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Abstract 

Simulating random variates from arbitrary non-normalized probability densities, very often they do not have familiar forms, 

is an increasingly important requirement in many different fields, especially in Bayesian statistics. Accept-reject algorithm 

is one of the commonly used methods to simulate random variates from such densities but restriction on choosing proposal 

density under this framework (heavier tails than the target density) limits its applicability to a larger extent. On the other 

hand, Markov Chain Monte Carlo (MCMC) method can choose proposal density arbitrary which makes this method 

applicable to a larger class of target densities5. In addition to MCMC method, a more general widely used method known as 

ratio-of-uniforms (RoU) which requires only two uniform variates to simulate one variates from such densities. However, 

no empirical comparison among these methods for simulating random variates from such densities was seen in the literature. 

In this paper, we limit our study only to MCMC and RoU methods to simulate random variates from such densities. 

Following the generation of random variates from such densities using these two methods, we compare the performance of 

these two methods based on quality of the generated samples. Finally, we conclude that RoU method performs better than 

MCMC method as far as quality of the generated sample (randomness) and computational cost are concerned. 

Keywords: Accept-Reject method, MCMC, RoU method, Non-normalized density, Statistical computation. 

I. Introduction 

Simulating random variables     ( )   ( ) is the density 

function of  , is required to conduct an empirical study of the 

random variable    Furthermore, estimation problem in 

frequentist approach is treated as simulation problem in 

Bayesian approach. Therefore, simulation from the posterior 

is required to estimate the unknown parameters. For example, 

suppose we have observed sample   (         ) from 

exponential density with rate parameter     . Maximum 

likelihood estimation method is used to estimate    in 

frequentist approach while a point estimate of    can be 

defined using the generated sample obtained from the 

posterior distribution (likelihood   prior distribution of   ) 

of     in Bayesian approach. There are several methods 

available in the literature to simulate random variates from 

the probability densities of random variate   (posterior 

distribution in Bayesian setting). Most importantly, inverse 

transformation method and accept-reject algorithm are 

commonly used to simulate from such probability densities. 

The choice of simulating     ( ) mainly depends on (i) 

whether the distribution of     ( )  has a closed form or not 

(ii) simplicity of the chosen algorithm as far as 

implementation is concerned (iii) computing time
7
. When the 

distribution function   ( ) has no closed form then the 

inverse transformation method is not applicable. For 

example, inverse transformation method can not be applied 

to generate random variates from the Gaussian density as its 

distribution function has no closed form. In such cases, other 

available methods need to be applied. In Bayesian statistics, 

we often have to deal with a density function which is known 

up to normalizing constant and very often even such densities 

don’t have familiar forms. This situation arises because of 

considering non-conjugate distributions i.e. prior and 

posterior are not in the same probability distribution family. 

For example, suppose we are given a data set   
(         ) that come from the Gaussian density with 

mean   and variance     , and we are also told to estimate 

unknown mean   based on this observed sample. Under 

Bayesian setting, a prior distribution for unknown mean   

needs to be specified to get the posterior distribution of  . 

Suppose, we consider a standard Cauchy density for  , 

 ( )  (    )  , which yields posterior density of   

 (   )  [∏       (    )
  

   ]  0
 

    
1          . For 

simplicity let’s consider we have only one observation in 

our sample i.e.      Then the form of the above posterior 

density becomes  (   )        (   )
 
 (    )  , 

which is known up to normalizing constant and does not 

have any familiar form. The normalizing constant of this 

posterior density  (   ) is ∫ [      (   )
 
 (    )  ]   

 

  
, 

which is mathematically intractable i.e. can not solve 

analytically. Therefore, distribution function of  (   ) has 

no closed form. Inverse transformation method can not be 

applied to simulate random variates from such types of 

densities as distribution function has no closed form. 

There is a need, therefore, other efficient methods to 

simulate from such types of density. Accept-Reject 

algorithm is a well-known method to simulate random 

variates from an arbitrary probability density which is 

known up to normalizing constant. A suitable proposal 

density needs to be chosen to simulate random variates 

from such densities under this framework. One of the main 

challenges of accept-reject algorithm is to have a finite 

upper bound ( ) of the ratio of target density (from which 

we want to simulate) over proposal density as far as 

implementation is concerned. Proposal density must be a 

heavier tail than the target density to ensure a finite upper 

bound
1
. For example, to simulate from  (   ) one can 

choose standard Cauchy as a proposal which yields a finite 

  (standard Cauchy has a heavier tail than standard 

normal). But the other way around is not possible as  (   ) 
has a lighter tail than standard Cauchy, resulting an infinite 
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 . In addition to have finite value of  , Accept-Reject 

method also needs to find an efficient proposal density 

among all possible proposal densities (theoretically infinite 

numbers of proposal densities) for which   is small. The 

smaller the   value Accept-Reject has, the more efficient it 

is. Unfortunately, there are no general method available to 

analytically find the smallest value of  5
. There is a need, 

therefore, a general technique which will choose the 

proposal density without any restriction and will be free 

from determining the lowest value of  . 

Apart from Accept-Reject method, there are two other 

available methods namely Markov Chain Monte Carlo 

(MCMC) and Ratio-of-Uniforms (RoU) methods those can 

be used to simulate random variates from such densities. 

MCMC is a special type of rejection sampling in which 

proposal density can be chosen arbitrarily
5
. Under this 

framework, it is not mandatory to choose a proposal density 

which has a heavier tail than the target density which makes 

this method applicable to a larger extend. On the other 

hand, RoU method invented by Kinderman and Monahan 

method does not need any proposal density to simulate 

from target density.Instead of choosing any proposal 

density it requires only two independent uniform numbers 

(play the role as proposal) to simulate one variate from the 

target density. The advantage of using the RoU method is to 

have a unique theoretical acceptance rate
3
 (like     in 

Accept-Reject method). The detail about MCMC and RoU 

methods will be discussed in section 3. 

We limited our study to only MCMC and RoU methods to 

simulate random variates from an arbitrary density known 

up to normalizing constant. Although both MCMC and 

RoU methods can be used to simulate random variates from 

arbitrary density, we are unaware of any empirical 

comparison of these two methods. In this paper, our aim is 

to carry out an empirical study between these two methods 

for simulating random variates from an arbitrary probability 

density known up to normalizing constant. 

We organize the rest of the paper as follows: Section 2 

presents the concept of Markov chain with examples along 

with some other related terminology used in this paper. The 

MCMC and RoU methods are discussed in section 3 while 

section 4 and 5 show the implementation of these two 

methods through simulation study. In the penultimate 

section, we present the results and discussions which are 

followed by conclusion and future works presented in 

section 7. 

II. Concept of Markov Chain and Other Related 

Terminology  

In this section, we discuss some key facts about the Markov 

chain which will be necessary to understand the MCMC 

technique. Apart from discussing Markov chain, we also 

discuss here some important terminology such as arbitrary 

probability density, normalizing constant and 

mathematically intractable normalizing constant. In this 

paper, we consider the Markov chain which is the 

generalized version of original Markov chain. It is noted 

that original Markov chain was proposed by Metropolis et 

al.
6
 and the generalization is made by Hastings

2
. 

Hammersley and Handscomb
1
 also discussed an 

introduction to Markov chain methods of sampling 

proposed by Metropolis in 1964, and we follow their paper 

to prepare the terminology related to MCMC: Markov 

chain, transition function, periodicity and irreducibility of 

Markov chain, stationary distribution and Ergodic theorem. 

Markov chain 

To define Markov chain, we consider here only discrete 

time points at which transitions of a chain occurs. Let a 

process has finite number of states          and at time   
it is in   . Then    be a random variable for which the 

following conditional probabilities can be defined 

  .        (   )    (   )          /   

The above process is called Markov chain if the distribution 

of    depends only on its immediate predecessor  (   ) i.e  

  .        (   )    (   )/                                ( ) 

The probabilities defined in equation (1) do not depend on 

time  , and the transition probabilities for the above Markov 

chain can be defined as 

      (     )    .        (   )    (   )/. 

Transition function 

A matrix   which consists of all     elements of Markov chain 

i.e.   {   } is called the transition probability matrix. When 

the Markov chain has continuous state space then   is 

equivalent to transition function or transition kernel. 

Irreducibility and Periodicity of Markov chain 

To understand the irreducibility and periodicity of Markov 

chain, we need to be familiar with   step transition 

probabilities and first passage probabilities first. The   step 

transition probabilities, denoted by    
( )

, are defined as 

  (       (   )    )  Then the first passage probabilities 

can be defined as 

   
( )
   (                         (   )    )  

which means Markov chain reaches to state    for the first 

time after   step starting from state     We can define mean 

first passage time by using the idea of     
( )

. The mean first 

passage times denoted by     can be defined as     

∑      
( ) 

   , provided  ∑    
( )    

     When    , mean 

passage times become mean recurrence times. The state    
is called recurrent, positive recurrent and null when 

∑    
( )    

   ,       and        respectively. 

If    
( )    (chain starting from   returns to   again after   

step) which occurs only when   is a multiple of  , then   is 
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called the period of this Markov chain. If      then Markov 

chain is aperiodic. To be an irreducible Markov chain, all 

states of Markov chain need to belong to the same class. 

Stationary distribution 

Suppose   (        ) be a probability distribution 

with           then   is said to be a stationary 

distribution of Markov chain with transition probability 

matrix   if the condition    ∑         is hold for all    

Ergodic Theorem 

An aperiodic, irreducible Markov chain with transitional 

probability matrix   and stationary distribution   is 

ergodic, so that the ergodic average   ̅  
 

 
∑  ( )   
   

  , ( )- as     where   , ( )-  ∑  ( )  
 
    

Arbitrary and Non-normalized Density 

By arbitrary density, here we mean the form of the density 

does not necessarily belong to any known family. In 

addition, by arbitrary density we don’t mean arbitrary 

measure (reference measure) here. For the density 

considered here, the reference measure is the Lebesgue 

measure. The posterior density, considered in the 

introduction section, is said to be a probability density 

function if it has the form 
 (   )

∫ (   )   
, where ∫ (   )    is 

the normalizing constant. Without having this normalizing 

constant, the posterior is said to be non-normalized density 

(common term used in Bayesian Statistics is density known 

up to normalizing constant). 

Ljung-Box Test 

To test the randomness of a time series Ljung-Box test is 

widely used in Econometrics and other applications of time 

series analysis, and this test is jointly developed by Ljung 

and Box
4
. According to them, the algorithm of Ljung-Box 

test is: (i)     the data are independently distributed against 

    the data  possess some serial correlation up to a certain 

lag   (ii) The quantity    (   )∑ ,(   )    
 - 

     
which is  a function of sample autocorrelation   at lag   and 

sample size   , denotes the test statistic (iii)    ( )
  under 

   and reject the null hypothesis if    (     )
  where 

 (        )
  is the (   )   quintile of the    distribution 

with   degrees of freedom. 

III. MCMC and RoU Methods 

In this section, we will discuss the MCMC and the RoU 

methods in detail by considering suitable examples. 

MCMC 

MCMC methods provide a way of simulating random 

variables from an arbitrary density  ( ), where  ( ) needs 

only be known up to a normalizing constant, and   can be a 

high dimensional. The basis for MCMC methods is the 

combination of convergence and ergodic properties of a 

Markov chain. The basic idea is: (i) to sample from 

distribution  ( ) simulate a Markov chain with stationary 

distribution   (ii) to estimate any function of density   use 

the ergodic average of the chain. Two most commonly used 

MCMC techniques are Metropolis-Hastings (MH) and Gibbs 

sampling algorithms, and both of these techniques can be 

used to simulate random variables from an arbitrary density 

(possibly multivariate) known up to normalizing constant. 

MH Algorithm 

MH algorithm starts working by firstly defining a proposal 

density  (    ), also known as conditional density of    
given  . Using this conditional density, the algorithm 

simulates a Markov chain *  + through steps mentioned in 

Algorithm 1 whose stationary distribution is  ( ). 

To generate a sample of size   from  ( ), Algorithm 1 

needs to run   number of times. Algorithm 1 presented here 

is known as generalized version of the original Metropolis-

Hastings algorithm. The original Metropolis-Hastings 

algorithm invented by Metropolis et al
6
. allows only 

symmetric proposal ( (    ) is said to be symmetric when 

 (    )    (    )). On the other hand, generalized 

version of it proposed by Hastings
2
 allows any normalized 

probability density as a proposal. Under generalized MH, 

proposal density does not need to be symmetric. Let’s 

explain this symmetric idea (different from the classical idea 

of symmetric distribution) by considering an one dimensional 

problem. Suppose the proportional form of  (    ) be 

   (    )  then  (    ) and  (    ) remain the same 

form when their positions are swapped. In this case, we can 

say  (    ) is symmetric proposal. But if  (    ) be 

   (       ) ,  (    ) and  (    ) do not have the 

same form when their positions are swapped. In this case, 

 (    ) is considered a non-symmetrical proposal density. 

Algorithm 1: Metropolis-Hastings algorithm 

Input: Current value of   . 

Output: Simulated value from   ( ). 
Begin 

     1. Propose new state    from the   (   ) 

     2. Calculate  (    )     0  
 (  )  (    )

 ( )  (    )
1 

     3. Generate           (   ) 
     4.  IF    (    )then 

               •      
          Else 

               •     

          End If 

End Begin  

To illustrate how MH works we consider a simple task 

where we aim to simulate from  ( )     (   )   
   , using MH algorithm. To simulate from  ( ) using 

MH first we need to consider a transition kernel (proposal 

density) by which Markov chain moves to new position    
from an initial point  . By adding a point  , generated from 

the density   i.e.      , with an initial point   transition 

kernel simply moves to a new point    i.e.        and 

this kind of kernel is known as random walk kernel. Under 

the setting of random walk kernel there are many common 
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choices for   including the uniform distribution on ,    - 
for some      the normal distribution and the   
 distribution.The distribution of   depends on the choice of 

   Apart from random walk kernel there is another kind of 

kernel known as independent sampler, which draws new 

position independently of the current state of the chain. In 

this paper, we will use random walk kernel, and suppose we 

consider    (    ) then the proposal density becomes 

 (    )  (    ). To implement MH here we consider 

    , and the detail discussion regarding how to choose  

   for a particular problem will be discussed in section V. 

Choosing  (    )  (    ) makes proposal density 

symmetrical, yielding   (    )     0  
 (  )

 ( )
1  

    ,        *  (    +-. Figure 1 plots the generated 

samples from  ( )     (   ) where MH is used. 

 
Fig. 1. Overlaying exponential with density (rate=2) lines over 

histograms of generated samples produced by MH 

algorithms. Markov chain started from     (left plot) 

and     (right plot) in two cases. 

Ratio-of-Uniforms Method 

Ratio-of-uniforms is one of the random variates generation 

techniques from an arbitrary probability density, often 

specified up to proportionality, under acceptance-rejection 

framework which was proposed by Kinderman and 

Monahan
3
. Unlike, the conventional acceptance-rejection 

method, this technique doesn’t require any proposal density 

to sample from an arbitrary probability density. Suppose our 

aim is to simulate from  ( )  
  ( )

∫  ( )   
 
  ( )

 
   ( ), 

where   ∫  ( )    is the normalizing constant. 

Kinderman and Monahan
3
 showed that if the joint density of 

two uniform random variables is uniformly distributed on 

                {(   )     √  .
 

 
/}       ( ) 

then the variable   
 

 
  has probability density function 

 ( )  
  ( )

 
   ( ). To generate (   ) uniformly over 

 , the boundary of the region   needs to be specified 

firstly. For       and       Kinderman and Monahan
3 

enclosed   in a rectangle ,   -  ,     - provided that 

the following theorem is hold: 

Theorem 1: The region   will be enclosed in a rectangle 
,   -  ,     - subject to the conditions that   ( ) and 

    ( ) are bounded where       √  ( ),    

       √  ( ) and           √  ( ). We do not 

consider the proofs of equation 1 and theorem 2 as proofs 

are available in their paper. The theoretical acceptance 

probability,         of a point generated in the bounding 

rectangle under the ratio-of-uniforms method is given by  

       
         

                 
 

 

  (     )
 ( ) 

Finally, for symmetrical unimodal densities, Kinderman 

and Monahan
3
 showed that the probability of acceptance 

       is maximized when mode of these densities ( ) is 

relocated to zero which is stated below in Theorem 2. 

Theorem 2: Without loss of generality, mode (   ) of a 

positive symmetric function   ( ) defined on   can be 

rescaled to    . Furthermore, provided that 

    ,  ( )-
       and      

    ( )   , then sampling 

from    ( ) is equivalent to sampling from   (   ). 
Under these conditions,        is maximized when    . 

The proof of the above theorem is not considered here but 

available in Kinderman and Monahan
3
 paper. The detail 

procedure of ratio-of-uniforms method to simulate a sample 

of size   from an arbitrary probability density  ( )  
  ( )

 
   ( ) with bounded   ( ) and     ( ) is 

summarized in algorithm 2. 

Algorithm 2: Algorithm of ratio-of-uniforms method 

Input: Bounding constraints       and    

Output: Produce   from the target density  ( ) 
Begin 

 For            do 

1. Generate              (   ) 
2. Calculate        and      (     )     

3. If   √  .
 

 
/ then 

    •   
 

 
 

  Else  

   • Go back to step 1 

  End If 

 End For loop 

• Return all           as a desired sample 

End Begin  

IV. Simulating RV via RoU Method 

In this section, we will show how RoU method can be used 

to simulate random variates from arbitrary densities. Here we 

aim to simulate from the density  (   )        (   )
 
 

(    )   (posterior density) considered in section 1. 

Case 1:     observed 

       
 
(    )  ∫       

 
(    )     ⁄ , where   ( )  

       
 
(    )   and    ∫  ( )         . The 

value of the normalizing constant         is obtained by 
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approximating this intractable integral using the Monte 

Carlo integration
1
.To implement RoU method, we need to 

find the values of             and       , which can be 

calculated using the Theorem 1 and the equation 2.  (i) First 

find        √  ( )       (   
 )         

  ⁄   After 

taking natural logs in both sides, we have       

      ,       (   
 )     -⁄ . Maximizing ,       (  

  )     -⁄  with respect to   requires first and second 

derivatives of      which are   (    )⁄    ⁄   and 

 (    ) (    ) ⁄    ⁄  respectively. Solving 

  (    )⁄    ⁄    yeilds     at which   is 

maximized as the value of second derivative is    ⁄ , which 

is negative. Hence       (   
 )         

  ⁄     (ii) 

To find     and    , we need to minimize and maximize 

   (    )       
  ⁄  for     and for     respectively. 

From the graph of     (    )       
  ⁄  (shown in 

Figure 2), we can see that all the y values are negative when 

    (negative function). From calculus theory, we know 

that minimizing of a negative function is equivalent to 

maximize it. Here we will use this idea to minimize any 

negative function. 

 
Fig. 2. The graph of    (    )       

  ⁄  for         
vertical and horizontal lines are drawn at    and at 

        respectively. 

Let’s start with finding the value of            √  ( )  

   
   
   (    )       

  ⁄ . Like earlier, the first and second 

derivatives of     (  (    )       
  ⁄ ) with respect to   

are .
 

 
 
 

 
 

 

    
/ and . 

 

  
 

    

(    ) 
 
 

 
/ respectively. 

Solving for .
 

 
 
 

 
 

 

    
/    yields    , which is done 

using   package named rootSolve, for which the value of 

the second derivative is       . Therefore,   (  

  )       
  ⁄  has a maximum at    , and the maximum 

value is           . 

Over the domain     all the values of   are negative, so 

  is negative function. Therefore, finding the minimum 

value (  ) of   is equivalent to finding the maximum value 

of  . Solving the first derivative of function   over the 

domain      yields      for which the value of the 

second derivative be negative (      ). Therefore, 

  (    )       
  ⁄   has a maximum at     , and the 

maximum value     be         

Finally, plugging the values of      and    into equation 2 

yields the theoretical acceptance rate of a point generated in 

the bounding rectangle which is        
 

  (     )
 

     

    (       )
      .  

Table 1. The values of       and    along with required 

first and second derivatives to find them for 

different observed values of   are shown in 

columns 2-3 respectively. Columns 4-5 present 

the theoretical acceptance rate and mode of 

the target density (value for which   is 

maximized).
* 

indicates values for relocated 

density.
 

    

(1st & 2nd 

derivatives) 

       

(1st & 2nd 

derivatives) 

      Mode 
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.357 3.46 
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(   )

 
 

& 

 
    

(    ) 
 
 

 
 

                

 
 

 
 

 

    
 
(   )

 
 

& 

 
 

  
 

    

(    ) 
 
 

 
 

.162 

 

 

7.74 

 

8            
            

       .733* 0* 

Case II: Other Scenarios  

In case I, we have shown the procedure for finding the 

quantities         and        in detail when     is 

observed. Here we consider other different scenarios 

(observed different   values) and find the values of same 

quantities for each of the cases which are presented in 

Table 1. 

From Table 1, we observe that theoretical acceptance rate 

(      ) decreases when mode of the target density moves 

away from zero. As the target density considered here is 

symmetric, we can apply Theorem 2 to simulate from this 

density i.e. relocating the mode of the target density to zero 

and apply appropriate transformation on simulated data to 

get the sample from the desired density.  Here we will show 

how relocating of the mode of an arbitrary symmetrical 

density to zero yields a higher acceptance rate by 

considering the last case of Table 1. The relocated version 

of        (   )   
     (   )  (    )   is     (   )  
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      (        )
 
 (  (      ) )    where suffix in   

indicates the mode of the density. For relocated density 

    (   ), we have        ,                  and 

normalizing constant         which altogether produce 

            . We have not provided here detail 

calculation of       and    but Figure 3 justifies the values 

of     and    which are mentioned here. 

V. Simulating RV via MCMC Method 

In this section, we apply MH technique to generate data 

from the arbitrary density considered in section 4. We have 

already described in detail how MCMC technique can be 

used to generate data from an arbitrary density in section 3. 

To simulate data from  (   )        (   )
 
 (    )  , 

we use a random walk kernel to move from an initial point 

to a new point where proposal density is   (    )  

(    )   
    (

    

 
)
 

  (    ). As  (    )   (    ), 
their ratio  (    )  (    )⁄  becomes 1. Therefore, 

acceptance probability   (    ) defined in step 2 of 

Algorithm 1 simply boils down to    0  
 ( )

 (  )
1. After 

simplification the ratio  ( )  (  )⁄  becomes 
    

 

    
 

     ( 
    

 
            ). To calculate the value of this 

expression we need to have the values of       and  . For a 

particular problem, the value of   will be observed while    

and     are the initial and proposed values respectively. 

 
Fig. 3. The graph of           (        )

 
 (  (      ) )     

for           vertical and horizontal lines are drawn 

at      and at        , respectively. 

The quantity    tells how much the proposed     will be far 

from an initial point  . Big jump from the current point   

requires large   , which is necessary for any Markov chain 

to explore the parameter space quickly. However, choosing 

large value of    may finally have low acceptance rate 

because of rejection of too many proposals. As a 

consequence, the Markov chain often stays in the same 

place. On the other hand, maintaining high acceptance rate 

in a Markov chain demands a small jump from the current 

point (small value of   ) but it invites another problem 

called slow exploration of the parameter space (require 

large number of iterations to explore the whole parameter 

space). Unfortunately, having a Markov chain which 

possess these two criteria together (high acceptance rate and 

quick exploration) is quite challenging, and most of the 

time a trade-off is made between these two criteria. 

Therefore, we consider four different values of    i.e. 

             and 2 in our random walk Markov chain.  

VI. Results and Discussions 

In this section, both theoretical and simulation results 

obtained under RoU and MH methods are presented along 

with discussions. Here all numerical computations are 

computed in R on a Samsung XI machine with an Intel (R) 

Core (TM) i7-4900 (single) processor.  

Table 2 shows the theoretical acceptance rate (      ) of a 

point generated in the bounding rectangle under RoU 

method for different values of  . From this table, it is clear 

that        decreases when mode of the target density 

moves away from zero, and        is maximized when 

mode is zero. 

Table 2. Theoretical (      ) and simulated  

( ̂     ) acceptance rates for different values 

of   under RoU method. 

    0 2 4 8 

Mode 0 1 3.46 7.74 

       0.747 0.653 

- 

0.357 

- 

0.162 

0.733* 

 ̂      0.743 - - 0.729 

Table 2 also shows the simulated acceptance rate ( ̂     ) 

for      and 8
*
which is very close to theoretical       . 

The simulated acceptance rate is calculated based on a 

sample of size ten thousand (10,000). We have used 

random seed number to produce  ̂     , and we also 

observed that using different seed numbers produce 

approximately similar results. From the above discussions, 

it is observed that acceptance rate of a point generated in 

the bounding rectangle decreases when mode of the target 

density moves away from 0, and it is maximized when 

mode is zero. From Table 2, it is observed that theoretical 

acceptance rate drops from 0.747 to 0.162 when mode 

moves from zero (0) to 7.70. However, relocation of the 

mode of        (   ) to zero i.e.     (   ) increases the 

theoretical acceptances rate from 0.162 to 0.733
*
. Our 

simulation study also confirms this acceptance rate which is 

shown in Table 2. After generating sample from the 

relocated density,     (   )  we need to transform (add 

7.74 with every element) this sample such that sample 

comes from        (   ). Figure 4 presents the simulated 

results: generating sample from        (   ) (right plot) 

through     (   ) (left plot). We haven’t considered the 

other cases for relocating as all the approaches are the 

same.  
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Fig. 4. Overlaying     (   ) (left) and        (   ) (right) 

density lines over histograms of generated samples (size 

104) respectively. Vertical lines are drawn at     and 

7.74 points. 

Before starting evaluating the performance of MH sampler 

for simulating sample from  (   ), firstly we discuss here 

some of the important issues of MCMC implementation. 

First of all sample produced by Markov chain are no longer 

independent as successive observations are correlated 

which needs to take into account for making any valid 

inference. As a possible remedy of successive correlation 

sample are thinned (retaining only every    observation) so 

that resulting sample is close to independent. Secondly, we 

have the convergence issue of a Markov chain that we need to 

address. Suppose { ( )  ( )   (   )  ( )  (   )    (   ) 

 ( )} be the generated sample produced by a Markov chain 

which has converged after   iterations then any inference 

regarding any unknown parameter should be made based on 

{ (   )    (   )  ( )}. Points up to     iterations are 

discarded which are known as burn in period, and Monte 

Carlo estimator based on remaining points still considered 

as unbiased estimator
1
.  

From Table 3, we observe that with the increases of    

values the acceptance rate of MH sampler decreases whilst 

Markov chain converges quickly (require less number of 

iterations). The later one is also supported by the Figure 5. 

These findings are consistent with the theory.  For large    

Markov chain jumps far away from initial value resulting in 

quick convergence as well as low acceptance rate. From 

Table 3 and Figure 6 (left plot), it is also observed that 

generated sample are highly correlated (lag are significant 

up to 5000 lag, p-value of Ljung-Box test is very small and 

shown in parenthesis) for all cases. For practical 

implementation generated sample should be close to 

independent while a trade-off between acceptance rate and 

convergence time is necessary to made. The problem we 

considered in this paper is relatively easy that’s why MH 

sampler only needs 20-70 iterations to converge but for a 

complicated problem MH sampler may take long time to 

converge. 

Convergence time of a Markov chain varies when it has 

started from different initial points (not shown here) but we 

have observed similar type of pattern under different    

values. 

Table 3. Simulated acceptance rate, significant lag 

order and burn-in period of generated samples 

obtained by MH over different    values. 

   value  ̂      Sig. Lag.Order Burn-in period 

0.5 0.789 5000 

(<2.2e-16) 

70 

1.0 0.703 5000 40 

1.5 0.655 5000 20 

2.0 0.604 5000 20 

 

 

Fig. 5. Trace plots of   values where first 100 points are 

considered (visualize clearly) to plot. For all case, 

Markov chain has started at initial point      while 

horizontal lines are drawn at median point (7.74). 

Table 4. Ljung-Box test statistic and their corresponding 

  values in parenthesis at different lags 

Thinning 

(every 

   points) 

Lag 

(1) 

Lag 

(3) 

Lag 

(5) 

Lag 

(8) 

     9.688 

(0.00185) 

12.427 

(0.006054) 

13.384 

(0.02003) 

14.379 

(0.0724) 

     1.0575 

(0.3038) 

- - - 

Any statistical inference should be made based on 

independent sample. From Table 3 and Figure 6 (left plot), 

we have seen that sample produced by MH sampler is 

highly correlated (lag is significant even after 5000 lag) 

irrespective of    values. To draw independent sample 

using MH sampler we need to thin the generated sample. 

Table 4 shows the test of independence of thinned sample 

where thinning is made by keeping only every 10
th

 and 20
th

 

observations. From Table 4, we have seen that even thinned 

sample (where every 10
th

 observation is kept) exhibits some 

sort of correlation (lag is significant up to lag 5, p value 

(.02) < 0.05) but after that lag is insignificant. On the other 

hand, thinned sample (where every 20
th

 observation is kept) 
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does not have any correlation, lag is insignificant at lag 1 

(p-value 0.3038< 0.05). This is also supported by acf plot 

shown in Figure 6 (right).   

 

Fig. 6. ACF plots of generated sample produced by MH 

algorithm: (i) left plot is drawn based on original sample 

where up to 500 lag  shown (ii) right plotis drawn based 

on thinned sample (every 20th observation) where up to 

50 lag shown. 

 

Fig. 7. ACF and trace plots of generated sample produced by RoU 

method respectively: (i) left plot (acf) is drawn based on all 

sample observations where up to 100 lag  shown (ii) right 

plot (trace) is drawn based on only first 100 values 

(visualize clearly).  

On the other hand, sample produced by RoU method 

doesn’t have any correlation which is examined again by 

using Ljung-Box test (p value for testing lag 1 is 0.4659) 

but result is not shown here. This is shown in Figure 7 (left 

plot) while right plot show the trace plot of generated value 

which converges to mode from the very beginning.   

Finally, we can say that both MH sampler and RoU method 

can be used to simulate from any arbitrary density which is 

known up to normalizing constant. However, using MH 

sampler one needs to address properly the MCMC issues 

(correlated sample, acceptance rate and convergence time). 

On the other hand, implementing RoU method does not 

require to check these sort of issues. The only one concern 

of RoU method is to implement it for non-symmetrical 

target density as relocating via the mode does not help too 

much as far as acceptance rate is concerned. To draw an 

independent sample of size 1000, MH sampler requires 

20,000 observations which is 20 times higher than number 

of observations required in RoU method in the context of 

problem considered in this paper. Considering a more 

complicated density MH sampler may require even 100 

times more observation than that of RoU method require. 

VII. Conclusion and Future Works 

In this paper, we have illustrated how MCMC and RoU 

method can be used to simulate random variates from an 

arbitrary densities, and compared their performance. From 

our simulation study, we have established that RoU method 

performs better than MCMC methods as far as quality of the 

generated sample (randomness) and computational context 

(to draw 1000 independent observations MH sampler 

requires 20,000 observations which is 20 times higher than 

number of observations required in RoU). However, for non-

symmetrical density how RoU method will be relocated to 

increase the acceptance rate still unexplored. Finding the 

optimal value by which relocating non-symmetrical density 

yields higher acceptance rate is still ongoing research and one 

can take it as a future research. In addition to that, one can 

also try to see how these two methods perform when target 

density is multi-modal. 
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