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Abstract

It is often crucial to make inferences about parameters of a nonlinear regression model due to a dependency of Fisher information 
on the parameter being estimated. Here, the distribution of the relevant test statistic is not exact, but approximate. Therefore, similar 
conclusion, based on the values of different test statistics, may not be reached. This study shows, in this circumstance, how to come 
up with a nonlinear regression model that can be used for forecasting and other related purposes. The goodness of the approximate 
distributions, F and 2χ , has been assessed to reach a correct decision. The simulation results show that the simulated probability 
of committing a type I error is very close to its true value in case of F distribution corresponding to F  statistic. However, the 2χ  
distribution does not do a similar job for the LRT statistic since the simulated type I error is quite larger. 
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I. Introduction
In regression analysis, one of the main purposes is to find a 
relationship between a response variable and covariates. This 
relationship is expressed through some models.The general 
framework of regression model is that observed response ( )Y  
is a linear combination of function of covariates 
where X denote covariates and  denote parameters of the 
model) and a random error ( )ε  term: 

        (1)

Therefore, the random response is dependent on the covariate 
( )1 2,  ,  ,  

T

pX x x x= … T, Twhere p  is the number of covariates.
Here, the mean function 

 
is assumed to 

have a known functional form although it contains unknown 
parameters . It is interesting to note that if the function 
of covariates  is a linear function of  we consider 
linear regression model. However, if  is a nonlinear 
function of  we consider a nonlinear regression model1. In 
this research, we use nonlinear regression models which are 
often encountered in chemical reactions, in biology, clinical 
trials2, reliability and life testing3.
We may know whether the relationship between response 
and predictor is nonlinear either by looking at the scatterplot 
or by assessing the functional form of a model. For nonlinear 
regression models, likelihood based inferences are usually 
recommended4. Iterative methods are used to deal with score 
function and Fisher information upon which the inference 
procedure is based. We can use F-test and likelihood ratio 
test (LRT) for testing the adequacy of the model. We use the 
corresponding approximate distributions of the test statistic 
to calculate p-values. However, for non-linear regression 
models, all distributions about the test statistic are just 
approximate, not exact. The approximation will be good 
if the sample size is large and the number of parameters is 

small compared to the sample size1. In this research, along 
with an exploration of inference procedures for nonlinear 
regression model, we would like to investigate how good the 
approximation is to the true distribution of a test statistic.

II. Methods 
Let us consider a dataset ( ); i ijy x  for 1, 2, , i n= … and 

1,2, , j p= … . Now, the parameters under the model (1) can 
be estimated by using the technique of least square estimates 
(LSE). We know that theLSE of θ  is defined as

.The 
idea of LSE of linear model can be extended to nonlinear 
model. However, if the distribution function is known the 
maximum likelihood estimation (MLE) can be applied to 
estimate parameters of the model. A likelihood function for 
the observed dataset is 

Then the log likelihood function is given by

	 (2)

By minimizing the objective function

 we get similar estimate

 .ˆ ˆ
LSE MLEθ θ=  However, we often do not find the close form 

of θ  by solving the equation ( ) 0
S θ
θ

∂
=

∂
. In this situation, we 

use Gauss-Newton algorithm to get numerical solution1. We 
can approximate ( ),if x θ  by a linear function:
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where ( )0θ  is the given initial value of . θ Using this 
approximation the model in (1) can be re-written as

 

which 
is approximately a linear regression model. Then in matrix 
notation, the model can be written as

 
where,  

 .

Therefore, the objective function takes the form,

.

Then using the results for the linear model, we get

 
Thus the 

value of θ is updated according to the following expression:

r = 0, 1, 2, 3, ....

Therefore, theoretically we can stop the iteration if 
. Using the estimates of the parameters the 

residual vector is obtained,

.

. Then the LSE and MLE of 

 are respectively given by  where q is the 

number of parameters in the model and 

For nonlinear regression model, we do not have close form 
of , which makes the study of properties of   quite hard. 
Suppose the true value of  is  (usually unknown). Making 
Taylor expansion on 

 
around , we approximate 

	
 
by

              
   (3)

We expand 
 
around  because we need measure how 

close the estimate is to the true value. Repeating the same 
procedure, as before, for getting the updating formula for 
Gauss-Newton algorithm, we have 

Using (3), the residuals are  

     

In matrix notation,

 

Therefore, the estimate of  is 

	

When sample size is large enough, it can be shown that 
is approximately distributed as multivariate normal with 
mean vector  and dispersion matrix 
and  are independent, and . 

We can define several test statistics to conduct hypotheses 
testing about parameters of the model. It is interesting to 
note that if there are replicates available (that is, repeated 
measurements at the same value of covariate), then we can 
assess the mean function with these tests. This can be done 
by comparing the chosen nonlinear regression model to a 
more general analysis of variance (ANOVA) model. Note 
that the specification of a one-way ANOVA is analogous to a 
regression analysis. The only difference is that the covariate 
needs to be a factor and not a numeric variable5.

The one-way ANOVA model imposes no restrictions on how 
the response changes due to change of values of the covariate, 
as there will be one parameter for each distinct value of the 
covariate. Consequently, it is a more general model than the 
nonlinear regression model, or, in other words, the nonlinear 
regression model is a submodel of the ANOVA model6. 
Here we are interested in testing the null hypothesis that 
the ANOVA model (i.e., full model) can be simplified to the 
nonlinear regression model (i.e., reduced model). We may 
adopt two approaches, namely, the F -test and the likelihood 
ratio test (LRT) for testing the hypothesis1, 7.

In comparing the two models (full model and reduced model) 
we shall use extra sum of squares principle. Based on this 
principle, the F -test statistic is defined as

          
 

which follows  distribution approximately under the null 
hypothesis. Here, SSE  stands for error sum of square, 
df  indicates degrees of freedom and  q  is the number of 
parameters in the model. Therefore, for a given significance 
level α  (probability of committing a type I error), if 

 (or, p-value is smaller) then 
we reject the null hypothesis. Here for the given model, 
either reduced or full model, where ir  is the residual for i -th 
observation based on the given model.
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Similarly, the above mentioned purpose can be served using 
the likelihood ratio test where the maximum likelihood 
function under full model and reduced model are compared. 
Using equation (2) the likelihood ratio statistic is	

If ( )
2

 , 1n df changesR αχ −>  then we reject the null hypothesis.

We use F -test and LRT to test the adequacy of the model. 
In order to calculate the p-values for the above test, we 
need to use the corresponding approximate distributions.
But the distribution about F -test statistic and LRT are just 
approximate, not exact. If the conclusion based on F  test 
and LRT differ substantially (i.e., not similar) then we can 
check goodness of the approximation of the distribution of 
the relevant test statistic. This can be done by implementing 
the following steps under the assumption that the fitted 
model is true and the calculated values of the test statistic are 
obtained from their true distributions.

Step 1: Generate M  samples of size n .

Step 2: Determine the value of the desired test statistic ( F or 
LRT statistic) for each of the M random samples. 

Step 3: Count the number of the statistic that exceeds 
( )1 100%α−  quantile of the corresponding distribution 
( F or 2χ distribution) (let this number is G when we use F  
distribution or K when we use 2χ  distribution).
Step 4: If the simulated probability of type I error, 

G
M

α≈  
then F  distribution provides a good approximation to the 
true distribution of  F  statistic. If, otherwise, K

M
α≈ , then

2χ  distribution provides a good approximation to the true 
distribution of LRT statistic.

III. Results and Discussion: Data Analysis and Simulation
Example Data Analysis

In this research we will use a dataset named ‘Chwirut2’ from 
R package NISTnls8. These data are the result of a study 
conducted by National Institute of Standards and Technology 
(NIST) involving ultrasonic calibration9. The dataset 
contains measurements from an experiment examining how 
ultrasonic response depends on the metal distance. The 
response variable is ultrasonic response, and the covariate is 
metal distance. A preliminary plot of the data is shown in 
Figure 16, 9. We see that the linear relationship assumption is 
not reasonable here and the plot seems to exhibit some kind 
of exponential decay. An exponential class model with three 
parameters suggested for this data by NIST is given below:

	 ( ) ( ) ( )1 
1 2 3

2 3

, , , ,           4i
i i i i

i

exp x
y f x

x
θ

θ θ θ
θ θ

−
= + = +

+
ò ò

where, y  and x  represent ultrasonic response and metal 
distance respectively, and 1 2 3, , θ θ θ  are the three parameters 
of the model5. 

The parameters are estimated based on the ultrasonic data. 
From Table 16, we see that all three parameters of the model 
are significant (since p-values are very small). Therefore, 
ultrasonic response can be predicted for different values of 
metal distance using the estimated model that was suggested 
by NIST.

There are some replications of covariate values in the 
dataset as evident from Figure 1. We can test whether the 
model suggested by NIST is adequately fitted to the data by 
comparing the distribution of F  statistic and LRT statistic. 
That is, we would like to compare the suggested nonlinear 
regression model to a more general ANOVA model.
From Table 2, we see that the p-value corresponding to F  
statistic is approximately 0.1912. This indicates that we 
cannot reject the null hypothesis. That is, we do not have 
enough evidence to reject the model proposed by NIST. On 
the other hand, a small p-value of 0.025 is obtained based on 
the LRT (see Table 3). This leads to reject the null hypothesis. 
That is, we have strong evidence to reject the model suggested 
by NIST. Clearly, we have reached a contradiction.

Fig. 1. A plot of ultrasonic response data6, 9

Table 1. Estimates and Inferential statistics for the model 
parameters6

Parameters Estimated 
values

Standard 
error

Test statistic, t p-values

0.1666 0.0383 4.349 <0.001
0.0052 0.0007 7.753 <0.001
0.0122 0.0015 7.939 <0.001

             Table 2. Model comparison using ANOVA

Model Residual 
df

Residual 
sum of 
square

df Sum of 
square

F-value p-value

Reduced 
model

51 513.05

Full model 32 279.38 19 233.67 1.4087 0.1912

              Table 3. Model comparison using LRT

LRT statistic value df p-value
32.822 19 0.025

1θ
2θ
3θ
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Table 4. Simulated probability of type I error following 
four steps of the methods section

Test statistic Distribution Simulated 
probability of type 

I error

F  statistic 	 F 0.049

LRT statistic 	 2χ 0.276

Simulation Study

We conduct a simulation study to make a reasonable decision. 
In order to reach a more convincing conclusion we should 
check which approximation is better, the F distribution to 
the F  statistic or the 2χ  distribution to the LRT as discussed 
in the methods section. 

The simulation study is based on the ultrasonic data of size
54n = . For the simulation, we consider 20000M = and 
0.05α = . Note that we have assumed the estimated model 

(see Table 1) as the true model.The response variable is 
simulated according to the model mentioned in equation 
(4), where the error s are considered to follow a normal 
distribution with mean 0 and standard deviation 3.172, which 
is actually the residual standard error obtained by fitting 
the model suggested by NIST. The steps mentioned in the 
methods section are implemented through R programming 
and only relevant output is reported in Table 4.

It is observed from the Table 4 that the simulated probability 
of making a type I error obtained by using the F  distribution 
corresponding to the F  statistic is very close to ,α  the true 
probability of making a type I error. Therefore, we say that 
the F  distribution provides a very good approximation to 
the true distribution of the F  statistic. On the other hand, the 
simulated probability of making a type I error obtained by 
using the 2χ distribution corresponding to the LRT statistic is 
far away from ,α  the true probability of making a type I error.
This indicates that the true quantile of LRT statistic is larger 
than that of 2χ  distribution. Therefore, the actual p-value for 

LRT might be much higher than 0.025 as reported in Table 3.

IV. Conclusion
For the given data and model, the F  distribution has 
provided a very good approximation to the true distribution 
of the F  statistic. However, the 2χ  distribution does not 
do a similar job for the LRT statistic.Through our simulation 
study we can tell that the result based on F statistic is more 
convincing. Therefore, we do not have evidence to reject the 
model suggested by NIST.
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