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Abstract 

The multivariate normal density (MVN) is considered to be the underlying distribution of many observed samples in 

statistics for modelling purpose. Therefore, simulating sample from the MVN is required to verify the efficiency of the fitted 

model. Decomposition based approach is currently being used to simulate sample from MVN whose building block is 

Cholesky or eigen decomposition. Unfortunately, there is no concrete study in the literature so far regarding the efficient 

decomposition technique between these two1. In this paper, an attempt is made to determine the efficient decomposition 

technique between these two in the context of MVN generation through an extensive simulation study. From our simulation 

study, it is observed that in general the Cholesky decomposition is numerically faster than the eigen decomposition. 

Keywords: Efficient decomposition methods, decomposition based MVN generation, Cholesky and eigen decomposition.

I. Introduction 

Generating sample from MVN is required to serve many 

purposes in different fields. Most importantly, especially in 

Bayesian statistics simulating sample from MVN is 

required frequently. For example, suppose we have 

observed sample                                , 

from   dimensional normal density with mean vector, 

      and variance covariance matrix,     , and we 

wish to estimate    and    in Bayesian approach. For 

simplicity, we consider   , is known here and we need to 

estimate    only. Choosing   dimensional normal density 

with mean vector    and variance covariance matrix    

(which are known) as a prior density for unknown mean 

vector   yields a posterior distribution of   (likelihood   

prior distribution of  ), which is also   dimensional normal 

density. The parameters of the posterior density,   

dimensional normal density, are the function of  ,    and 

  . Point estimate of    can be obtained by taking mean of 

the generated sample (  draws) from the posterior density 

(  dimensional normal density).  

Several statistical packages like R, SAS, Stata and SPSS offer 

generating sample from MVN through different functions. 

For example, R offers generating sample from MVN through 

„mvrnorm‟ package under MASS library. The building block 

of all the statistical packages for generating sample from 

MVN is the decomposition method which uses either (i) 

eigen decomposition or (ii) Cholesky decomposition. Modern 

computing facility makes this task very simple, and using the 

state of art computing facility it is possible to generate 1 

million draws from MVN even less than in one minute time. 

However, when this task is required in conjunction with other 

tasks then altogether computing time of the whole process 

could be an issue. For example, for the above problem if    

also needs to be estimated along with    , sampling from the 

two full conditional distributions of    and    is required to 

get the point estimates of    and    under MCMC 

framework. Therefore, simulating sample efficiently from a 

high-dimensional posterior density under MCMC framework 

demands efficient sampling from each of the full conditional 

density.  

Efficient MVN generation under decomposition framework 

demands using an efficient decomposition method. In the 

context of efficient decomposition method, Ripley
1
 pointed 

out that Cholseky decomposition might be faster than eigen 

decomposition but eigen decomposition is numerically 

stable. Unfortunately, there is no concrete study regarding 

these issues in the literature which motivated us to conduct 

this study. We limited our study only to investigate which 

decomposition method is faster and how much it is faster 

than other. Study on investigating numerical stability is still 

an open research problem, and we aim to investigate it in 

near future.  

We organize the rest of the paper as follows: Section 2 

introduces some important terminologies used in this paper. 

The Cholesky and eigen decomposition methods are 

discussed with illustrative examples in Section 3. Section 4 

and Section 5 introduce the required simulation settings and 

numerical results obtained from simulation respectively. In 

the penultimate section, we present the discussions of these 

results which are followed by conclusion and future work 

presented in Section 6. 

II. MVN and Related Terminologies 

In this section, we introduce multivariate normal density 

and related terminologies required to generate from MVN. 

We here used the text book Johnson and Wichern
2
 to 

prepare the following overview of related terminologies 

necessary to generate sample from MVN. 

Multivariate Normal Distribution 

The multivariate normal distribution is a generalization of 

univariate normal distribution to two or more variables. If 

the  -dimensional random vector,   [              ] 
has mean vector,  , and a symmetric positive definite 

covariance matrix,  , then   is said to have a multivariate 

normal distribution with density function    |     as 
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 ⁄ | |         [              ], 

with        ,          and            . 

Symmetric Matrix  

A square matrix   is said to be symmetric if it is equal to 

its transpose i.e.,   =   . The entries of a symmetric 

matrix are symmetric with respect to the main diagonal. For 

example, matrix   ( 
  
  

 ) is a symmetric matrix as   

=   . 

Positive Definite Matrix 

A     symmetric real matrix   is said to be positive 

definite if        for all non-zero   in   . The 

properties of positive definite matrix are (i)        for 

all    , (ii) If a matrix   has full column rank (the   

columns are linearly independent), then the product      is 

a positive definite matrix, (iii) A positive definite matrix   

can be decomposed into a product of matrices, (iv) The 

eigenvalues of   are positive and (v) The determinants of 

principal submatrices (square submatrices beginning with 

row and column) are positive. 

Eigen Decomposition of a Matrix 

Let   be a  -dimensional positive definite square matrix 

and   ‟s (           ) are   linearly independent 

eigenvectors of A and   ‟s (           ) are the 

corresponding eigenvalues. If   is the      matrix whose 

 th column is the eigenvector    and   is the diagonal 

matrix whose diagonal elements are the eigenvalues 

(       ), then   can be factorized as,          Using 

the fundamental property of eigenvectors        and 

substituting   by   in       , we can derive,        . 

III. Methods for Generating Multivariate Normal 

Random Variates via Decomposition 

This section discusses decomposition based techniques, 

which are currently being used, for generating samples 

from MVN. In the current setting, usually two 

decompositions, namely eigen and Cholesky 

decompositions are used to generate samples from MVN. 

Eigen Decomposition 

Eigen decomposition is one of the most commonly used 

methods to generate multivariate normal random variates. 

To simulate   [              ] from  -dimensional 

MVN with mean vector,     , and covariance matrix, 

    , eigen decomposition decomposes        , where 

  [            ]. The columns of   are the eigenvectors 

of   and                      contains the 

corresponding   eigenvalues. Here „    ‟ means diagonal 

matrix. As   is symmetric, the eigen vectors are orthogonal 

        and   is an orthonormal          matrix, we 

have       . 

Without loss of generality, assume that   is a zero mean 

vector with   [         ]   and define,  ̃     . The 

covariance of  ̃ is 

 [ ̃ ̃ ]   [      ]     [   ]       

         . The components of  ̃ will be uncorrelated 

with each other since the covariance of  ̃ is a diagonal 

matrix,  . Bishop
3  

showed that  ̃             , where 

         . Since the random components of  ̃ are 

uncorrelated, we can produce another random vector 

          whose components are independent and 

identically distributed (i.i.d), by normalizing the variance of 

each element of  ̃. That means        ⁄  ̃      ⁄    . 

By inverting this we get,       ⁄  . Finally, 

multivariate normal random variates along with mean 

vector,  , and covariance matrix,  , can be generated from 

the transformation         ⁄  . Steps for generating 

random variates via eigen decomposition is discussed in 

Algorithm 1. 

Cholesky Decomposition 

To generate sample from MVN, another decomposition 

named Cholesky decomposition is also widely used. This 

decomposition is defined for a symmetric and positive 

definite matrix. In this decomposition method, the  -

dimensional covariance matrix   (  =    ) is decomposed 

as,   =    , where   is a unique lower triangular matrix of 

 . Now, if   ‟s are independent  (0,1) random variables 

then    is a multivariate normal
4
 with covariance matrix  .  

Algorithm 1: Eigen decomposition to generate MVN 

Input:         , mean vector,      and        

          covariance matrix,     . 

Output: Simulated value of            . 

1. Transform   to     matrix  . 

 

2. Compute   [            ] and  

           

                         . 

           

 3. Calculate          ⁄  . 

Matrix   can be obtained from the following formula :  

    
    ∑       

   
   

√    ∑    
    

   

 , where ∑           
    1     

 . Finally, we get our desired   using,       . The 

procedure for generating random variates via Cholesky 

decomposition is summarized in Algorithm 2. 

Algorithm 2: Cholesky decomposition to generate MVN 

Input:         , mean vector,      and        

          covariance matrix,     . 

Output: Simulated value of            . 

 1. Transform   to     matrix  . 

 2. Compute     
    ∑       

   
   

√    ∑    
    

   

 .  

 3. Calculate        . 
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There is another decomposition technique named singular 

value decomposition (SVD) in the literature, apart from 

eigen and Cholesky decompositions discussed earlier. SVD 

is a generalization of eigen decomposition of a square 

(     normal matrix to any rectangular (     matrix. 

But multivariate normal variates generation requires to 

decompose the covariance matrix,    which is indeed a 

square matrix.
5
 Therefore, in our study we didn‟t consider 

singular value decomposition.  

IV. Simulation Settings 

In this section, we have presented the setup of our 

simulation study for the two methods that are considered in 

Section 3. Here all the computations are computed in R on a 

MacBook Air with an Intel (R) Core (TM) i7 processor 

running at 1.80 GHz. By using the eigen decomposition and 

Cholesky decomposition methods, samples of different size 

are generated for different values of  . We consider several 

combinations of   and   to compare the performance of 

eigen and Cholesky decomposition methods. We choose 

mean vector,  , arbitrarily (without help of any statistical 

packages) as choosing   is straightforward. However, 

choosing   arbitrarily is not straightforward like choosing 

mean vector as it needs to be a positive definite and 

invertible matrix.
6 

For example, choosing   arbitrarily may not be a positive 

definite and invertible matrix at the end. We need to 

consider a lot of   for different combinations and finding 

them by choosing arbitrarily is time consuming. For 

instance, for   = 100, arbitrarily choosing the elements of 

 , 10,000 elements, is difficult and it may have ended up 

with non positive definite and non invertible matrix. 

Therefore, we use a R function “genPositiveDefMat” in R 

under “clusterGeneration” package to generate a positive 

definite matrix
6
. 

We have computed the CPU time consumed to execute the 

whole program using the “system.time” command and 

noticed that consumed CPU time varies one run to another 

run by 1 to 2 percent. We have also investigated the impact 

of choosing different   values by considering high and low 

variance and covariance components of   and different 

combinations of mean vector provided that   and   are 

fixed. We consider the following combinations of mean 

vector and covariance matrices, 

                  ,              and    
                     . 

   (
         

          
           

),  

   (
             

            
            

) and  

   (
              
              
              

). 

Here, we have considered 9 combination of   and  . For 

instance, in   , the variances of the variables are high but 

covariances among variables are low. 

V. Numerical Results 

In this section, we have presented our simulation results 

obtained for the two methods that are considered in Section 

3. All the results presented here are produced using a 

random seed number and we have found that using different 

seed numbers produces similar kind of results. The 

performance of the two methods (computing time) due to 

choosing of different   and   values for a fixed   and   is 

presented in Table 1.  

Table 1. Average computing time (in seconds) required 

to generate 10000         random variates 

using different combinations of   and  . 

Mean Covariance Cholesky Eigen 

 

   

   0(Approximately) 0.001 

   0.001 0.001 

   0(Approximately) 0.001 

 

   

   0.001 0.001 

   0(Approximately) 0.002 

   0.001 0.002 

 

   

   0(Approximately) 0.001 

   0(Approximately) 0.002 

   0.001 0.001 

Table 2. Average computing time (in seconds) required 

to generate MVN random variates for 

different   and   values 

Dimension 

       (   
Method              Sample Size (   

500 10000 1000000 

     2 Eigen 0.001 0.002 0.003 

Cholesky 0.001 0.001 0.002 

     3 Eigen 0.001 0.002 0.036 

Cholesky 0.001 0.001 0.032 

     4 Eigen 0.001 0.002 0.056 

Cholesky 0.001 0.001 0.051 

     5 Eigen 0.001 0.002 0.080 

Cholesky 0.001 0.001 0.072 

    10 Eigen 0.001 0.003 0.237 

Cholesky 0(Approximately) 0.002 0.227 

    25 Eigen 0.002 0.009 1.403 

Cholesky 0.001 0.008 1.396 

    50 Eigen 0.005 0.038 4.428 

Cholesky 0.001 0.030 4.420 

    100 Eigen 0.015 0.122 14.384 

Cholesky 0.009 0.119 13.118 

Table 2 shows the average required computing (CPU) time 

to generate samples for different values of   and  . 

Again, average computing time required to generate MVN 

random variates for   = 2, 5, 25 and 50 using both eigen 

and Cholesky decomposition methods are shown in Figure 

1. For each   value we have considered   = 500, 10000, 

50000 and 100000. 
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Fig. 1. Plot of average   computing time (in seconds) required to 

generate MVN using both eigen and Cholesky 

decomposition methods. 

VI. Discussion  

In this section, we have discussed our simulation results of 

Section 5 obtained for the two methods that are considered 

in Section 3.  

Table 1 shows the average computing time required to 

generate 10000 observations for   =3. From Table 1, we 

can see that the performance of the two methods 

(computing time) is not affected due to choosing of 

different   and   values for a fixed   and  . We have 

repeated this for other values of   and   and ended up with 

similar results (result is not shown here). 

From Table 2, it is observed that Cholesky decomposition 

requires less computing time compared to eigen 

decomposition irrespective of   and   values. However, the 

required computing time difference of these two methods 

for generating sample for a particular   and   value is 

small. Therefore, one can use any decomposition method if 

the problem is solely related to MVN generation. But if 

MVN generation is required in conjunction with the other 

tasks, it is recommended to use Cholesky decomposition. 

From Figure 1, it is observed that Cholesky decomposition 

method requires less time compared to eigen decomposition 

method irrespective of   and   values. However, margin of 

the difference of required computing time is small.  

Finally, it can be concluded that both eigen and Cholesky 

decomposition methods can be used to generate MVN 

random variates. From our findings, it can also be stated 

that if the task is only data generation from MVN, then 

using Cholesky or eigen decomposition method is not an 

issue. But if generation from MVN is required in 

conjunction of other task, the method of Cholesky 

decomposition is numerically cheaper. 

VII. Conclusion 

This paper compares the performances of eigen and 

Cholesky decomposition method to generate MVN random 

variates, where performances are measured based on the 

required computing time. From our simulation study, we 

have seen that the performance of Cholesky decomposition 

method is better than eigen decomposition method. 

However, the required computing time difference of these 

two methods for generating sample for a particular   and   

value is small. Therefore, one can use any decomposition 

method if the problem is solely related to MVN generation. 

But if MVN generation is required in conjunction with the 

other tasks, it is recommended to use Cholesky 

decomposition. As a future study one can investigate on the 

numerical stability of these two methods which is still an 

open research problem. 
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