
Dhaka Univ. J. Sci. 67(2): 123-130, 2019 (July) 

*Author for correspondence. e-mail: sajibstat@yahoo.co.uk 

Efficient Generation of Gaussian Varaiates Via Acceptance-Rejection Framework 

Anamul Haque Sajib 

Department of Statistics, Dhaka University, Dhaka-1000, Bangladesh 

(Received: 25 March 2019; Accepted: 23 June 2019) 

Abstract 

The Gaussian distribution is often considered to be the underlying distribution of many observed samples for modelling 

purposes, and hence simulation from the Gaussian density is required to verify the fitted model. Several methods, most 

importantly, Box-Muller method, inverse transformation method and acceptance-rejection method devised by Box and 

Muller1, Rao et al.7 and Sigman8 respectively, are available in the literature to generate samples from the Gaussian 

distribution. Among these methods, Box-Muller method is the most popular and widely used because of its easy 

implementation and high efficiency,which produces exact samples2. However, generalizing this method for generating non-

standard multivariate Gaussian variates is not discovered yet. On the other hand, inverse transformation method uses 

numerical approximation to the CDF of Gaussian density which may not be desirable in some situations while performance 

of acceptance-rejection method depends on choosing efficient proposal density. In this paper, we introduce a more general 

technique by exploiting the idea invented by Wakefield9 under acceptance rejection framework to generate one dimensional 

Gaussian variates, in which we don’t require to choose any proposal density and it can be extended easily for non-standard 

multivariate Gaussian density. The proposed method is compared to the existing acceptance-rejection method (Sigman8 

method), and we have shown both mathematically and empirically that the proposed method performs better than Sigman8 

method as it has a higher acceptance rate (79.53 %) compared to Sigman (76.04 %) method. 

Keywords: Gaussian distribution, Monte Carlo integration, Ratio-of-Uniforms method 

I. Introduction 

Gaussian distribution is one of the commonly used 
distributions in Statistics as it is often assumed the distribution 
of underlying many observed phenomena. For example, in a 
classification or clustering problems it is assumed that 
observed samples come from the mixture of   component 
Gaussian distributions. Under this circumstance, to investigate 
the efficiency of the fitted model simulating from the   
component Gaussian distributions is required (which requires 
simulation from each component). The above mixture 
distribution could be a mixture of   component multivariate 
Gaussian distributions. For another example, generating 
sample from Gaussian distribution is required to approximate 
an intractable integral which involves Gaussian density under 
Monte Carlo method. In this paper, our work is limited to the 
problem of generating from one dimensional Gaussian density. 

There are several methods available in the literature to 
generate samples from Gaussian density. For example, Box-
Muller method invented by Box and Muller

1
, CDF 

approximation based approach invented by Rao et al.
7
 and 

Hastings
3
 and central limit theorem based approach are the 

most important. All the methods mentioned here generate 
standard Gaussian varaiates at first, and then transform them 
to get     (    ). Among these methods, Box-Muller 
method is widely used because of its easy implementation 
procedure and high efficiency, which produces independent 
and exact samples from Gaussian density. However, 
generating non-standard multivariate Gaussian density 
(   ),   is the dimension, under the current setting of 
Box-Muller method is not discovered yet

2
.  

On the other hand, the CDF approximation based 
approaches use numerical approximation to the CDF of 
Gaussian density, which may not be desirable where no 
such approximations are desired. Furthermore, to the best of 
our knowledge, approximation to the CDF of non-standard 
multivariate Gaussian distribution is not available in the 
literature. Like the CDF approximation based approach, 

central limit theorem based approach produces sample 
which are approximate as well. Acceptance-rejection 
algorithm produces independent and exact samples from 
arbitrary target densities provided that it is applicable. This 
is because it uses another density called proposal density to 
simulate from the target densities. However, the acceptance 
rate of acceptance-rejection method dramatically reduces if 
appropriate proposal is not chosen. Generating Gaussian 
varaiates using the basic acceptance-rejection algorithm, 
Sigman

8
 used exponential(         ) proposal which 

accepts         proposals. Using standard Cauchy density 
as a proposal to generate Gaussian variates accepts      
proposals, which is available in the literature. In general, 
choosing better proposal to simulate from an arbitrary 
probability density, especially densities belong to unknown 
family, under acceptance-rejection framework is 
challenging

9
. 

Motivated by the difficulties observed among the above 
mentioned methods, our aim is to introduce a new 
technique in this paper to generate samples from one 
dimensional Gaussian density. This new method will have 
the important features: (i) produce exact and independent 
sample (ii) can be easily extendable in multivariate case and 
does not need any approximation. 

Under the above circumstances, we got the idea (generating 
random variates efficiently using the modified ratio-of-
uniforms method from an arbitrary density) invented by 
Wakefield

9
 to implement our aims. Wakefield

9
 method is a 

variant of acceptance-rejection method in which choosing a 
proposal density is not required and it can be extended 
easily in non-standard multivariate case. 

We organize the rest of the paper as follows: Section 2 
presents the description of Gaussian distribution and some 
relevant terminologies used in this paper such as Ljung-Box 
test, acceptance-rejection method and its different variants. 
Section 3 discusses the procedure of acceptance-rejection 
method and then its different variants are applied to 
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produce Gaussian variates. Section 4 presents the results 
and the discussion which will be followed by a future work 
presented in sections 5.  

II. Gaussian Distribution and Related Terminologies 

The form of the one dimensional Gaussian density which 
has two parameters mean ( ) and variance (  ) is given by 

 (       )  (    )     
 

 
 
(
   
 

)
 

         

where         and    . From standard Gaussian 
variate   a Gaussian variate   with mean   and variance    
can be obtained using the transformation        . On 
the other hand, the form of the   dimensional Gaussian 
density is given by 

 (     )  (  )    | |         [(   )    (   )], 

where   and   are the mean vector and variance- covariance 
matrix respectively. The above form reduces tostandard 
multivariate Gaussian density when all the covariance 
elements of variance-covariance matrix are zero. Otherwise it 
will be known as non-standard multivariate Gaussian density. 

Ljung-Box Test 

To test the randomness of a time series Ljung-Box test is 
widely used in the field of Econometrics and other time 
series analysis.  This test is jointly developed by Ljung and 
Box

5
.According to them, the algorithm of Ljung-Box test is: 

(i)     the data are independently distributed against     
the data  possess some serial correlation up to a certain lag 

  (ii) The quantity    (   ) ∑  (   )    
   

     , 
which is  a function of sample autocorrelation   at lag   and 

sample size   , denotes the test statistic (iii)     
  under    

and reject the null hypothesis if    (     )
  where 

 (     )
  is the (   )   quintile of the    distribution with 

  degrees of freedom. 

Acceptance-Rejection (AR) Method 

Generating a random variate   using the inversion method 
requires inverting its distribution function i.e.   

  ( ) 
where          (0, 1). Most of the time inverting can be 
done easily but in some situations inverting is not possible. 
Even though inverting is available in inversion method, 
alternative methods such as acceptance-rejection method 
can be used to simulate   that could be more efficient than 
the inversion method. The basic idea of acceptance–
rejection method proposed by Neumann

6
 is to choose a 

proposal density  ( ) to simulate   from  ( )   The 
proposal density  ( ) is chosen in such a way that  ( ) is 
very close to  ( ), and there is an efficient method 
available to simulate from  ( )  A proposal   simulated 
from the proposal density  ( ) is considered to follow  ( ) 
i.e.    ( ) under acceptance-rejection method if   
 ( )

  ( )
, where     ,

 ( )

 ( )
-    and          (0,1). The 

detailed procedure of acceptance-rejection method to 
simulate a sample of size   is discussedin Algorithm 1. 

Ratio-of-Uniforms Method 

Ratio-of-uniforms is one of the random varaiates generation 
techniques from an arbitrary probability density, often 

specified up to proportionality, under acceptance-rejection 
framework which was proposed by Kinderman and 
Monahan

4
. Unlike, the conventional acceptance-rejection 

method, this technique doesn’t require any proposal density 
to sample from an arbitrary probability density. 

Algorithm 1: Acceptance-Rejection algorithm 

Input: Proposed value   from  ( ) 
Output: Produce   from the target density  ( ) 

Begin 

For            do 
1. Generate   from  ( ) 

2. Calculate     ,
 ( )

 ( )
-    

3. Generate           (   ) 

4. If   
 ( )

  ( )
 then 

•     
 Else  
      • Go back to step 1 
 End If 

      End For loop 
        • Return all           as a desired sample 
 End Begin  

Suppose our aim is to simulate from  ( )  
  ( )

∫   ( )   
 

  ( )

 
   ( ), where   ∫   ( )    is the normalizing 

constant. To simulate from  ( ) using the conventional 
acceptance-rejection method, there is a need to choose an 
efficient proposal density  ( ) to make the acceptance-
rejection method efficient discussed earlier. In some 
situations, finding an efficient proposal density for an un-
normalized probability density is quite difficult or even 
impossible (densities those don’t have familiar forms). 
These situations arise in posterior distribution quite 
frequently in the Bayesian framework because of the 
multiplication of likelihood and prior distribution

9
. Ratio-

of-uniforms technique alleviates this problems as it doesn’t 
require to choose any proposal density from an un-
normalized probability density. Kinderman and Monahan

4
 

showed that if the joint density of two uniform random 
variables is uniformly distributed on 

                {(   )     √  (
 

 
)}                                        ( ) 

then the variable   
 

 
  has probability density function 

 ( )  
  ( )

 
   ( ). The proof of the above theorem is 

considered in this paper as it will be required in the generalized 
ratio-of-uniforms method, which is our main interest. 

Proof: To prove the above theorem, Kinderman and 
Monahan

4
 introduce a new variable   and make the 

transformation from (   )  (   ) via   
 

 
  and     

in the first step. In the second step, they find the area of   
and hence obtain the joint density of (   )  Using the joint 
density obtained in the second step, the joint density of 
(   ) can be derived with the help of the Jacobian in the 
penultimate step. Finally, they marginalize the joint density 
of (   ) with respect to   to produce the marginal density 
of  , which is the target density. Implementing the first step 
requires the knowledge of |   |  where   is the Jacobian 
(some time called determinant of the Jacobian matrix) and || 
denotes the absolute value sign. The determinant of the 
Jacobian matrix under this transformation is  
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and | |     Therefore, the area of   is ∬     

∬         
√  ( )

 
∫ [

  

 
⁄ ]

 

√  ( )

   
∫  ( )   

 
 

 

 
 Then 

the form of the joint density of (   ) over   is 
 

    
 

 

 
 as 

(   ) is uniformly distributed on   . Now the form of the 

joint density of (   ) is  
  

 
, which is the product of the joint 

density of (   ) and | |. Finally, integrating the joint density 
of  (   ) with respect to   produces the marginal 
distribution of  , denoted as   ( )  which is   ( )  

 ∫
  

 
  

√  ( )

 
 

 

 
[
  

 
⁄ ]

 

√  ( )

 
  ( )

 
    ( )  Therefore, 

the random variable   
 

 
  (the ratio of two uniform random 

variables) has pdf  ( )  
  ( )

 
   ( )  To generate (   ) 

uniformly over   , the boundary of the region   needs to be 
specified firstly. For       and       Kinderman and 
Monahan

4 
enclosed   in a rectangle               

provided that the following theorem is hold: 

Theorem 1: The region   will be enclosed in a rectangle 
              subject to the conditions that   ( ) and 

    ( ) are bounded where       √  ( ),    

       √  ( ) and           √  ( ).  The proof of 

this theorem is not considered in this paper but proof is 
available in the original paper

4
. The theoretical acceptance 

probability,         of a point generated in the bounding 

rectangle under the ratio-of-uniforms method is given by  

       
         

                 
 

 

  (     )
                 ( ) 

Finally, for symmetrical unimodal densities, Kinderman 
and Monahan

4
 showed that the probability of acceptance 

       is maximized when mode of these densities ( ) is 

relocated to zero which is stated below in Theorem 2. 

Theorem 2: Without loss of generality, mode (   ) of a 
positive symmetric function   ( ) defined on    can be 
rescaled to    . Furthermore, provided that 
       ( )       and         ( )   , then sampling 
from    ( ) is equivalent to sampling from   (   ). 
Under these conditions,        is maximized when    . 

The proof of the above theorem is not considered here but 
available in Kinderman and Monahan

4
 paper. The detailed 

procedure of ratio-of-uniforms method to simulate a sample 
of size   from an arbitrary probability density  ( )  
  ( )

 
   ( ) with bounded   ( ) and     ( ) is 

summarized in algorithm 2. 

Generalized Ratio-of-Uniforms Method (GRoU) 

Wakefield et al.
9
 modified the basic version of ratio-of-

uniforms method for the sake of increasing the efficiency in 
terms of acceptance rate of a point generated in the 

bounding rectangle. In the generalized ratio-of-uniforms 
method, a more general version of equation 1 was proposed 
by introducing a new function   , which is strictly 
increasing differentiable function on    such that  ( )  
   The more general version of basic-ratio-uniforms method 
proposed by Wakefield et al.

9
 is stated in Theorem 3. 

Algorithm 2: Algorithm of ratio-of-uniforms method 

Input: Bounding constraints       and    
Output: Produce   from the target density  ( ) 

Begin 

        For            do 
1. Generate              (   ) 
2. Calculate        and      (     )     

3. If   √  (
 

 
) then 

       •   
 

 
 

 Else  
        • Go back to step 1 
 End If 

         End For loop 
               • Return all           as a desired sample 
  End Begin  

Theorem 3: For a strictly increasing differentiable function 
  defined on    such that   ( )   , if the joint density of 
two uniforms random variablesis uniformly distributed on 

  {(   )        [    (
 

  ( )
)]}                                    ( ) 

where     is a constant while    and     are the first 
derivative of the function   and its inverse function 

respectively. Then the ratio   
 

  ( )
  has pdf   ( )  

  ( )

 
   ( ). The proof of the above theorem is not shown 

in original paper
9
 but necessary information were given to 

prove. In this paper, we have proved and presented 
Theorem 3 in the following as it is necessary to understand 
how this method works. 

Proof: The component by which GRoU is different from RoU 
method is function  . Wakefield

9
 suggested a power function 

for   i. e.  ( )      (   )⁄ ,  where     and   
(   )  , for which   ( ) is strictly increasing function. By 
considering a new variable    ( )      (   )⁄ , we 

can find    ( )     (   )  (   )⁄  while    ( )    . By 
applying both    and     to equation 3, we have the following 
equivalent forms of equation 3: 

  ,(   )        *    (
 

  )+- 

 {(   )     *    (
 

  )  (   )+
 (   )⁄

} 

 

    {(   )     *  (
 

  )+
 (   )⁄

}                                        (4) 

Considering   
 

    and     produce the following 

Jacobian matrix 

  

(

 
 

  

  

  

  
  

  

  

  )

 
 

 (
  
     (   ))      

and hence | |     Therefore, like earlier the area of region 

  can be calculated as ∬        
   ( )  (   )⁄

 
= 
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∫ *
    

   
+
 

   ( ) 
 

   

  = 
∫  ( )   

   
  

 

   
 . The product of the 

joint density of (   ) (reciprocal of the area of  )  and | | 

produces the joint density of  (   ) which is  
(   )  

 
. 

Finally, the marginal density of   can be obtained by 
integrating the joint of  (   ) out with respect to   which 

is ∫
(   )  

 
  

   ( ) 
 

   

 
 

(   )

 
*
    

   
+
 

   ( ) 
 

   

 
  ( )

 
 

  ( )  Therefore, the random variable   
 

  ( )
  has pdf  

 ( )  
  ( )

 
   ( )   From the above proof, it is observed 

that the generalized ratio-of-uniforms method reduces to 
basic form of ratio-of-method when      Like the basic 
ratio-of-uniforms method, the bounding rectangle for the 
generalized ratio-of-uniforms method exists only when   ( ) 

and  (   )   ( )   are bounded, which is stated in Theorem 
4. 

Theorem 4: The region   will be enclosed in a rectangle 
              subject to the conditions that   ( ) and 

 (   )   ( )    are bounded where the value of the 
quantities               ( ) ,             [        ( ) ] 

and               [        ( ) ] respectively. 

The      and   , defined in theorem 4, become   

       ( ) 
 

(   ),              ( ) 
 

(   ) and     

          ( ) 
 

(   ) due to simplification by applying both 
    and     (simplification is made like the way equation 4 
is derived from equation 3). However, the proof of 
Theorem 4 which is similar to Theorem 1 is not considered 
here. Finally, the theoretical acceptance probability under 
generalized ratio-of-uniform method,         of a point 

generated in the bounding is given by  

             
         

                 
 

 (   )  

  (     )
                            (5) 

Algorithm 3: Generalized ratio of uniforms method 

Input: Bounding constraints       and    
Output: Produce   from the target density  ( ) 

Begin 

For            do 
1. Generate              (   ) 
2. Calculate        and      (     )     

3. If   *  (
 

  
)+

 (   )⁄

 then 

      •   
 

  
 

 Else  
        • Go back to step 1 
 End If 

            End For loop 
              • Return all           as a desired sample 
End Begin  

The acceptance probability       , defined in equation 5, is 

a function of    as all the quantities      and    depends on 
   Thus, equation 5 needs to be maximized with respect to   
to get a high acceptance rate, which is the measure of 
efficiency of an acceptance-rejection algorithm. Finally, 
relocating the distribution by the mode is suggested by 
Wakefield et al.

9 
before optimizing        over   in their 

generalized ratio-of-uniforms method, which yields higher 

acceptance rate. The detailed procedure of generalized 
ratio-of-uniforms method to simulate a sample of size   
from an arbitrary probability density function  ( )  
  ( )

 
   ( ) with bounded   ( ) and  (   )   ( )  is 

summarized in algorithm 3. 

III. Generating Gaussian Variates via AR Algorithm 

Exponential Proposal Density 

Sigman
8
 developed an algorithm to generate standard 

Gaussian variates under acceptance-rejection algorithm. 
Sigman

8
 considered the exponential density with rate 

   ,  (    )             as a proposal density to 
generate from the distribution of absolute value of   i.e. 

| |  which has density  ( )   (  )         ⁄         

The ratio of two densities is bounded by   √    ⁄  

which can be obtained by solving       ( )  ( )⁄    
Finally set proposal value equal to | | if   

  ( )   ( ) ⁄       (   )   where          (   ). 
After generating | |, transform | |  to   using the 
symmetry property of standard Gaussian distribution. This 
can be done by   | | if       and    | |   if 
       where          (   )  Using the     ( ) 
proposal, this method requires on average         
number of iterations to generate one standard Gaussian 
variates as the ratio of two densities is bounded by 

  √   ⁄  = 1.315. Generating a sample of size   
according to Sigman

8
 method is summarized in Algorithm 

4a. 

Step 4 of the Algorithm 4a happens if and only if      
    (   )   As            ( )   steps 1-4 of Algorithm 
4a can be simplified as follows: (i) generate two 
independent variables           ( ) (ii) set  | |     if 
       (    )   Because of the memoryless property of 
exponential distribution the quantity         (   
 ) , provided that    is accepted, is itself a random variable 
which follows      ( ) and independent of    (proof are 
given in Sigman

8
paper but not considered here) 

Algorithm 4a: Sigman8 algorithm to generate   

Input: Proposed value   from  ( ) 
Output: Produce   from the target density  ( ) 

Begin 

     For            do 
1. Generate        ( ) 

2. Find     {
 (  )         ⁄

   
}   √

  

 
   

3. Generate           (   ) 

4. If   
 ( )

  ( )
      (   )  then 

       • | |    
       • Generate          (   ) 
       • If       then 
             •   | | 
       • Else  
             •    | | 
       End If 
 Else  
       • Go back to step 1 
End If 

        End For loop 
             • Return all           as a desired sample 
End Begin  
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Algorithm 4b: Sigman8 algorithm to generate   

Input: Proposed value   from  ( ) 
Output: Produce   from the target density  ( ) 

Begin 
1. Generate             ( ) 
2. If        (    )   then 

       • | |     
       • Generate          (   ) 
       • If       then 
             •   | | 
       • Else  
            •    | | 
         End If 
Else  
      • Go back to step 1 

       End If 
                             • Return all           as a desired sample 
End Begin  

This by product   can be used as one of the     ( ) variates 
needed in step (i) for further iterations, which reduces the 
expected number of uniforms required to generate one 
  The simplified version of algorithm 4a is used in this 
paper for generating  , and procedures for generating one   
are given in Algorithm 4b. Sigman

8
 considered     ( ) to 

generate standard Gaussian varaiates. The ratio   

      ( )  ( )⁄   becomes √
 

 
        ⁄  when the form of  

 (    ) is considered as       . Using elementary calculus, 

it can be shown that   √
 

 
       ⁄  is minimized at 

    . 

Generating Gaussian Variates via RoU Method 

This section describes how RoU method can be used to 
generate Gaussian variates for different values of location 
parameters. Suppose our aim is to simulate    (    ). In 
this section, we will show how to generate    (    ) 
using the RoU method. To generate    (    ) using the 
RoU method, we first generate     (   )  and then 
transform    to   by     to get    (    ). Here we 
consider different values of   such as          and 10 
and show that acceptance rate is decreased when we move 
away from     (which is stated in Theorem 2).  

Case 1:     

When     and    , Gaussian density becomes  ( )  

(  )             
 

        

 
 

  ( )

 
 , where   ( )          

 

and    √  .  To implement RoU method, we need to find 
the values of            and       , which can be calculated 

using the Theorem 1 and the equation 2.  (i) First find 

       √  ( )             ⁄   After taking natural logs 

in both sides, we have                ⁄ . To maximize   
    ⁄   with respect to   requires first and second 
derivative of    ⁄   which are    ⁄   and    ⁄  
respectively. Solving    ⁄    yeilds     at which 
    ⁄  is maximized as the value of second derivative is 

   ⁄   . Hence              ⁄     (ii) To find  

  and    , we need to minimize and maximize         ⁄  for 
    and for     respectively. From the graph of 

         ⁄  (shown in Figure 1), it is obvious that the 
magnitudes of   values for      are the same as the 

magnitudes of   values for      but have the negative 

sign. Therefore, finding the maximum of        ⁄  for 

    will also give us the minimum of        ⁄ for    . 

Let’s find            √  ( )      
   

        ⁄  first 

then. Like earlier, the first and second derivatives of 

    (       ⁄ ) with respect to   are (
 

 
 

 

 
) and ( 

 

   
 

 
) 

respectively. Solving for (
 

 
 

 

 
)    yields    √ , for 

which the value of second derivative is        . 

Therefore,         ⁄  has a maximum at   √ , and the 

maximum value is      √     . Using this    value, we 

have      √      which is already discussed. Finally, 
plugging the values of      and    into equation 2 yields 
the theoretical acceptance rate of a point generated in the 

bounding rectangle which is        
 

  (     )
 

√  

    (  √     )
       .  

 
Fig. 1. The graph of         ⁄  for           vertical lines 

are drawn at  √  and √   

 

Fig. 2. The graph of      (   )  ⁄ for         : vertical 
lines are drawn at    and     horizontal lines are drawn at 
     (       ) and 0. 
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Case 2:    : When     and    , the form of the 

Gaussian density becomes   ( )  
 

√  
       (   )  

     (   ) 

 
=

  ( )

 
  where   ( )       (   )  and    √  . 

The value of       √  ( )          (   )  ⁄  is 1, 

which is calculated like the way   is calculated earlier in 
case 1 but the detailed calculation are not shown here. 

Figure 2 plots the function        (   )  ⁄  over a domain 
        , which will be helpful to find the maximum 
and minimum values for     and     respectively. The 

first and second derivatives of     (    (   )  ⁄ )  are 

(
 

 
 

   

 
) and ( 

 

   
 

 
)  respectively. Solving for 

(
 

 
 

   

 
)    yields       and 2, which are known as 

stationary points (points at which maximum or minimum 
can occur). The value of the second derivative at       is 

        which implies that       (   )  ⁄   has 

maximum at      and maximum value is            . 
On the other hand, at        the value of the second 
derivative is       which also implies that   

    (   )  ⁄   has maximum at      which appears to 
contradict the findings from Figure 2 (minimum at   
  ). This happens because of  there is no such   values 
here for which the second derivative will be positive. 
Therefore, it is not possible to find minimum value of     
using the idea of basic calculus theory. Instead, we will find 

the infimum of        (   )  ⁄  for      using the idea 
of infimum of a set. From Figure 2, it is obvious that the set 

of all values of       (   )  ⁄  is bounded, 
bounded from above and below by   and      
respectively. Any value which is less than      is also a 
lower bound of this set, so the greatest lower bound of this 

set is      . Therefore,         
   

     (   )  ⁄   
 

 
  

Finally, plugging the values of      and    into equation 3 
yields the theoretical acceptance rate of a point generated in 

the bounding rectangle which is        
 

  (     )
 

√  

  (     ⁄     )
         

Case 3:     

When     and    , the normal density 

becomes  ( )  
 

√  
       (   )  

     (   ) 

 
= 

  ( )

 
   where 

  ( )       (   )  and    √  . In this case, we have 
                and           which are 
obtained using similar approach used in case 2. Therefore, 
the theoretical acceptance probability for      is 
       0.241. 

Case 4:      

When      and    , the normal density becomes 

  ( )  
 

√  
       (    )  

     (    ) 

 
 = 

  ( )

 
  where 

  ( )       (    )  and    √  . In this case, we have 
                     and           which are 
obtained using similar approach used in cases 2 and 3. 

Therefore, the theoretical acceptance probability for  
     is        0.124. 

Generating Gaussian Variates via GRoU Method 

In this section, we will show how to generate    (    ) 
using the GRoU method. To generate    (    ) using 
the GRoU method, we first generate     (   ) i.e. 
density is relocated via mode     and then transform    
to   by       to get     (    ). 

When    and    , normal density becomes  ( )  

(  )             
 

        

 
 

  ( )

 
 , where   ( )          

 

and    √  .  To implement GRoU method, we need to 
find the values of            and       , which can be 

calculated using  both Theorem 4 and equation 5.  (i) 
Firstly, we determine the value of   which is       

       ( ) 
 

(   )        [ 
     ⁄ ]

 (   )⁄
  By taking 

natural logs in both sides, we have 

             (   )⁄      ⁄ . Maximize   
 

(   )
   ⁄   

with respect to   requires first and second derivative of 

 
 

(   )
   ⁄  which are   (   )⁄   and  (   )   

respectively. Solving   (   )⁄    yields     at 

which [      ⁄ ]
 

(   ) is maximized as the value of the 

second derivative is   (   )⁄   ,      . Hence 

       [ 
     ⁄ ]

 (   )⁄
     

(ii) To find     and    , we need to minimize and maximize 

     [      ⁄ ]
 (   )⁄

for     and for     

respectively. From the graph of 

   [      ⁄ ]
 (   )⁄

          (shown in Figure 3), it is 

obvious that the magnitudes of   values for      are the 
same as the magnitudes of   values for      but have the 
negative sign. Therefore, finding the maximum of  

 [      ⁄ ]
 (   )⁄

 for     will also give us the minimum 

of        ⁄  for     but will be the negative of maximum 
value. Figure 3 is plotted for       and considering 
different values   doesn’t change the shape of   . 

 

Fig. 3. The graph of  [      ⁄ ]
 (   )⁄

  over the domain        

  and       : vertical lines are drawn at  √(   )  ⁄  and 

√(   )  ⁄ points; horizontal lines are drawn at 

 √(   )  ⁄      , 0 and √(   )  ⁄       points. 
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Let’s calculate the value of           √  ( )  

    
   

   [      ⁄ ]
 (   )⁄

 at first. The first and second 

derivatives of     ( [      ⁄ ]
 (   )⁄

) with respect to   are 

(
 

 
 

  

   
) and ( 

 

   
 

   
) respectively. Solving for 

(
 

 
 

  

   
)    yields    √(   )  ⁄ , for which the value 

of second derivative is    (   )⁄    as    . 

Therefore,  [      ⁄ ]
 (   )⁄

  has a maximum at   

√(   )  ⁄ , and the maximum value is      √
(   )

 
   . 

Using this    value, we have     √
(   )

 
    as the 

magnitude of y for     is exactly same as  y for      
but negative. Finally, plugging the values of      and    
into equation 5 yields the theoretical acceptance rate of a 
point generated in the bounding rectangle which is  given 
by  

       
 (   )  

  (     )
 

√  (   )  

 √(   )  ⁄      
          ( )  

      needs to be maximized as high acceptance rate is the 

measure of efficiency of an acceptance-rejection algorithm. 
The first and second derivatives of log (      ) with respect 

to   are (
 

   
 

 

 (   )
) and ( 

 

    
 

 (   ) 
) respectively. 

Solving (
 

   
 

 

 (   )
)     yields      , for which the 

value of second derivative becomes         . 
Therefore,        attains its maximum at        and the 

maximum value is 0.7953. Finally, using the GRoU method 
to generate Gaussian random varaiates produces higher 
acceptance rate compare to Sigman and RoU methods. 

IV. Results and Discussions  

In this section, both theoretical and simulation results 
obtained under AR, RoU and GRoU methods are presented 
along with discussions. Here all numerical computations are 
computed in R on a Samsung XI machine with an Intel (R) 
Core (TM) i7-4900 (single) processor running at 3.60 GHz. 

Table 1 shows the theoretical acceptance rate (      ) of a 

point generated in the bounding rectangle under RoU 
method for different values of   . From this table, it is clear 
that        decreases when    moves away from zero, and 

       is maximized when    .  

Table 1. Theoretical (      ) and simulated ( ̂     ) 

acceptance rates for different values of   under 
RoU method. 

  0 1 5 10 

       0.7305 0.6509 0.2410 0.1240 

 ̂      0.7272 - - - 

Therefore, before generating     (   ) the density is 
relocated to    (   ) first to achieve maximum 
acceptance rate. Table 1 also shows the simulated 

acceptance rate ( ̂     ) for      which is very close to 

      . The simulated acceptance rate is calculated based on 

a sample of size ten thousand (10,000). We have used 

random seed number to produce  ̂     , and we also 

observed that using different seed numbers produce 
approximately similar results. From the above discussions, 
it is observed that acceptance rate of a point generated in 
the bounding rectangle decreases when the location 
parameter moves away from 0, and it is maximized when 
   . Here we haven’t considered the simulated 
acceptance rate for                as this is not our main 
interest. Our main interest is to simulate from Gaussian 
density via acceptance-rejection method with high 
acceptance rate, which is achieved when the distribution is 
relocated via mode    . For the same reason, we have 
kept variance fixed here (acceptance rate only depends on 
relocating the density but not rescaling)  

A comparison of AR, RoU and GRoU methods for 
evaluating performance based on acceptance rates is made 
which is shown in Table 2. 

Table 2. Theoretical and simulated acceptance rate along 
with computing time for 3 different methods. 

Method         ̂      Com. Time (seconds) 

AR 0.7604 0.7575 .01 

RoU (relocated) 0.7305 0.7272 .0166 

GRoU (relocate) 0.7953 0.7968 0.0132 

From Table 2, it is observed that GRoU method has the 
highest acceptance rate among all three methods, and the 
higher acceptance rate in GRoU method compared to other 
two methods is achieved without increasing the burden of 
computational time. All three methods require almost same 
computing time to generate 10,000 observations. 

Normality property of the generated samples for each 
method is examined through by overlaying the  (   ) 
densities over their respective histograms, which is shown 
by the top 3 plots of Figure 4. From these plots, we can see 
that histograms based on generated samples for each 
method mimic the true  (   ) density very well, hence we 
consider the generated samples come from  (   ) density.  

On the other hand, both graphical technique (ACF plot) and 
Ljung-Box test are used to test the randomness of the 
generated samples obtained under AR, RoU and GRoU 
methods respectively.The last 3 plots of Figure 1 (ACF 
plots of generated samples obtained under AR, RoU and 
GRoU methods respectively), it is observed that some of 
the ACF at lag around 28 and 98 for AR method, at lag 
around 45, 49 and 75 for RoU method and at lag around 36 
and 55 for GROU method are beyond the significance 
confidence bands (95%). However, it does not guarantee 
the presence of autocorrelation, and may happen because of 
sampling error. To confirm the presence of autocorrelation 
Ljung-Box test is carried out, and results are shown in 
Table 3. From Table 2, we observe that the   Values of 
Ljung-Box statistic at different lags under all methods 
considered here are greater than         which support 
the null hypothesis of randomness of generated samples 
obtained under all methods. 
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Fig. 4. Overlaying  (   )density lines over histograms of 

generated samples (size 104) along with acf plots for AR, 
RoU and GRoU methods respectively 

Table 2. Ljung-Box test statistic and their corresponding 
  values in parenthesis at different lags. 

Method Lag 
10 

Lag 
20 

Lag 
30 

Lag 
60 

Lag 
100 

AR 10.398 
(0.406) 

21.547 
(0.365) 

35.352 
(0.235) 

58.651 
(0.525) 

96.424 
(0.582) 

RoU 4.5466 
(0.919) 

13.868 
(0.837) 

18.999 
(0.940) 

54.982 
(0.661) 

89.217 
(0.771) 

GRoU 6.611 
(0.814) 

14.331 
(0.813) 

26.039 
(0.673) 

52.856 
(0.731) 

84.80 
(0.861) 

V. Conclusion and Future Works 

This paper introduces a new technique to generate Gaussian 
random varaiates under acceptance–rejection framework by 
exploiting the idea (generating random varaiates efficiently 
via modified ratio-of-uniform method) invented by 
Wakefield et al. (1991). The proposed technique for 
generating Gaussian random varaiates is considered the best 
among all methods under acceptance-rejection framework, 
which has already been shown by mathematically and 
empirically in terms of acceptance rate. The proposed 
technique has achieved higher efficiency compared to AR 
and RoU methods without increasing the computational 
burden.  As a future study one can exploit Wakefield et al.

9
  

idea to simulate from other important univariate and 
multivariate distributions. 
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