9)

We use the following transformation to remove the 
singularity 
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where ψ is the stream function which is defined by 

( ) ( ), ,u y xψ ψ= ∂ ∂ − ∂ ∂v . The above mentioned 

equation then become 
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subject to the boundary conditions 

0, 1f f θ′= = =  and ( )1 21
2

H fσ ′ ′′= − +
   

at Y = 0
 

(14)

0, 0 0andf Hθ′ = = =  as Y → ∞ (15)

Here primes denote differentiation with respect to Y. The 
equations (11)-(15) have been solved employing finite 
difference method10.  

The local skin-friction, the local Nusselt number and the 
local couple stress are of great physical importance and these 
are defined respectively as 
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where ( )1 2U Gr Lµ ρ=%  is a characteristic velocity and 

the shearing stress on the wavy surface is 

Substituting the relations (6) and (10) into equation (16), we 
have 
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III. Results and Discussion 

The present problem that accounts for the effect of magnetic 
field on the local skin-friction, local Nusselt number and 
local couple stress of an incompressible micropolar fluid 
over a vertical wavy surface has been solved numerically. 
Numerical calculations are accomplished for the vertical 

wavy surface prescribed by ( ) ( )sin 2x a x Lσ π= ⋅ or in 

dimensionless form ( ) ( )sin 2X Xσ α π= ⋅  where α = a/L 

is the amplitude-wavelength ratio. The values of the 
parameters are taken as Pr = 0.1, λ = 13.5, α = 0.05, M = 0.5, 
K = 5.0 except the variation of one of them. 

The effects of the amplitude-wavelength ratio, α, on the local 
skin-friction coefficient, the local Nusselt number and the 
local Sherwood number are shown in Fig. 2(a), (b) and (c) 
respectively. From Figs. 2(a) and (c), it is seen that, with the 
increase of α, the skin-friction coefficient and the couple 
stress fluctuate with higher amplitudes. However the 
maximum values of skin-friction coefficient and the couple 
stress decrease with increasing values of α. On the other 
hand, we observe from Fig. 2(b) that the amplitude of the 
local Nusselt number becomes higher for higher α. It is 
because higher value of amplitude-wavelength ratio hinders 
the flow field that results in decrease to the drag coefficient 
and the couple stress.   
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Fig. 2. Effects of the amplitude-wavelength ratio, α, on the (a) local 
skin-friction coefficient, (b) local Nusselt number and (c) local 
couple stress. 

The influences of varying the magnetic parameter, M, on the 
local skin-friction coefficient, the local Nusselt number and 
the local couple stress are illustrated in Fig. 3(a), (b) and (c) 
respectively. Results suggest that the local skin-friction, 
Nusselt number and couple stress decrease with an increase 
the magnetic parameter, M. From the definition of the 
magnetic parameter, it is found that magnetic parameter 
increases owing to the increase of the strength of magnetic 
field. Hence the decrease of the amplitude of the local skin-
friction coefficient is the result of increasing the strength of 
the magnetic field. 

 

 

 

Fig. 3. Effects of the magnetic parameter, M, on the (a) local skin-
friction coefficient, (b) local Nusselt number and (c) local couple 
stress. 

Figs. 4(a), (b) and (c) depict the effects of the change of the 
vortex viscosity parameter, K, on the local skin-friction 
coefficient, the local Nusselt number and the local couple 
stress. We observe from Fig. 4(a) that the local skin-friction 
coefficient of micropolar fluid (K ≠ 0) increases with the 
increase of the vortex viscosity parameter, K, than the 
Newtonian fluid (K = 0). However it is evident from Fig. 
4(b) that the local Nusselt number of micropolar fluid (K ≠ 
0) decreases owing to increase of the vortex viscosity 

parameter, K, compared to the Newtonian fluid( )0K = . 

Fig. 4(c) shows that the couple stress of micropolar fluid (K 
≠ 0) is greater than the Newtonian fluid (K = 0). It can be 
understood from the definition of the vortex viscosity 
parameter K = κ/µ which indicates that the value of K 
becomes higher either the coefficient of viscosity µ is lower 
or the coefficient of gyro-viscosity κ is higher. On the 
contrary, it is evident that the skin friction coefficient and 
the couple stress become stronger with lower µ and higher κ, 
respectively.  
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Fig. 4. Effects of the vortex viscosity parameter, K, on the (a) local 
skin-friction coefficient, (b) local Nusselt number and (c) local 
couple stress. 

The effects of the spin-gradient viscosity parameter, λ, on the 
local skin-friction coefficient, the local Nusselt number and 
the local couple stress are demonstrated in Fig. 5(a), (b) and 
(c) respectively. Results indicate that the local skin-friction 
coefficient decreases with the increase of λ. But the Nusselt 
number and the couple stress are found to increase owing to 
an increase of λ. It is also clear from the figures that the 
amplitudes of oscillation of the local skin-friction 
coefficient, the local Nusselt number and the local couple 
stress increase with the values of λ. This is due to the fact 
that the couple stress is proportional to λ while the drag 
coefficient decreases for stronger spin-gradient viscosity. 

 

 

 

Fig. 5. Effects of the spin-gradient viscosity parameter, λ, on the (a) 
local skin-friction coefficient, (b) local Nusselt number and (c) 
local couple stress. 

IV. Conclusions 

The free convection boundary layer flow of an electrically 
conducting micropolar fluid over a vertical wavy surface has 
been studied numerically. Results are presented in terms of 
the local skin-friction coefficient, the local Nusselt number 
and the local couple stress with the variation of the 
amplitude wave-length ratio, the magnetic parameter, the 
vortex viscosity parameter and the spin-gradient viscosity 
paramter. With the increase of the amplitude wave-length 
ratio, the local skin-friction coefficient and the couple stress 
decrease and the Nusselt number increases. Moreover, the 
Nusselt number and the couple stress increase and the local 
skin-friction coefficient decreases owing to an increase of 
the spin-gradient viscosity. The important result is that the 
magnetic parameter significantly reduces the skin-friction, 
Nusselt number and couple stress.  
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