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Abstract 

As mosquito vector plays a significant role in malaria dynamics, a deterministic delay differential equation model 10 for the 

population dynamics of the malaria vector is rigorously analyzed for the non-delay part subject to a new form of vector birth 

rate function; the Hassell function. For the Hassell function, the model has a non-trivial equilibrium which is locally-

asymptotically stable under certain conditions. It is also shown that the non-trivial equilibrium corresponding to this birth 

function bifurcates into a limit cycle via a Hopf bifurcation. The Maynard-Smith-Slatkin function is better than the 

Verhulst-Pearl logistic growth function as the former is associated with increased sustained oscillations 9. Again this 

Maynard- Smith-Slatkin function is more preferable than the Hassell function as the prior one is pertained to more sustained 

oscillations and holds the analyzed properties for the realistic size of the limiting birth rate. 
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I. Introduction  

Malaria is one of the most acute public health problems in 

the world. It is a parasitic vector-borne disease and is 

causing thousands of death in many developing countries, 

where children and pregnant women are the most vulnerable 

groups. According to WHO, in 2016, 91 countries and 

territories had ongoing malaria transmission and an 

estimated 216 million cases of malaria occurred and caused 

an estimated 44500 deaths across the globe
13

. People, having 

limited access to health care and limited ability to afford 

treatment are disproportionately affected by malaria. Malaria 

is rampant in a number of countries which cover more than 

40 percent of the world’s population. The impact of malaria 

on these countries is not only confined within the health of 

its people, but also it costs billions of dollars in the treatment 

and causes loss of productivity each year. Malaria parasite is 

transmitted from human to human by the Anopheles 

sp.mosquito due to its human biting habit. The female 

Anopheles mosquito bites a human being for the sole 

purpose of harvesting blood that she needs for the 

development of her eggs. It spreads by infecting female 

Anopheles mosquitoes and humans successively. At the time 

of interacting with a human, mosquito can either infect or be 

infected based on the disease status of both the mosquito and 

the human. In the process of this interaction, the mosquito 

may die
3,8

. Throughout this paper we will consider the 

malaria transmission caused by mosquito bites. The 

Anopheles sp. mosquito goes through several distinct stages 

of development (metamorphosis). This process is 

temperature dependent and takes up to 2-3 weeks in cold 

weather
3
. The four species that cause malaria in humans are 

the protozoan parasites of the genus Plasmodium 

(Plasmodium vivax, Plasmodium malariae, Plasmodium 

ovale and Plasmodium falciparum). We will focus on 

transmission by P.falciparum species only which accounts 

for the most severe and often potentially lethal forms of 

malaria
7
. Malaria parasites take two stages to be developed 

in human one is exoerythrocytic cycle and another is 

erythrocytic cycle. In exoerythricytic stage thousands of 

merozoites are produced and the erythrocytic cycle is 

responsible for maintaining the infection and generating 

symptoms. Gametocytes (sexual forms of merozoites) are 

also produced in the erythrocytic stage
2, 4

. Fertilization and 

sexual recombination occurs in the mosquito's gut. 

Successive erythrocytic cycles result in an increase in 

parasitaemia until the immune response begins
11, 12

. The 

developing parasites inside a human body destroy red blood 

cells (RBCs), which may cause death by severe anemia as 

well as clogging of capillaries that supply the brain, or other 

vital organs, with blood
7
. Although scientists have been 

working relentlessly to design a suitable malaria vaccine, no 

such vaccine is currently available for use in humans. 

Consequently, anti-malaria strategies are focused on vector-

reduction and personal protection. However, in order to 

choose the most effective vector control strategy, it is 

necessary to grasp the population dynamics of the malaria 

vector. In this paper we will consider the model derived and 

presented in
10

 subject to three forms of birth rate function: 

the Verhulst-Pearl logistic growth function, the Maynard-

Smith-Slatkin function and the Hassell function
1
. Our prime 

goal is to rigorously analyze the theoretical results of the 

model subject to new form of birth rate function, the Hassell 

function. Our second objective is to propound a comparative 

study about the impact of these three birth rate functions on 

the dynamics of malaria vector to choose the best one. 

II. The Deterministic Model 

At any time   , the density of total adult mosquito 

population  1tNv  
is divided into three categories  1tU , 

 1tV and  1tW  where, 

(i)  (  ), is the collection of fertilized, well-nourished 

(with blood) and reproducing female vectors. 

(ii)  (  ), is the collection of all previously fertilized 

female vectors at the breeding site that have just laid 

down their eggs but are still resting at the breeding 
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site together with all unfertilized female vectors that 

are not fed with blood and are not questing for blood 

but swarming at the breeding site. 

(iii)  (  ), is the collection of fertilized but non-

reproducing vectors that have left the breeding site for 

the quest of a blood meal. 

Thus        1111 tWtVtUtNv   

Birth Rate Function 

To choose a birth rate function following definition is to be 

considered. The per capita birth rate per reproducing vector 

in class U  is denoted by )(UB . 

Definition 2.1.
9
 A function       )     is a suitable birth 

rate function for the vector if it satisfies the following three 

conditions. 

A1: ;0,0)(  UUB  

A2: )(UB
 
is continuously differentiable with           

;0,0)(  UUB  

A3: There exists a positive number, called the vectorial 

basic reproduction number (denoted by   ) such 

that  ( )  
 (  )

  
  (  )    . 

Selected Birth Rate Functions 

The functional form of  ( ) is chosen based on the fact 

that, in ecology non-linearity in the dynamics of population 

of a single species arises due to the competition between the 

members of the population. Generally when members of the 

same species compete for a common resource, we notice 

two types competition namely contest competition and 

scramble competition
6
. It seems more logical to assume a 

contest type competition for modeling the dynamics of 

mosquito population as some of them become successful in 

drawing blood from human, and some of them die in this 

process. Consider the following two forms of birth rate 

functions, which satisfy assumptions A1-A3. 
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Here L is considered as the environmental carrying 

capacity. The functional form    is commonly known as 

the Verhulst-Pearl logistic growth function and the second 

one i.e.    is known as the Maynard-Smith-Slatkin 

function. These two forms of birth rate function were 

previously used to describe the dynamics of malaria vector 

population
9, 10

. But there is another function which is also 

renowned for incorporating both the scramble and contest 

type competitions
1
 and that is given by 
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This function is known as the Hassell function
1
. To the 

authors knowledge, perhaps this is the first time    is being 

used to model the dynamics of malaria vector population. 

Now we draw the figure of these three birth rate functions. 

 

Fig. 1. Graph of birth rate functions   ,   and    

It follows from the above figure that    is linear decreasing 

function of   while       are non-linear decreasing 

function of   . 

The Model 

The deterministic model that will be used is given by the 

following non-linear system of delay differential 

equations
10
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With the initial data, 

               0,,,,,, 1101010111 TttwtvtutWtVtU   (5) 

Where   (  ),   (  ) and   (  ) are continuously 

differentiable functions on the interval      . Here 

               and   are positive constants and     is 

the delay parameter. The Table 1 describes the model 

variables and parameters. 

Now using the following scaled variables and parameters  
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And also by using    (non-delay) the model (4) reduces 

to 
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With the initial data 

( ( )  ( )  ( ))  (  ( )   ( )   ( ))         . 

Applying the above scaling, the birth rate functions now 

take the forms: 

 ( )   (  )   ̂( )  

{
 

 
  (   )              

  

                                           

  

(   ) 
                                     

                 (8) 

 

For notational convenience  ( ) is used in the place of 

 ̂( ) for each of the birth functions given in (8). 

With the help of the scaled variables and parameters and the 

equation (6) it is easy to show that     and  (  )  
    

    
 

where    (
  

   
  

   
) (
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)  . 

Also we note that   (  )  
    

   
;  (  )     (  )  

  and  (  )   (  )      (  )   

From now on we will introduce       instead of referring 

to the explicit dependence of the parameters on    
9
. 

III. The Stability of the Trivial Equilibrium 

The model (7) has a trivial equilibrium denoted by    
(        )  (     ), which exists for all parameter 

values. The following lemma explains the stability state of 

this trivial equilibrium. 

Lemma 3.1. 
9
 Consider Consider the model (7) with 

      )     satisfying assumptions A1-A3. The trivial 

equilibrium of the system (7),     is locally asymptotically 

stable (LAS) in if       an unstable if      .             �  

The global asymptotic stability of the trivial equilibrium is 

established by the following theorem. 

Theorem 3.1.
9
 Consider the model (7) with       )     

satisfying assumptions A1-A3. The trivial equilibrium of 

the system (7),     is globally asymptotically stable (GAS) 

in    if      .                                           � 

The result of the above theorem is numerically illustrated, 

by simulating the model (7) with appropriate parameter 

values (so that     ), corresponding to the Hassell 

function. 

 

 

 

Fig. 2. Simulations of the model (7), using Hassell function B3, 

showing the state variables converging to the trivial 

equilibrium for   
   

 
. Parameter values used are: 

                                         
                         (                  )  
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Existence and Local Stability of Non-Trivial Equilibrium 

The system (7) has a non-trivial equilibrium point given by 

(see also
10

)  

   (           )  (     )                      (9) 

Where,       is obtained as follows. It can be generated 

by setting the right-hand sides of the equations in (7) equal 

zero, that is (at non-trivial steady state) 

        (   )             

So that,        (
  

  
)   , where B(u) is any arbitrary 

birth function satisfying assumptions A1 and A2 , which 

guarantees the existence of    . Further, assumption A3, 

with  (  )    , assures the existence of      whenever 

    . Thus the following result holds. 

Lemma 3.2.
9
 Consider the model (7) with       )     

satisfying the assumptions A1-A3. The unique non-trivial 

equilibrium of (7), given by    exists whenever     .   � 

For the Hassell function the non-trivial equilibrium 

becomes, 

   (           )  *(     ) (  

 

   )+                 (10) 

Now the stability property of this non trivial equilibrium 

point is given by the following theorem. 

Theorem 3.2.
9
 Consider the model (7) with       )     

satisfying the assumptions A1-A3. The non-trivial 

equilibrium,   of the system (7) is LAS whenever       

and 
    (   )   

  
  .                          � 

Due to the use of    as birth rate function, the local 

asymptotic stability condition of non-trivial equilibrium 
    (   )   

  
   implies    

(  ) (   )   

    (   )     
 and    

   (   )  

   (   )     
 . The result of the theorem (3.2) is illustrated 

numerically, by simulating the model (7) with the Hassell 

function (  ), as depicted in the following Figures 3 and 4 

 

 

 

Fig. 3. Simulations of the model (7), using Hassell function B3, 

showing the time series of the state variables for 
   

 
 

   
(  ) (   )   

    (   )     
. Parameter values used are:   

                                       

                     (                     
   (   )  

   (   )     
         )  

So these analyses reveal that the model (7) subject to    

exhibits the same equilibrium dynamics as the birth rate 

functions B1 and B2 
9
. That is, even for B3 the model 

shows it's convergence to   for      and to    for 

      and   
    (   )   

  
  . 
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Fig. 4. Simulations of the model (7), using Hassell function B3, 

showing the time series of the state variables for 
   

 
 

   
(  ) (   )   

    (   )     
. Parameter values used are:    

                                       

                     (             

        
   (   )  

   (   )     
         )  

IV. Existence of Hopf Bifurcation 

The consideration of the inequality 
    (   )   

  
   as the 

equality i.e. 
    (   )   

  
   is required to show that the 

system may undergo a Hopf bifurcation at a point in the 

parameter space 
9
. 

Lemma 4.1. For the birth rate functions B3 and for every 

parameter grouping, there exists a positive number     such 

that, 

         (   )

 (  ) (  )
  . 

Proof: Consider the bifurcation condition 
         (   )

 (  ) (  )
  . 

Thus    is determined by the fixed point of the map  

     
(     )   (   )  

      (   )
 such that   (   ). In another 

way, the required value of     at the bifurcation point is 

given by a positive real solution of   of the linear equation  

  
(     )   (   )  

      (   )
                                                 (11) 

After simplification (11) implies  

   
                                                         (12) 

Where    (   );    (   )          (   ) ; 
     (   ). 

Clearly, the constants    and    are positive. Thus the 

quadratic equation (12) will have two positive roots 

if            
         . 

The positive solutions of the quadratic equation (12) are 

given by 

  
     

    √  
       

   

  
     

    √  
       

   

                                       (  ) 

In particular,   
  takes the following form for the birth rate 

function    
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Theorem 4.1. Consider the system (7) with  ( )  
  

(   ) 
 

and    
  as defined in (14). The system undergoes a Hopf 

bifurcation at    
 . 

Proof: Consider    as the bifurcation parameter and   
  as 

defined in (14). It can be easily shown that if   is an 

eigenvalue of the characteristic polynomial at the non-

trivial equilibrium then   satisfies 

(           (   ) (  
 

  

 
 

)) 
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            (   ) (  
 

  

 
 

)          (15) 

At      
  , the cubic equation (15) has a pair of purely 

imaginary roots, given by    √  . Substitution of 

       (with    ), in (15) provide a real part and an 

imaginary part and after some algebraic manipulation the 

following is produced. 
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Thus Hopf bifurcation occurs at      
  given by (14).         

                                                 � 

The result of the theorem (4.1) is illustrated numerically by 

simulating the model (7) with   , as shown in the 

following figures. 

 

 

 
Fig. 5. Simulations of the model (7), using Hassell function B3, 

showing the time series of the state variables for    
(  ) (   )   

    (   )     
. Parameter values used are:            

                                             

           (                     
   (   )  

   (   )     
         )  

 

 

 
Fig. 6. Simulations of the model (7), using Hassell function B3, 

showing the time series of the state variables for    
(  ) (   )   

    (   )     
. Parameter values used are:            

                                             

           (                     
   (   )  

   (   )     
 

        )  



The Role of Non-Linear Birth Functions on the Dynamics of Malaria Vector Population 61 

Simulation Analysis Corresponding to    

During the generation of the figure (3) and (4) to show the 

local asymptotic stability of the non-trivial equilibrium 

    the limiting birth rate         has been used. The 

figure (3) is suggesting us that the Hassell function i.e.    

is not associated with the increased sustained oscillations 

but these oscillations becomes more sustained if the value 

of    is increased which is not realistic (    is the limiting 

birth rate when the population size is small). Again to show 

the existence of Hopf bifurcation (figure (5) and (6)) a huge 

limiting birth rate i.e.     = 3200000 has been used. 

Although it has been tried to show the existence by using 

different set of parameter values and much lesser values for 

    but failed to meet the expectation. 

V. Conclusion 

The Maynard-Smith-Slatkin birth function is more suitable 

than the Verhulst-Pearl logistic growth function for 

modeling the dynamics of malaria vector as the previous 

one is associated with increased sustained oscillations 

which is desired ecological feature, since it assures the 

existence of the vector in the ecosystem 
9
. 

Again the Maynard-Smith-Slatkin function is more 

preferable than the Hassell function as the prior one is 

related with increased sustained oscillations and holds the 

analyzed properties for the realistic size of the limiting birth 

rate. 

Hence we can conclude that the Maynard-Smith-Slatkin 

function is one of the best choices as a birth rate function 

for modelling the dynamics of malaria vector population. 

Table 1.  Description of variables and parameters of the 

model (4). 

Variables and 

Parameters 

Descriptions 

  Probability of successfully taking a 

blood meal. 

  Natural death rate of adult vectors. 

   Natural death rate of vectors in 

earlier development stages. 

  Contact rate between vectors of 

type W and humans. 

  Population density of humans at the 

human habitat sites. 

  Rate at which fertilized and fed 

vectors lay eggs. 

   Rate of return of vectors to the 

vector breeding site 

  Rate at which   type vectors visits 

human habitat sites. 

  Alternative food resources. 
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