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Abstract 

Some elements of theory of   -graded rings, modules and algebras.   -graded tensor algebra, Lie superalgrbras and 

matrices with entries in a   -graded commutative ring are treated in our present paper. At last a Theorem 4.4.on the set of 

square matrices in the graded  -algebra    ,   -  is established. 
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I. Introduction 

Nowadays a large body of literature is available concerning 

graded algebras, mainly over the real or complex numbers 

(usually called superalgebras), their representations, etc. 

Classical references are [3], [6], [7], [8], [10]. The most 

common notations and basic results are treated in this 

article.  

II. Graded Algebraic Structures 

In general, given an arbitrary group  , we can introduce  -

graded algebraic objects [5], [10]. Since in order to develop 

a ‘supergeometry’ only   -graded structures are needed, we 

shall only consider here that particular case. We shall 

assume as a rule that  

                 

Definition 2.1. A ring (      ) is said to be graded if 

(   ) has two subgroups   and    such that      
   and            for all       . 

An element     is said to be homogeneous if either 

    or     . On the set  ( ) of homogeneous 

elements an application     is defined by 

     ( )     

          

The elements of degree   and   are called even and odd 

respectively.  

Obviously, any ring   can be trivially graded:      
   * +  

Example 2.2. Let   be a  -graded ring, namely,   

     ̂  and  ̂   ̂   ̂    then   can be graded by takig 

   as the sum of the even components and    as the sum of 

the odd ones.  

For any graded ring  , a graded commutator        
  is defined by letting  

 

         (  )                ( )           (2.1) 

The centre of   is defined as the set  

 ( )  *                 +  

i.e.  ( ) is the set of the elements of   which graded –

commute with any other elements. 

A graded ring   is said to be graded-commutative if 

                 , that is, if  ( )   .  

Let   be a graded ring and   be a left(right)  -module.  

Definition 2.3.  is a left (right) graded  -module if it has 

two subgroups    and    such that         and for 

all       , one has          (         ). 

If   is graded-commutative, which we shall henceforth 

assume, we shall use the term ‘graded  -module’ without 

ambiguity. 

Having fixed two graded  -modules  and  , we say that a 

morphism       is  -linear on the right if  (  )  
 ( )  for all     and    . Unless otherwise stated, by 

‘linear’ we mean ‘linear on the right’. Moreover, we say 

that   has degree         , if  (  )       for all 

    . The set    (   ) of  -linear morphisms   
 (that will be denoted simply by    (   )) has a natural 

grading, with      (   )  whenever      . If   is 

graded-commutative,    (   ) is a graded  -module, 

with the multiplication rule (  )( )    ( ). 

One of the most basic results in commutative ring theory, 

namely the Nakayama lemma, can be generalized to the 

graded setting. Let us define the radical of a graded-

commutative ring   as the graded ideal   obtained by 

intersecting all maximal graded ideals of  .  

Proposition 2.4.(Graded Nakayama Lemma) Let   be a 

graded-commutative ring  ,   be a graded ideal contained 

in the radical   of   and   be a graded finitely generated 

 -module.   



2   Khondokar M. Ahmed, S. K. Rasel, Jyoti Das, Saraban Tahura and Salma Nasrin 

(a) If     , then    . 

(b) If  is a graded submodule of  and       , 

then    . 

(c) If         are even elements and         are 

odd elements in   such that the images 

( ̅     ̅   ̅     ̅ ) are generators of     over    , 
then (               ) are generators of  over  .  

Definition 2.5. A graded  module   is said to be free if it 

has a basis formed by homogeneous elements.  

A basis of   of finite cardinality is of type (   ), if it is 

formed by   even elements *  
    |       + and   

odd elements *  
            +.  

We have a canonical isomorphism 

  (
 
 
   

   
 ) (

 
 
   

   
 )  

For each pair of natural numbers     such that      , 

the  -module    can be regarded as a free graded  -

module endowed with a basis of type (   ), by letting,  

(    )   
      

    
   

(    )   
 ̅  ̅    

    
  (2.2) 

    equipped with this gradation will be denoted by     .  

Example 2.6. (cf. [5]) Let   be a commutative ring, and   

be an  -module. The exterior algebra of  over  , denoted 

by    , is a  -graded algebra, namely       
 
 , and is 

alternating, i.e.      for all     
    

 . If  is free and 

finitely generated, with a basis *          +, then     

is a free finitely generated  -module, with a canonical 

basis(relative to the basis *  +) which can be described as 

follows. Let    denote the set  

{
  *     +  

*     +                    
|     }  *  +  

where    is the empty sequence, and let 

     ( )      ( )                   

Then {  |    } is the canonical basis of     .  

The cases    and     have a particular interest and 

deserve ad hoc notations: 

   
          

     (2.3) 

  is a vector space, with a canonical basis obtained from 

the canonical basis of    according to the above described 

procedure. If    is the ideal of nilpotentsof   , the vector 

space direct sum decomposition         defines two 

projections 

                    (2.4) 

which are sometimes called body and soul maps. 

Tensor Products: Let us recall that we are considering a 

graded-commutative ring  . The graded tensor product of 

two graded  -modules     is by definition the usual 

tensor product     , obtained by regarding   as a 

right module, and  as a left module, equipped with the 

gradation 

(    )        {∑                 } 

Evidently,      has a natural structure of graded  -

module: 

 (   )       (  )           

 (  )           

 (  )   (       )(   )    (2.5) 

The graded tensor product can be characterized as a 

‘universal object’. To this end, given graded  -modules 

    and  , we introduce the set  (     )  (with   
  ) of the graded  -bilinear morphisms        , 

homogeneous of degree  : if    (     ) , then   is a 

morphism of degree   such that  (    )   (    )  
(  )       (   )  for all    . The set 

 (     )   (     )   (     )  

is endowed with a structure of graded  -module by 

enforcing the multiplication rule (  )(   )   (    ). In 

the same way, if           are graded  -modules, we 

define the graded  -module  (         ) formed by the 

graded  -multilinear morphisms                . 

Proposition 2.7. There are natural isomorphisms in the 

category     Module 

 (     )      (      )

     (      (   ))  

Proposition 2.8. Let          be graded  -modules; the 

following natural isomorphisms of graded  -modules hold: 

(a)     
       , achieved by the morphism 

     (  )   | 
 |      

(b) (    
 )    

   

     ( 
    

  ), achieved by the morphism 

(    )        (      )  
(c)              

If                are morphisms of graded modules 

over a graded ring  , the tensor product          
     is the morphism defined by the condition 

(   )(   )  (  )       ( )   ( )  (2.6) 

III. Graded Algebras and Graded Tenso Calculus 

Let   be a graded-commutative ring. 

Definition 3.1. A graded  -algebra  is a graded  -module 

endowed with a graded  -bilinear multiplication 
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A graded  -algebra   is said to be graded-commutative if 

all graded commutators 

           (  )            

defined on the analogy of equation (2.1), vanish. 

Example 3.2. The graded module   (  )in traduced in 

Example 2.6. , equipped with the  exterior product, is a 

graded-commutative  -algebra( -algebra).  

The graded tensor product      of two graded  -

algebras  and   is defined as the tensor product of the 

underlying  -modules equipped with the multiplication 

naturally induced by those of   and  

 : (     )  (     ) 

 (  )        (     )  (     )  

Definition 3.3. A graded Lie  -algebra ( or Lie  -

superalgebra )   is a graded  -algebra, whose 

multiplication, called graded Lie bracket and denoted by 

,  -, satisfies the following identities: 

,   -   (  )      ,   -  (3.1)   (3.1) 

(  )      [  ,   -]  (  )      [  ,   -]  

(  )      [  ,   -]      (3.2) 

Remark 3.4. Given a graded Lie algebra  , its even part 

  is a Lie algebra over the ring   .  

An important class of graded Lie algebras can be 

constructed in terms of the notion of graded derivation. 

Let  be a graded-commutative  -algebra. 

Definition 3.5. A homogeneous morphism         is a 

graded derivation of   over   if it fulfills the following 

condition (called the graded Leibnitz rule) 

 (   )   ( )    (  )         ( )  (3.3) 

The graded  -submodule of       generated by the 

graded by the derivations of   will be denoted by      , or 

simply     .  

Proposition 3.6.     , equipped with the graded Lie 

bracket 

,     -        (  )
             ,  (3.4) 

is a graded Lie  -algebra.  

By identifying   with the submodule  .    , condition 

(3.4) implies that, for all         ( )   . We notice 

that      is a (left) graded  -module in a natural way, by 

letting (  )( )     ( ). 

Definition 3.7. A graded derivation of   over   with values 

in   is a homogeneous element       (   ) which 

fulfills a graded Leibnitz rule formally identical with 

equation (3.3). 

The graded  -submodule of     (   ) generated by the 

graded derivations of   with values in   will be denoted by 

    (   ).  

Proposition 3.8. Let   and   be  -modules. There is a 

natural morphism of graded  -modules 

          (   ) 

described by  (   )( )    ( ). This induces a 

morphism 

        (   )  

whose expression is 

 (   )(   )  (  )       ( ) ( ). 

Both morphisms are bijective whenever  is free and 

finitely generated.  

Graded Exterior Algebra : Let   be a graded  -module and 

let us denote by 

              ⏟    
 

  

The  -th tensor power of  , graded as usual. We can 

consider as in the non-graded setting the graded tensor 

algebra of  , 

 ( )  

 
 
   

   ,  (3.5) 

which is in a natural way a bigraded -algebra (i.e. it has the 

usual  -gradation of the tensor algebra, together with the 

  -gradation it carries as a graded  -algebra). 

The graded exterior algebra     of  (denoted simply by 

  ) is defined as the quotient of   ( ) by the graded 

ideal  ( ) generated by elements of the form       
(  )             , with       homogeneous. The 

product induced in    by this quotient is denoted by   and 

is called the (graded) wedge product, as usual. If we let  

  ( )   ( )     , since  ( ) is generated by 

homogeneous elements, we obtain  ( )      
   ( ) 

and therefore, 

   

 
 
   

    

with            ( ).  

We wish to ascertain the relationship existing between the 

exterior algebra    and the modules of alternating graded 

multilinear forms: this will be realized by a morphism 

analogous to the morphism 

    
            

  (             )
  

 (         )  (3.6) 

If       ( 
    ) and       ( 

    ) are 

homogeneous graded multilinear forms,       acts on a 

family of homogeneous elements according to the formula: 
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(     )(         )

 (  )|  |(|    |   |    |)  (       ) 

  (           )  

Let    be the group of permutation of   objects. For any 

     and any       ( 
    ), we write, for 

homogeneous elements          , 

  
 (       )

                        (  )  (   )  (  ( )     ( ))  

where 

 (3.7) 

 

Definition 3.9. A graded multilinerar form    

   (     ) is said to be alternating if   
  (  )      

for every     , where     is the parity of the permutation 

 . 

The set    (            ⏟     
 

  )     (    ) of all 

alternating graded multilinear forms is a submoduleof 

   (     ); we can introduce a projection morphism, 

which is no more than the graded anti-symmetrization: 

      ( 
    )     (    ) 

     (  )  
 

  
∑ (  )     

  

    

 

Proposition 2.10. The morphism    has the following 

properties:  

(a)   (  )    for any alternating form   ;  

(b)     (     )  (  )
   |  ||  |    (     )  for 

homogeneous      ; 

(c)      (  (  )    )      (     )  

We assume that   is a free and finitely generated module, 

so that we may identify   (  )with    (     ). In this 

way, the morphism    yields the exact sequence of graded 

 -modules 

   (  )      
  
→    (    )     (3.8) 

and  therefore we obtain an isomorphism      
   (    ). Thus, for a free and finitely generated module 

 , the homogeneous elements in the graded exterior 

algebra      can be interpreted as alternating graded 

multilinear forms on  . In particular, we may interpret the 

wedge product of two elements         and    
     as a graded multilinear form, which acts on 

homogeneous elements            according to [9]; 

(     )(         )  
 

(   ) 
 

∑(  )      (     
 )  (  ( )     ( ))

    

 

  (  (   )     (   )) 

where  in terms of the symbol   (   ) previously defined, 

we get 

  (     
 )    (   )    

  ∑ |  ( )|
 
     (2.9)  

IV. Matrices 

Given a graded-commutative ring  , an  -module 

morphism           can be regarded, relative to the 

canonical bases of      and     , as a (   )  (   ) 
matrix with entries in  , 

  (
    
    

)  (4.1) 

which acts on column vectors in       from the left. The set 

  ,(   )  (   )- of such matrices can be graded so 

as to be naturally isomorphic to the graded  -module 

    ( 
        ), by decreeing that: 

•  is even if    and     have even entries, while    and    
have odd entries; 

•  is odd if    and     have odd entries, while    and    
have even entries; 

The set of matrices of the form (4.1), equipped with this 

gradation, will be denoted by   ,       -. The set of 

square matrices   ,   -(which are obtained by letting 

       ) is a graded  -algebra.  

The usual notation of trace and determinant of a matrix can 

be expended to the matrices in   ,   -, thus obtaining the 

concepts of graded trace and Berezinian (also called 

supertrace and superdeterminant respectively). For any 

matrix     ,        -, regarded as a 

morphosm           , we define the graded transpose 

of  -denoted by    -as the matrix corresponding to the 

morphism    (    )
 
 (    )

 
dual to  . With 

reference to equation (4.1), one obtains the following 

relations, where the superscript   denotes the usual matrix 

transportation: 

(
    
    

)
  

 

{
 
 

 
 (

  
   

 

   
   

 )         

(
  
    

 

  
   

 )         

 (4.2) 

The graded transportation behaves naturally with respect to 

matrix multiplication: 

(  )   (  )              

Δ (𝜎 𝑚)  ∑ ∑ |𝑚𝜎(𝑖)||𝑚𝜎(𝑗)|

𝜎(𝑖)>𝜎(𝑗) ≤𝑖<𝑗≤𝑝
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The graded trace of   is the element      ∑   
 (  )    . 

Alternatively, one can give a direct characterization by 

letting, for all homogeneous     ,   -,  

         (  )
         (4.3) 

where   e designates the usual trace operation. The graded 

trace determines an  -module morphism       ,   -  
 , which is natural with respect to graded transportation 

and matrix multiplication: 

   (   )       

   (  )  (  )         (  )   (4.4) 

Let us notice that, by denoting by      the identity matrix, 

one has             . 

In order to extend the notion of determinant, we must 

consider the subgroup    ,   - of the matrices in 

  ,   - corresponding to an even invertible 

endomorphisms.    ,   -is the natural extension of the 

notion of general linear group, so that it will be called the 

general graded linear group.  

Proposition 4.1. A matrix     ,   -  is in    ,   -if 
and only if       ,   - and       ,   -, i.e.   is 

invertible if and only if    and    are invertible as ordinary 

matrices with entries in   . 

Definition 4.2. [1], [3], [4] Let      ,   -. the 

Berezinian of   is the element in    ,   - given by 

     (
    
    

) 

    (       
    ) (    

  )  (4.5) 

Proposition 4.3. The mapping        ,   -  
   ,   -  is a group morphism, that coincides with the 

determinant whenever    : 

   (  )                       ,   - (4.6) 

Theorem 4.4. A matrix in     ,   -  is invertible if 

and only if  ( )    ,   -. 

Proof. The ‘only if’  part is trivial, since   is ring 

morphism. To show the converse, it suffices to prove that a 

matrix      ,   -  is invertible as a matrix with entries 

in (  )  if  ( ) is invertible. In the case     this is a 

consequence of the fact that in    the morphism   is the 

natural projection (  )  (  )  (  ) . The result is 

easily extended to     by inclusion. ■ 

V. Conclusion 

We start with given an arbitrary group   and introducing  -

graded algebraic objects and for a given graded-

commutative ring   and  -module morphism can be 

regarded, relative to the canonical bases of relative to the 

canonical bases of      and     , as a (   )  (   ) 

matrix with entries in  ,   (
    
    

), which acts on 

column vectors in       from the left. Finally, this article 

induces a Theorem 4.4.on a matrix of graded  -algebra. 

This paper will be helpful for other researchers.  
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