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Abstract 

A key assumption when using the multinomial distribution is that the observations are independent. In many practical 

situations, the observations could be correlated or clustered and the probabilities within each cluster might vary, which may 

lead to overdispersion. In this paper we discuss two well-known approaches to model overdispersed multinomial data, the 

Dirichlet-multinomial model and the finite-mixture model. The difference between these two models has been illustrated via 

simulation study. The forest pollen data is considered as a practical example of overdisperse multinomial data. The 

overdispersion parameter,  , has been estimated using two classical estimators. 
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I. Introduction 

Overdispersion is the presence of excess variability in a 

data set, relative to the statistical model in use, meaning that 

the data exhibit more variation than the model predicts. 

When overdispersion is present in a data set the estimate of 

regression coefficients are still asymptotically unbiased, 

although the standard errors may be seriously 

underestimated, and we may therefore incorrectly assess the 

significance of individual regression parameters. A variable 

may wrongly appear to be a significant predictor, and we 

will tend to select overly complex models. Likewise, 

confidence intervals will be too narrow, i.e., there will be 

more uncertainty in the data than we have allowed for. 

Examples of multinomial data with overdispersion arise in 

many areas, such as mark-recovery and mark-recapture 

modelling, household surveys, DNA sequence analysis, 

hyperspectral image (HSI) classification. Many practical 

examples of overdispersed multinomial data are discussed 

in the literature. For example, Mosimann
1
 presented a 

classical environmental example on forest pollen, while 

Koehler and Wilson
2
 considered modelling data on housing 

satisfaction. 

Several approaches can be found in the literature for 

handling multinomial data that exhibit overdispersion. 

These include the quasi-likelihood (QL) method introduced 

by Wedderburn
3
and McCullagh and Nelder

4
 , and 

generalized estimating equations (GEE)by Liang and 

Zeger
5
 and Zeger and Liang

6
. Note that GEE is a 

generalization of QL method, therefore have the similar 

robustness properties. For explicit modelling of 

overdispersed multinomial data the well-known approaches 

are the Dirichlet-multinomial model considered by 

Mosimann
1
, generalized linear mixed models by Wolfinger 

and O’connell
7
 and finite-mixture model discussed by 

Morel and Nagaraj
8
.The quasi-likelihood estimation 

technique is appealing, because it only requires 

specification of the first two moments of the response 

variable. The quasi-likelihood is a function similar to the 

likelihood and for GLMs the maximum quasi-likelihood 

estimate (MQLE) is identical to the maximum likelihood 

estimate (MLE). 

Generally, the actual mechanism in which the 

overdispersion arise is unknown, therefore it is difficult to 

choose a single overdispersion model for a given set of 

data. However it is possible to select a model by checking 

its performance through simulation. In this paper we focus 

on comparing two different models, Dirichlet-multinomial 

model
1
 and finite-mixture model

8
using forest pollen 

data
1
through simulation study as they are mostly used in the 

literature for modeling overdispersed multinomial data. 

II. Overdispersion Multinomial Model  

Let                      
 denote the observations from a 

typical cluster of size   . Here     denotes the count in 

cluster   and category   (          and             ) 

and     
                      . We use the lower 

case                      
  and      

    

(                ) to present the observed values of 

   and     
 respectively. Suppose                      

  

be a probability vector with                    

  and         such that ∑      
  
   . 

Dirichlet-multinomial distribution  

The probability mass function of a Dirichlet-multinomial 

distribution is 

             

   

              
 

    

       

∏           
  
   

∏        
  
   

, (1) 

where               ,       and      is the 

gamma function. The Dirichlet-multinomial distribution is 

derived considering two steps. Suppose 

                     
  denote a probability vector such 

that                      and         for 

         ,              and     
            

         .  Suppose the conditional probability of      
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given    is multinomial that is          
       . If    be 

a Dirichlet random variable with probability mass function 

            
    

∏        
  
   

∏  
 

        
   , (2)                                                                        

then it can be shown that equation (1) is the probability 

mass function of   .  The mean and variance of    are as 

follows 

           (3) 

and 

        {          }  {             
 } (4) 

where                      
 and          is a diagonal 

matrix with diagonal elements                 . The term 

{          } indicates extra variation comparing to the 

usual covariance of a multinomial distribution. Note that for 

    the Dirichlet-multinomial distribution and the usual 

multinomial distribution have common covariance matrix. 

Finite-mixture distribution 

In finite-mixture distribution, it is assumed that the 

overdispersion arises for clumped sampling. Let us consider 

   dimensional independent and identically distributed (iid) 

multinomial random variables       
        

 .  Suppose 

each variable has parameters                      
  

with cluster size 1.  Let               
 be iid uniform (0, 

1) then we define the random variable    for the real 

number           as, 

       ∑          ∑    
          

  
   

  
     (5)     

where     is the indicator function. Equation (5) leads to 

the following representation, 

                   (6)  

where                  ,       
      ,    and    are 

independent, and            
           if      . It 

can be shown that    is infact a mixture of    dimensional 

multinomial random variables and can be written as 

    ∑       
  
   , (7) 

where     is distributed as    
                 for 

             where     is the  th column of the     

          identity matrix and    is the cluster size,     
 

is multinomial random variable with parameter         

and having the same cluster size.  Note that the Dirichlet-

multinomial distribution and finite-mixture distribution 

have common mean vector and covariance matrix. 

However the maximum likelihood estimation of the 

parameters of these models could be computationally 

intensive. Therefore the quasi-likelihood estimation 

technique, that is specifying only the relationship between 

the mean and variance of the response variable, can be 

applied. In particular, we assume that the variance is   

times the variance specified by the generalized linear 

model. The term,   provides the measure of the amount of 

overdispersion. 

III. Estimators of Overdispersion Parameters 

Suppose                     , be independent 

multinomial random vectors with mean vector    
             

        and covariance matrix    . Where 

                    
  is the covariance matrix of      

under a multivariate generalized linear regression model. 

Suppose that                             
     

    

where       is the inverse link function with    
             

  . Now         
           

     where 

                   
 is the vector of covariates and   

           
  is the vector of regression parameters.  

Wedderburn
3
 suggested estimating   by  

 ̂  
  

  
 ∑

      ̂   
 

 ̂  
   {∑          

   }, (8)  

where    is Pearson’s goodness of fit statistic and    is the 

residual degrees of freedom. We consider another estimator of  

   based on the usual deviance statistic, defined as   

 ̂  
 

  
  ∑             ̂        {∑          

   }   (9) 

where   is the residual deviance and    is the residual 

degrees of freedom. Asymptotically both   and   will have 

a   distribution with {∑          
   } degrees of 

freedom. If the model is adequate, we expect  ̂ to be close 

to 1; as the mean of a randomvariable with a     
 distribution 

is equal to its degrees of freedom (df). 

IV. Practical Example 

We considered forest pollen data
1
 as a practical example. 

Four different types of pollen were counted in order to 

understand the past vegetation character of an area of 

Mexico. The types of pollen were Pinus, Abies, Quercus 

and Alnus. Mosimann
1
presented      sets of data each 

with       counts. Table1 provides the estimates of  

for pollen data after fitting the usual multinomial model. 

Table 1. Estimates of   for pollen data 

Pearson based  Deviance based 

 ̂  2.599   ̂  2.941 

Thus both  ̂  and  ̂  suggest a fair amount of 

overdispersion. Note that the VGAM package in R is used to 

fit the usual multinomial model. 

V. Simulation Study 

We generated a random sample of size 1000 from the 

Dirichlet-multinomial distribution using the estimated 

probabilities of the usual multinomial model. Considering the 

estimates of   for pollen data (Table 1) we fix    at 3. We 

also generated another random sample of same size from the 

finite-mixture distribution using the same simulation setting 

to make comparison between the two models. 
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We summarized the empirical bias (BIAS), standard error 

(SE) and root mean square error (RMSE) for each estimator 

of   (Pearson and deviance estimator) using the simulated 

data. The results for the Dirichlet-multinomial distribution 

and the finite-mixture distribution are shown in Table 2. 

Table 2. Simulation results for the Dirichlet-multinomial 

and finite-mixture distribution 

 Dirichlet-

multinomial 
Finite-mixture  

 ̂  
BIAS -0.026 -0.117 

SE 0.385 0.762 

RMSE 0.386 0.771 

 ̂  
BIAS -0.179 -0.806 

SE 0.275 0.390 

RMSE 0.328 0.896 

From the above results we can see that both estimators, 

 ̂  and  ̂ , have larger bias, standard error and root mean 

square error when the data generated from the finite-

mixture distribution. Hence we can conclude that the 

Dirichlet-multinomial model performs better than the finite-

mixture model to pollen data.  

Next we examine the performance of the two estimators by 

constructing boxplots. The figures are shown below 

 

 
Fig. 1. Boxplots for the estimators  ̂  and  ̂  for two different 

distributions: Dirichlet-multinomial (DM) and finite-

mixture (FM). The line through the point 3 indicates the 

true value of   . 

The boxplots agree with the results displayed in Table 2. 

That is the estimators are negatively biased for both the 

distributions. Finite-mixture distribution has the largest bias 

for  ̂ . On the other hand  ̂  has the largest variance for 

the same distribution. Overall both estimator sperform 

better in case of Dirichlet-multinomial distribution 

compared to finite-mixture distribution. 

Further we examined more closely which distribution better 

fits the generated data. We compared the quantile-quantile 

(q-q) plots for the standardized residuals of the simulated 

data. The figures are as follows. 

 

 

Fig. 2. q-q plot of the standardized residuals 

As mentioned earlier, we considered   equal 3 for 

simulation from both the Dirichlet-multinomial distribution 

and the finite-mixture distribution. Therefore we expect that 

the standardized residuals to follow normal distribution 

with mean0 and standard deviation √ . These q-q plots 

compare the theoretical quantiles to the actual quantiles of 

the standardized residuals. If the points fall on the straight 

line with slope √ , then the theoretical and realised 

quantiles are very similar, and the assumption is met.  

Clearly the standardized residuals of Dirichlet-multinomial 
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distribution better approximate the normal distribution than 

the standardized residuals of finite-mixture distribution. 

VI. Conclusion 

In this paper we have described and used two separate 

distributions for modeling overdispersion in multinomial 

data. Though both distributions have same first and second 

order moments the higher order moments are different
9
. In 

these models the extra variation arise in separate 

mechanism, therefore they cannot be meaningfully 

compared. However for the forest pollen data set, the 

simulation study shows better approximation for Dirichlet-

multinomial model compared to finite-mixture model in our 

study. It would be interesting to check the performance of 

one of these two distributions when the overdispersion 

arises by the other. 
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