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Abstract 

In this paper, we apply Homotopy perturbation method (HPM) for obtaining approximate solution of nonlinear Fredholm integral equation 

of the second kind. Finally, some numerical examples are provided, and the obtained numerical approximations are compared with the 

corresponding exact solution. 
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I. Introduction 

In recent years, integral equations have involved the 

attention of many scientists and researchers due to their 

wide range of applications in science and technology. 

Integral equations arise in the potential theory more than 

any other field. Integral equations arise also in diffraction 

problems, conformal mapping, water waves, scattering in 

quantum mechanics, and population growth model. The 

electrostatic, electromagnetic scatering problems and 

propagation of acoustical and elastically waves are scientific 
fields where integral equations appear5. The Fredholm 

integral equation is of widespread use in many realms of 

engineering and applied mathematics. Consider the general 

form non-linear Fredholm integral equation of the second 

kind 

 𝑦(𝑥) = 𝑓(𝑥) + λ ∫ 𝐾(𝑥, 𝑡)𝐹(𝑦(𝑡))𝑑𝑡,
𝑏

𝑎

 

𝑎 ≤ 𝑥 ≤ 𝑏 

where 𝑦(𝑥) is the unknown solution, 𝑎 and 𝑏 are real 

constants. The kernel 𝐾(𝑥, 𝑡) and 𝑓(𝑥) are known smooth 

functions on 𝑅2 and 𝑅 respectively. The parameter 𝜆 is a 

real (or complex) known as the eigenvalue when 𝜆 is a real 

parameter, and 𝐹 is a nonlinear function of 𝑦. 

II. Homotopy Perturbation Method 

Suppose the following nonlinear Fredholm integral equation 

of the second kind of the form 

𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝐹(𝑦(𝑡))𝑑𝑡
1

0

,  

                                         0 ≤ 𝑥 ≤ 1                                         (1) 

We assume 𝐹(𝑦(𝑡)) is a nonlinear function of 𝑦(𝑥). That 

means that the nonlinear Fredholm integral equation (1) 

contains the nonlinear function presented by 𝐹(𝑦(𝑡)). 

For solving equation (1) by Homotopy perturbation method 

(HPM)1,2,4, we consider equation (1) as 

   𝐿(𝑦) = 𝑦(𝑥) − 𝑓(𝑥) 

                                 − ∫ 𝐾(𝑥, 𝑡)𝐹(𝑦(𝑡))𝑑𝑡
1

0

= 0                   (2) 

We define the homotopy 𝐻(𝑦, 𝑝) by 

                                      
𝐻(𝑦,0) = 𝑁(𝑦)

𝐻(𝑦,1) = 𝐿(𝑦)
}   (3) 

where 𝑁(𝑦) is an integral operator with known solution 𝑦0. 

We next construct a convex homotopy of the form 

                 𝐻(𝑦, 𝑝) = (1 − 𝑝)𝑁(𝑦) + 𝑝𝐿(𝑦) = 0   (4) 

and continuously trace an implicitly defined curve from a 

starting point 𝐻(𝑦0, 0) to a solution function 𝐻(𝑦, 1). The 

embedding parameter 𝑝 monotonically increases from zero 

to unit as the trivial problem 𝐿(𝑦) = 0. The embedding 

parameter 𝑝 𝜖 (0,1] can be considered as an expanding 

parameter. The HPM uses the homotopy parameter 𝑝 as an 

expanding parameter to obtain 

𝑦 = ∑ 𝑝𝑖𝑦𝑖(𝑥) = 𝑦0 + 𝑝1𝑦1 + 𝑝2𝑦2

∞

𝑖=0

 

                                       +𝑝3𝑦3 + ⋯  (5a) 

When 𝑝 → 1, (5a) corresponding to (4) become the 

approximate solution of (2) as follows 

  𝑦 = lim
𝑝→1

∑ 𝑝𝑖𝑦𝑖(𝑥)                                

∞

𝑖=0

 

                       = 𝑦0 + 𝑦1 + 𝑦2 + ⋯  (5b) 

The series in (5b) converges in most cases, and the rate of 

convergence depend on 𝐿(𝑦). 

Consider  

                          𝑁(𝑦) = 𝑦(𝑥) − 𝑓(𝑥)    (6) 

The nonlinear term 𝐹(𝑦(𝑡)) can be expressed in He 

polynomials3 as   

𝐹(𝑦) = ∑ 𝑝𝑘𝐻𝑘(𝑦0, 𝑦1, 𝑦2, … . , 𝑦𝑘)   ∞
𝑘=0  (7) 

= 𝐻0(𝑦0) + 𝑝1𝐻1(𝑦0, 𝑦1) +      

                         … + 𝑝𝑘𝐻𝑘(𝑦0, 𝑦1, … … . . , 𝑦𝑘) 

where 

𝐻𝑘(𝑦0, . . . , 𝑦𝑘) =
1

𝑘!

𝑑𝑘

𝑑𝑝𝑘
[𝐹 (∑ 𝑝𝑖𝑦𝑖

𝑘

𝑖=0

)],  

𝑘 = 0,1,2 … ..                      (8) 
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Using (5a), (6), and (7) into (4), we have 

(1 − 𝑝)((𝑦0 + 𝑝1𝑦1 + ⋯ ) − 𝑓(𝑥)) 

+𝑝 (( 𝑦0 + 𝑝1𝑦1 + 𝑝2𝑦2 + ⋯ ) − 𝑓(𝑥)

− ∫ 𝐾(𝑥, 𝑡) ∑(𝑝𝑗𝐻𝑗)𝑑𝑡

∞

𝑗=0

1

0

) = 0 

⟹ (𝑦0 + 𝑝1𝑦1 + 𝑝2𝑦2 + ⋯ ) − 𝑓(𝑥) 

−𝑝 ∫ 𝐾(𝑥, 𝑡) ∑ (𝑝𝑗𝐻𝑗)𝑑𝑡∞
𝑗=0 = 0   

1

0
 (9) 

Equating the term with identical power of 𝑝 in equation (9), 

𝑝0: 𝑦0(𝑥) − 𝑓(𝑥) = 0 ⇒ 𝑦0(𝑥) = 𝑓(𝑥) 

𝑝1: 𝑦1(𝑥) − ∫ 𝐾(𝑥, 𝑡)𝐻0(𝑡)𝑑𝑡
1

0

= 0 

⇒ 𝑦1(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝐻0(𝑡)𝑑𝑡
1

0

 

and so on. 

And in general form we have 

                  {
𝑦0(𝑥) = 𝑓(𝑥)

𝑦𝑘+1(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝐻𝑘(𝑡)𝑑𝑡
1

0
,
 

𝑘 = 0,1,2, . . .        (10) 

Using the recursive scheme (10), the 𝑛-term approximation 

series solution can be obtained as follows: 

                               𝜑𝑛(𝑥) = ∑ 𝑦𝑗(𝑥)                             𝑛
𝑗=0  (11) 

III. Numerical Implementations  

In this section, we will apply the Homotopy perturbation 

method to compute a numerical solution for non-linear 

integral equation of the Fredholm type. Then we will 
compare between the results which we obtain by the 

numerical solution technique and the results of the exact 

solution. To illustrate this, we consider the following 

example:  

Example 1 

Consider the following nonlinear Fredholm integral 

equation of the second kind 

  𝑦(𝑥) =
7

8
𝑥 +

1

2
∫ 𝑥𝑡𝑦2(𝑡)

1

0

dt                         (12) 

where the exact solution of the equation is 𝑦(𝑥) = 𝑥. In the 

following, we will compute the polynomials for the 

nonlinear terms 𝑦2(𝑡) that arises in nonlinear integral 

equation. 

For 𝑘 = 0, equation (4) becomes 

𝐻0 =
1

0!

𝑑0

𝑑𝑝0
[𝐹 (∑ 𝑝𝑖𝑦𝑖

∞

𝑖=0

)]

𝑝=0

 

       = [𝐹 (∑ 𝑝𝑖𝑦𝑖

∞

𝑖=0

)]

𝑝=0

 

      = [𝐹(𝑝0𝑦0 + 𝑝1𝑦1 + 𝑝2𝑦2 + ⋯ )]𝑝=0 

The polynomials for 𝐹(𝑦) = 𝑦2 are given by 

= (𝑦0 + 𝑝𝑦1 + 𝑝2𝑦2 + ⋯ )2|𝑝=0 

    ∴   𝐻0 = 𝑦0
2 

By using the MATHEMATICA software, the next few 

terms, we have 

 𝐻1 = 2𝑦0𝑦1 

 𝐻2 = 2𝑦0𝑦2 + 𝑦1
2 

and so on. 

Applying the technique as stated above in equation (10), we 
have 

𝑝0: 𝑦0(𝑥) =
7

8
𝑥                                  

𝑝1: 𝑦1(𝑥) =
1

2
∫ 𝑥𝑡 𝐻0(𝑡)

1

0

𝑑𝑡 =
72

83
𝑥   

In a similar manner, to obtain the iteration at the ninth step. 

Therefore we can write 

𝑦(𝑥) =  (
7

8
+

72

83
+

73

4 × 84
+

5 × 74

87
+

76

4 × 88
 

+
3. 77

4 × 810
+

1811 × 76

2 × 814
+

5 × 283 × 78

4 × 815
 

+
5 × 3673 × 79

2 × 818
+

5 × 798101 × 710

2 × 822
 )𝑥 

≈ 0.999947𝑥    

The table under shows the approximate solutions obtained 

by applying the Homotopy perturbation method giving to 

the value of 𝑥, which is in the interval [0, 1].  

Table 1. Numerical and exact solutions to the integral 

equation (12) 

Nodes 

(x) 

Exact 

solutions 

Approximate 

solutions 

Absolute 

Error 

0 0 0 0 

0.10 0.100000 0.0999947 0.0000053 

0.20 0.200000 0.1999890 0.0000110 

0.30 0.300000 0.2999840 0.0000160 

0.40 0.400000 0.3999790 0.0000210 

0.50 0.500000 0.4999740 0.0000260 

0.60 0.600000 0.5999680 0.0000320 

0.70 0.700000 0.6999630 0.0000370 

0.80 0.800000 0.7999580 0.0000420 

0.90 0.900000 0.8999520 0.0000480 

1.0 1.000000 0.9999470 0.0000530 
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Fig. 1. Numerical and exact solutions to the integral equation (12) 

Example 2 

Consider the following nonlinear Fredholm integral 

equation of the second kind  

𝑦(𝑥) = 3 + 0.6625𝑥 +
𝑥

20
∫ 𝑡𝑦2(𝑡)𝑑𝑡

1

0

                       (13) 

Applying above procedure, we have 

𝑝0: 𝑦0(𝑥) = 3 + 0.6625𝑥                      

𝑝1: 𝑦1(𝑥) =
𝑥

20
∫ 𝑡𝑦0

2(𝑡)𝑑𝑡
1

0

= 0.296736𝑥 

In a similar manner, to obtain the iteration at the ninth step. 

Therefore we can write 

𝑦(𝑥) = 3 + (0.6625 + 0.296736 

+0.0345883 + 0.0356889 

+0.00441658 + 0.000794517 

+0.000156235 + 0.0000438455 

+0.0000069959 + 0.000002199)𝑥 

≈ 3 + 1.03493𝑥     

The table below shows the approximate solutions obtained 

by applying the Homotopy perturbation method according 

to the value of 𝑥, which is in the interval [0, 1]. 

Table 2. Numerical and exact solutions to the integral 

equation (13) 

Nodes 

(x) 

Exact 

solutions 

Approximate 

solutions 

Absolute 

Error 

0 3 3 0 

0.10 3.100000 3.10349 0.00349 

0.20 3.200000 3.20699 0.00699 

0.30 3.300000 3.31048 0.01048 

0.40 3.400000 3.41397 0.01397 

0.50 3.500000 3.51747 0.01747 

0.60 3.600000 3.62096 0.02096 

0.70 3.700000 3.72445 0.02445 
0.80 3.800000 3.82794 0.02794 

0.90 3.900000 3.93144 0.03144 

1.0 4.000000 4.03493 0.03493 
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Fig. 2. Numerical and exact solutions to the integral equation (13) 

Example 3 

Consider the following nonlinear Fredholm integral 

equation  

𝑦(𝑥) = sin(𝜋𝑥) +
1

5
∫ cos(𝜋𝑥) sin(𝜋𝑡)(𝑦(𝑡))

3
𝑑𝑡,

1

0
  

𝑥 ∈ [0,1]                                                                                    (14) 

The exact solution of the equation (10) is 𝑦(𝑥) =

sin(𝜋𝑥) +
1

3
(20 − √391) cos(𝜋𝑥). 

In the following, we will calculate the polynomials for the 

nonlinear terms 𝑦3(𝑡) that arises in nonlinear integral 

equation. 

For 𝑘 = 0, equation (4) becomes 

𝐻0 =
1

0!

𝑑0

𝑑𝑝0
[𝐹 (∑ 𝑝𝑖𝑦𝑖

∞

𝑖=0

)]

𝑝=0

 

                 = [𝐹 (∑ 𝑝𝑖𝑦𝑖

∞

𝑖=0

)]

𝑝=0

 

= [𝐹(𝑝0𝑦0 + 𝑝1𝑦1 + 𝑝2𝑦2 + ⋯ )]𝑝=0 

Now the polynomials for 𝐹(𝑦) = 𝑦3 are given by 

       = (𝑦0 + 𝑝𝑦1 + 𝑝2𝑦2 + ⋯ )3|𝑝=0 

∴   𝐻0 = 𝑦0
3 

By using the MATHEMATICA v9 software, the next few 

terms, we have 

𝐻1 = 3𝑦0
2𝑦1 

𝐻2 = 3(𝑦0𝑦1
2 + 𝑦0

2𝑦2)                  
𝐻3 = 𝑦1

3 + 6𝑦0𝑦1𝑦2 + 3𝑦0
2𝑦3 

𝐻4 = 3(𝑦1
2𝑦2 +  𝑦0𝑦2

2 + 𝑦0
2𝑦4) + 6𝑦0𝑦1𝑦3 

𝐻5 = 3(𝑦1𝑦2
2 + 𝑦1

2𝑦3 + 𝑦0
2𝑦5) + 6(𝑦0𝑦2𝑦3 + 𝑦0𝑦1𝑦4)  

𝐻6 = 𝑦2
3 + 6(𝑦1𝑦2𝑦3 + 𝑦0𝑦2𝑦4 + 𝑦0𝑦1𝑦5)

+ 3(𝑦0𝑦3
2 + 𝑦1

2𝑦4 + 𝑦0
2𝑦6) 

𝐻7 = 3(𝑦2
2𝑦3 + 𝑦1𝑦3

2 + 𝑦1
2𝑦5 + 𝑦0

2𝑦7) + 6(𝑦1𝑦2𝑦4

+ 𝑦0𝑦3𝑦4 + 𝑦0𝑦2𝑦5 + 𝑦0𝑦1𝑦6) 

and so on. 

Applying the procedure as stated above in equation (10), we 
have 

𝑝0: 𝑦0(𝑥) = sin(𝜋𝑥) 
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𝑝1: 𝑦1(𝑥) =
cos(𝜋𝑥)

5
∫ sin(𝜋𝑡) 𝐻0(𝑡)

1

0

𝑑𝑡  

  =
3

40
cos(𝜋𝑥)                 

In a similar manner, to obtain the iteration at the ninth step. 

Therefore we can write 

𝑦(𝑥) = sin(𝜋𝑥) + (
3

40
+ 0 +

27

64000
+ 0 

+
243

51200000
+ 0 +

2187

32768000000
+ 

0 +
137781

131072000000000
) cos(𝜋𝑥) 

= sin(𝜋𝑥) +
9886326965781

131072000000000
cos(𝜋𝑥) 

The table under shows the approximate solutions obtained 

by applying the Homotopy perturbation method according 

to the value of 𝑥 in [0, 1]. 

 

Table 3. Numerical and exact solutions to the integral equation (14) 

Nodes Exact values Approximate values Absolute error 

0.00 0.07542668890493687 0.07542668888687896 1.8057902×10-11 

0.05 0.23093252624133365 0.23093252622349808 1.7835566×10-11 

0.10 0.38075203836055493 0.3807520383433809 1.7174039×10-11 

0.15 0.5211961716517719 0.5211961716356822 1.6089685×10-11 

0.20 0.6488067254459994 0.6488067254313902 1.4609202×10-11 

0.25 0.7604415043936764 0.7604415043809076 1.2768786×10-11 

0.30 0.8533516897425216 0.8533516897319074 1.0614176×10-11 

0.35 0.9252495243780194 0.9252495243698213 8.198108×10-12 

0.40 0.9743646449962113 0.9743646449906311 5.580202×10-12 

0.45 0.9994876743237375 0.9994876743209126 2.824962×10-12 

0.50 1 1 0 

0.55 0.9758890068665379 0.9758890068693629 2.824962×10-12 

0.60 0.9277483875940958 0.927748387599676 5.580202×10-12 

0.65 0.8567635239987162 0.8567635240069144 8.198108×10-12 

0.70 0.7646822990073733 0.7646822990179875 1.0614176×10-11 

0.75 0.6537720579794186 0.6537720579921874 1.2768786×10-11 

0.80 0.526763779138947 0.5267637791535562 1.4609202×10-11 

0.85 0.38678482782732176 0.38678482784341145 1.6089685×10-11 

0.90 0.23728195038933994 0.237281950406514 1.7174067×10-11 

0.95 0.08193640383912822 0.08193640385696378 1.7835566×10-11 

1.00 -0.07542668890493687 -0.07542668888687896 1.8057902×10-11 

 

 

Fig. 3. Numerical and exact solutions to the integral equation (14) 

 

 

V. Conclusion 

This paper presents a method to find the solution of a 

nonlinear Fredholm integral equation by Homotopy 

perturbation method (HPM). The approximate solutions 

obtained by the HPM are compared with exact solutions. It 

can be concluded that the HPM is effective and reliable and 

accuracy of the numerical results indicates that the proposed 

method is well suited for the solution of such type 

problems.These results corroborate the results obtained in6 

done by Newton-Kantorovich method and Adomian 

decomposition method.     

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y x



Approximate Solution of Nonlinear Integral Equations of the Second Kind by Using Homotopy Perturbation Method 155 
 
 

References 

1. Abbasbandy S., 2011. Numerical solutions of the integral 
equations: homotopy perturbation method and Adomian’s 
decomposition method, Applied Mathematics and Compu-
tation, 173(1), 493-500. 

2. Gajni D. D., G. A. Afrouzi, H. Hosseinzadeh, and R. 
A.Talarposhti, 2007.Application of homotopy perturbation 
method to the second kind of nonlinear integral equations, 
Physics Letters A, 371(1-2), 20-22. 

3. Ghorbani A., 2009. Beyond Adomian polynomials: He 
polynomials, Chaos, Solitons & Fractals, 39(3), 1486–1492. 

 

4. Hasan M. M., M. A. Matin, 2017. Numerical Solution of        
Nonlinear Fredholm Integral Equations by using NKM and 
ADM, Dhaka Univ. J. Sci. 65(1), 61-66. 

5. Javidi M. and A. Golbabai, 2009. Modified homotopy 
perturbation method for solving nonlinear Fredholm integral 
equations, Chaos, Solitons and Fractals, 40(3), 1408-1412.-66. 

6. Wazwaz A. M., 2015. A First Course in Integral Equations, 
World Scientific. 



156 M. M. Hasan and M. A. Matin 

 

  


