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Abstract

Business organizations in Bangladesh are basically running their business through intuition based forecasting. But it is crucial to 
anticipate the near future as accurate as possible to make the business profitable. This helps the manager of a business organization 
to plan their resources properly and as a result the organization can minimize its cost and maximize profit. In this research paper, 
we will analyze the business strategies of a company in Bangladesh by comparing the results obtained from three different rigorous 
forecasting techniques such as Holt’s method, Holt-Winter’s method and Autoregressive Integrated Moving Average (ARIMA) 
method so that the business organization can select proper forecasting technique to run their business. For this, we will first illustrate 
and analyze basics of forecasting and time series analysis, usual forecasting methods, some rigorous methods e.g., Holt’s method, 
Winter’s method and Autoregressive Integrated Moving Average (ARIMA) models. We will carry out our analysis and calculation 
by using Microsoft Excel, statistical data analysis tool R and MATHEMATICA. 
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I. Introduction 
The introduction section introduces the reader to our research 
work. We design this section with several sub sections such as 
a brief history of forecasting, definition, importance of forecast 
in everyday life and outline of the paper and methodology.

From ancient time to modern era people make forecasts. 
Ancient people were not aware of that they made forecast 
because of lacking the proper knowledge but they did it 
for their sake. They had to predict where they should go 
to collect their food, what would the weather be etc.In the 
twentieth century, local or international business expands 
all over the world especially after World War II. Business 
organizations are always in search of new market places and 
busy with estimating market demands1,2. The Operations 
Research workers plays a vital role to estimate the future 
demands, costs, and so on by implementing the theory of 
forecasting rigorously. The researchers are continuously 
trying to develop better forecasting models.

Importance of Forecasting
This section describes the importance of forecasting in 
the field of managements. Forecasting is an important and 
necessary tool which can help the business organizations 
to plan their resources effectively. Forecasting provides the 
relevant and reliable information so that the manager of the 
company can plan their future events accordingly3,4,5.

However, the elements of doing business are constantly 
changing. As a result the business organizations has to 
change their decision making process6,7,8.

Methodology
The data, we will use in our numerical example, are 
secondary type. We analyze our data using R (a statistical 
data analysis programming language), Microsoft Excel and 
we use MATHEMATICA to solve LP and R in analysis data 
pattern and suitable ARIMA model selection. Mean absolute 
deviation (MAD) and mean absolute percentage error 
(MAPE) are used as error evaluation9,10, 11,12.

Holt’s method, Winter’s method and ARIMA (Auto 
Regressive Integrated Moving Average) method for time 
series data with trend and seasonality are noteworthy. 
Here in this Section we only use the plot to see its trend or 
seasonality for Holt’s and winter’s method. For ARIMA, we 
use a statistical programming language R to see the pattern 
and other test such as ACF13,14 (Auto-Correlation Factor). 
We also try to find any shortcomings in the method used for 
forecasting for a particular data set. In the last section of this 
Section, we will present detail about ARIMA method for 
trend involved data and programming code in R for selecting 
better ARIMA model15,16.

The rest of the paper is organized as follows. In Section 2, 
we will discuss some rigorous methods of forecasting such 
as Holt’s method. In Section 3, we will analyze Winter’s 
method. In Section 4, ARIMA method will be analyzed. We 
will give numerical examples for each method to expand 
our understanding.In Section 5, we will draw our conclusion 
about our research work.

II. Holt’s Method
For the case of pattern which represents only trend but no 
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seasonality, Holt’s method performs better than the other 
methods. This method is also known as “Holt-Winters double 
exponential smoothing” method.

Holt’s method suppose that the sequence of observations is 
{ }, tX which begins at time t = 0. Smoothing error for time 
tis{ }tS and best estimate of the trend at time t is{ }.tB Then 
the forecast  t mF +  is estimated of the value of x at time  t m+
, m>0 based on the raw data up to time t. Then the double 
exponential smoothing is:
 ( )( ) ( )1 11    1t t t tS X S Bα α − −= + − +  
and

 
( ) ( ) ( ) 1 11    2t t t tB S S Bβ β− −= − + −

where α and β are smoothing constants such that  0 , 1α β< <
. The initial value of  tS  and tB   and for 1 t > are calculated 
as follows:

 0 0  S X= And ( )0
0 , 1      3nX XB n

n
−

= >
         

And the h-step forecast by this method is given by the 
following equation:

 ( ), *                               4t h t tF S h B= +

Here, 
,t hF is the forecasted value for the period t h+  at period 

t  based on the available data for the first t periods. We will 
illustrate how this method works in practice by the next 
example cum mathematical problem.

Numerical Example
An established RMG factory, Dhaka has the revenue 
collection data given in Table1 over the past 23 years. We are 
to forecast the revenue collection for the next three years by 
Holt’s method.

Table 1. Revenue (in thousands) BDT of a RMG factory

Period Revenue Period Revenue Period Revenue
1991 591 1999 1301 2007 2146
1992 620 2000 1440 2008 2430
1993 699 2001 1661 2009 2746

1994 781 2002 1770 2010 3069

1995 891 2003 1851 2011 3649

1996 993 2004 1954 2012 4159

1997 1111 2005 2023 2013 4686

1998 1149 2006 2079

      Solution Step1: Plot the data so observe the pattern.

Fig. 1. Observed data VS trend line

(1)

(2)

(3)

(4)
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From the Fig.1., we observe that there exists trend without 
seasonality and so we can apply Holt’s exponential method. 
We note that a trend line is fitted to the observed data as 
plotted on same axes.
Step 2:Initialize 0 0  591S X= = , as the first observed data 

point and
2 0

0
699 591  54

2 2
X XB − −

= = =
. 

Analyzing several combination of different values of 
smoothing constants  and β  , we set the values for   andα β
as 0.7  0.7andα β= = . We use Microsoft Excel to find such 
values.

Step 3: In this step, we manually calculate two values of 
smoothed level and trend each.

 

Similarly the rest of the values can be calculated. We use 
Microsoft Excel to manipulate these calculations and the 
obtained values are in the Table 2.

Table 2. Holt’s method Calculation

T Year
tX tS tB 1,1tF − T Year tX tS tB 1,1tF −

0 1991 591 591.00 54.00                   
#NA 12 2003 1851 1878.81 116.19 1943.69

1 1992 620 627.50 41.75 645.00 13 2004 1954 1966.30 96.10 1995.00
2 1993 699 690.08 56.33 669.25 14 2005 2023 2034.82 76.80 2062.40
3 1994 781 770.62 73.28 746.40 15 2006 2079 2088.78 60.81 2111.62
4 1995 891 876.87 96.36 843.90 16 2007 2146 2147.08 59.05 2149.60
5 1996 993 987.07 106.05 973.23 17 2008 2430 2362.84 168.75 2206.13
6 1997 1111 1105.63 114.81 1093.12 18 2009 2746 2681.68 273.81 2531.59
7 1998 1149 1170.43 79.80 1220.44 19 2010 3069 3034.95 329.43 2955.49
8 1999 1301 1285.77 104.68 1250.24 20 2011 3649 3563.61 468.90 3364.38
9 2000 1440 1425.13 128.96 1390.45 21 2012 4159 4121.05 530.88 4032.51
10 2001 1661 1628.93 181.34 1554.09 22 2013 4686 4675.78 547.57 4651.93
11 2002 1770 1782.08 161.61 1810.27  0.7  0.7andα β= =

From the Table 2, we observe that our smoothed values 
(sometimes called fitted values in Statistics) are well fitted 
for our choice of parameter values. To have a clear picture 

about the fitted value and one step ahead forecast value we 
plot them in the same axes shown in the following figure.

Fig.2. Comparison Plot

Forcast for period
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The Fig.2. makes us convince that our model is in good 
position enough that gives us well forecast as the smoothed 
aswell as one-step ahead forecast almost coincides with the 
actual revenue. 

Step 4: Make the Forecast

Here we estimatethe forecasts for the next three periods 
namely year 2014, 2015, and 2016 period 23, 24, and 25 
continued from the last given period 22. Hence forecast for 
h=1, 2, and 3 based on 22nd period are shown as follows.

 
23 22,1 22 22  1*  4675.78 1*547.57 5223.35F F S B= = + = + =

24 22,2 4675.78 2*547.57 5770.92F F= = + =

25 22,3 4675.78 3*547.57 6318.49F F= = + =

Thus we have our forecasts for period 23rd, 24th, and 25th 
which are BDT 5223.35, 5770.92, and 6318.49 thousand 
respectively.

III.  Holt-Winter’s Method
The generalized method of Holt’s method by capturing 
seasonality is known as Holt-Winters’ (HW) method of 
smoothing. Holt and Winter developed this method in 1960.
HW method uses three smoothing constants and equations 
for base level, per period trend and seasonality in the given 
data series. This method is different from other forecasting 
methods because it uses iterative steps for forecasting.

HW method is classified in to two different versions such 
as additive or multiplicative process. The equations for 
multiplicative model are shown below.

here, tX  is the observed series, p is the planning horizon, 
t L   gives the base level of the series, tT   represents the per 

period trend and α is the smoothing constant, 0 < α < 1, β is 
the trend smoothing constant, 0 < β < 1, and γ is the seasonal 
smoothing constant, 0 < γ < 1, and t ,kF  presents forecasts for 
k-periods ahead.

The Seasonal Additive HW equations are given as:

Initialization of HW Method
The better the estimate of initial values of base, trend, and all 
seasonal factors the better the forecasts. Let 0L be the Estimate 
of the base level at beginning of month / Quarter 1, 0T be the 
estimate of the trend at beginning of month / Quarter 1, 1 pI −
be the estimate of January / Quarter (Q) 1 seasonal factor 
at beginning of the Month1 / Q1, 2 pI  be the e− stimate of 
February / Q2 seasonal factor at beginning of the month 1 / 
Q1. In a similar way, we get

0I =   Estimate of December / Q4 seasonal factor at beginning 
of Month 1 / Q1.

We have several methods to estimate the parameters defined 
above. Among them one needs two years data monthly or 
quarterly.  We suppose that we are provided with two years 
actual data. In this case the initial estimate of trend level and 
base level we can take as follows:  

( )1 2
0                                               13A AT

p
−

=                   

      
where, 1A =  Average monthly or quarterly data during Year1
       2A =  Average monthly or quarterly data during Year 2 
                 (previous year)

To estimate the seasonality index for a given period (say, 
January= 11I−  or Q1= 3I− ), we make an estimate of January 
or Q1 seasonality for Year 2 and Year 1 and average them. 
To do this first we divide the actual value of January or Q1 
of corresponding year by the average value of that year and 
then we average them. Seasonal factors must be normalized 
so that their average in multiplicative case is one13,14.

Numerical Example on HW Method
We have been given in Table 3 with quarterly data for five 
years. We are to forecast for the next year quarterly using 
appropriate HW method.

Table 3.  Quarterly observed data

Year\ Quarter Q1 Q2 Q3 Q4
1 318 380 358 423
2 379 394 412 439
3 413 458 492 493
4 461 468 529 575
5 441 548 561 620

Step 1: We plot the given data point to see its pattern that 
is whether it contains trend or seasonality or both of them. 
Microsoft Excels produces following graph.

(13)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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Fig. 3. Observed data plot

From Fig. 3.,we observe that it shows both seasonality and 
trend with an increasing tendency in seasonality and therefore 
we use multiplicative HW method to forecast.

Step 2: Initialization

Firstly, we calculate the average demand of each year and 
center of period of each year. Our calculation results are 
shown in the following table.

Table 4. Average values

Year\Quarter Q1 Q2 Q3 Q4 Average Center of avg.
(t)

1 318 380 358 423 369.75 2.5

2 379 394 412 439 406 6.5

3 413 458 492 493 464 10.5

4 461 468 529 575 508.25 14.5

5 441 548 561 620 542.5 18.5

Now using equation 13 and 14 we calculate the initial trend 
and base as follows:

         

 

0 369.75 2.5*9.0625 347.09375L = − =

Step 3: Seasonal Index Initialization

Here we divide the quarterly data by the respective yearly 
average to obtain the seasonal indices for the first two years. 

Table 5. Initial Index Calculation

Quarter Year 1
Index

Year 2
Index

Average Index
(Y1+ Y2)÷ 2

Normalized Index

Q1 318÷ 369.75=0.86 379÷ 406=0.93 0.895 0.9
Q2 380÷ 369.75=1.03 394÷ 406=0.97 1.00 1
Q3 358÷ 369.75=0.97 412÷ 406=1.01 0.99 0.99
Q4 423÷ 369.75=1.14 439÷ 406=1.08 1.11 1.11

Total=3.995 Total=4

Normalized indices are obtained by dividing each average 
index by 3.995 and then multiplied by 4 e.g., (0.895÷
3.995)*4=0.9. Therefore we have now our initial seasonal 
indices and we denote them as 3 0.9I− =  for Q1, 2 1I− =  

for Q2,  1 0.99I− =  for Q3, and 0 1.11I =  for Q4. Now 
we are in a position to make the first forecast, which is for 
the first quarter of year 1, according to the formula given by 
the equation 4.9:
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Step 4: Detail Calculations and Choosing Parameters Values

Detail calculation and parameter selection are cumbersome 
task and for our convenience we use Microsoft Excel to 
calculate required trend, level, and seasonality index for 
a choice of parameter values. After this, we change the 
parameter values by trial and error and have cautious eye on 
the change in the one step-ahead forecast and actual values.

Now we use the Table 5 to calculate the MAPE. MAPE is 
determined just dividing the total in the last column of Table 6 by 
the number of data points i.e., 20 which gives us 4.21% and this 
should be taken into account when we forecast for the next year. 
Parameter values are taken so that the error is lowest as possible. 
We check several combinations of their different values and see 
that the values we have chosen yield the lowest error.

Step 5:Now we are in a position to forecast for the next year 
ornext four quarter that is for the period 21st, 22nd, 23rd, and 
24th at 20th period.

 According to Equation 4.9 we have,

( ) ( )20 1 20 20 20 4 1 20 20 171 * *  *F L T I L T I+ − += + = +

( )562.5276 10.85729 *0.906861    = + = 519.9802

( ) ( )20 2 20 20 20 4 2 20 20 18 2* * 2* *F L T I L T I+ − += + = +

( )562.5276 2*10.85729 *0.998754  = + = 583.5144
 

( ) ( )20 3 20 20 20 4 3 20 20 19 3* * 3* *F L T I L T I+ − += + = +

( )562.5276 3*10.85729 *1.006588= + = 599.0202
 

( ) ( )20 4 20 20 20 4 4 20 20 20 4* * 4* *F L T I L T I+ − += + = +

( )562.5276 4*10.85729 *1.093611= + = 662.6811

Thus we have our forecasts values for the four quarter of next 
year made at the end of period 20 and they are 519.9802 for 
Q1 and 583.5144 for Q2 and 599.0202 for Q3 and 662.6811 
for Q4. The very next figure shows the actual values as well 
as our forecast values.      

Table 6. HW calculations with α = 0.1, β = 0.75, γ = 0.15

Period(t)  tA  tL  tT  tI
 , 1t tF − 100%t t

t

A F
A
−

×  

1 318 355.874 8.850781 0.899036 320.54 0.798742

2 380 366.2523 9.996426 1.00563 364.7247 4.019805

3 358 374.7854 8.898986 0.984782 372.4862 4.046426

4 423 383.4241 8.703735 1.108983 425.8897 0.683147

5 379 395.0713 10.91134 0.908079 352.5371 6.982291

6 394 404.5638 9.847194 1.000869 408.2685 3.621446

7 412 414.8065 10.14387 0.98605 408.1045 0.94552

8 439 422.0412 7.961969 1.098663 471.2626 7.349112

9 413 432.4835 9.822204 0.915109 390.4768 5.453559

10 458 443.8354 10.96945 1.005526 442.6901 3.342768

11 492 459.2204 14.28113 0.998849 448.4602 8.849556

12 493 471.0241 12.42307 1.090862 520.2184 5.520974

13 461 485.4789 13.9469 0.92028 442.4071 4.033167

14 468 496.0261 11.39707 0.996222 502.1856 7.30462

15 529 509.6418 13.06103 1.00472 506.8393 4.189162

16 575 523.1431 13.3913 1.092101 570.1964 0.835415

17 441 530.8012 9.091373 0.906861 493.7618 11.96412

18 548 540.9111 9.855301 0.998754 537.8528 1.851684

19 561 551.5263 10.42517 1.006588 553.3659 1.360806

20 620 562.5276 10.85729 1.093611 613.7078 1.014869

Total=84.16719 %

(14)
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Fig. 4. Forecast with Actual value

IV. ARIMA Model
In this section, we discuss details about ARIMA model 
and illustrate with numerical example using statistical data 
analysis tool R.

In 1972, Box and Jenkins developed a method for analyzing 
stationary univariate time series data by implementing 
ARIMA. Their forecasting models are based on statistical 
concepts and principles and are able to model a wide 
spectrum of time series behavior.

Stationary series have some advantages over non-stationary 
series. Non-stationary series have gradually diminishing 
autocorrelations that can be function of time, whereas 
stationary series have stable but rapidly diminishing 
autocorrelations. For these reasons, a process must be weakly 
stationary for being modeled in time series using Box-Jenkins 
approach22.

Examining stationarity in the time series data

If there is no growth or decline in the data then it is stationary. 
The data must be roughly horizontal along the time axis. 

The formulation of the random walk process is

 ( )1                15t t tX X W−= +
So that   ( )1             16t t tX X W−− =

To make a time series stationary, it is necessary to difference 
the series. A log transformation can be taken before first 
differencing if non-stationarity in variance is evident. If 
log transformation is taken, the forecasts will come also in 
the form of log series for which an anti-log must be taken 

to get the forecasts for original series. The process which 
can be transformed into stationary by differencing is called 
difference stationary. Occasionally, the first differenced data 
does not appear stationary and second differencing is needed. 

The stationarity can be checked visually from the time plot 
of the series or from the plots of ACF and PACF. If the ploted 
data are scattered horizontally around a constant mean, or 
equivalently, the ACF and PACF drop to near zero quickly. 
Otherwise, non-stationarity is implied.

Tests of stationarity
Portmanteau test is used to identify Stationarity of a data set. 
A common Portmanteau test is the Box-Pierce test which is 
based on the Box-Pierce Q statistic:

 ( )2

1

  ,                            17
h

k
k

Q n r
=

= ∑
where, h = maximum lag being considered, n = number of 
observations in the series and kr =  autocorrelation at lag k. 

An alternative portmanteau test is the Ljung-Box test and is shown 
as follows.   

( ) ( )
2

*
1

 2  ,                18h k
k

rQ n n
n k=

= +
−∑

The white noise residuals indicates that the statistic *Q has a 
chi-square distribution with degrees of freedom (h - m). Thus 
it is to conclude that the data are not white noise if the value 
of Q  or *Q  lies in the extreme 5% of the right-hand tail of 
the distribution.

Another approach is Dickey-Fuller test. A simple 
autoregressive model, AR (1) is

  ( )1  ,                               19t t tX X Wρ −= +

Where, ρ  is a coefficient A unit root is present if ρ  = 1. 

(15)

(16)

(17)

(19)

(18)
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The model would be non-stationary in this case. This model 
can be written as

        

where, ∆ be the difference operator. This model can be 
estimated and testing for a unit root is equivalent to testing 
∆= 0 (where γ =  ( ρ  - 1). 
An extension of Dickey-Fuller test is augmented Dickey-
Fuller (ADF) test which is a test for unit root in a time series 
as shown below.

   

Where α is a constant, β the coefficient on a time trend 
and p the lag order of the autoregressive process. The unit 
root testis then carried out under the null hypothesis γ = 0 
against the alternative hypothesis of  γ < 0. Once a value for 
the test statistic

           ( ) ( ),                                      22
. ˆ.

ˆ
tDF

s e
γ
γ

=  

is computed.  If the test statistic is less than the critical value, 
then the null hypothesis of  γ  = 0 is rejected and no unit root 
is present.
Formulation of ARIMA Model
The Box-Jenkins ARIMA model are classified as the 
autoregressive process, the integrated process and the moving 
average process. The general non-seasonal model is known 
as ARIMA (p, d, q ) and applied to non-stationary data series. 
In the model

AR: p = order of the autoregressive part
I: d = degree of the first differencing involved
MA: q = order of the moving average part.
Using back shift notation, this model is written as,
          
          
Selection of best model
Spikes at lag 1 to p, and cuts off to zero in PACF indicates AR 
(p) model. Again, Spikes at lag 1 to q, and cuts off to zero in 
ACF indicates MA (q) model.

The Akaike information criterion (AIC) can be used to select 
the best model, which is given by

( )2ln 2 ,                       24AIC L m= − +  
where L = maximum likelihood, m = number of parameters.
We choose the model with the minimum AIC.

Diagnostic Checking
Before forecasting using the selected model, the diagnostic 
checks of the residuals should be performed. If the assumptions 
are not satisfied, then the selected model is no longer valid 
and a new model is to be chosen.To assess whether the 
residuals are white noise, the portmanteau tests such as Box-

Pierce test and Ljung-Box test are useful. Box-Pierce test is 
useful only when sample size is large, but the Ljung-Box test 
can be used even when the sample size is small. For both the 
tests, if the p-value is large, then the residuals are thought to 
be white noise. The plots of standardized residuals and ACF 
of residuals can also be used for this purpose.
An approach to check the normality assumption of residuals 
is by using normal q-q plot. The assumption is satisfied when 
the plot is almost along a straight line.
An equivalent approach to check the normality assumption of 
residual considering hypothesis testing is Shapiro-Wilk test. 
To check the randomness of the residuals can be checked 
by using run test. If the p-value is a large one, then the null 
hypothesis of randomness is not rejected.
If all the mentioned assumptions are satisfied by a model, 
only then the model can be used for the forecasting purposes.

Numerical Example 
Suppose we are given a set of monthly sale data of a product 
offered by a newly started business organization for a year 
which is 4,6,8,10,14,18,20,22,24,28,31

and 34 lakh BDT from January 2013 to December 2013. We 
are to fit an ARIMA model to forecast for next six month.

Solution 
Step-1: Plot the given data
From the figure 5, we see that a linear trend exists here.
Step 2:ACF and PACF test
ACF plot shows that it is decreasing exponentially which 
implies trend exist.
Step 3:Differencing data to remove trend and make the data 
stationary.
Step 4: Plot the differenced data, ACF and PACF of 
differenced data
After observing the figure 7, 8 and 9, we see that our 
differenced data is stationary as its ACF plot shows a random 
variation with 1 significant lag and PACF has no significant 
lag. Thus we have the p=0, d=1, and q=1 for our data set to 
build ARIMA (p, d, q) model.

Fig.5. Time plot of original data

(20)

(21)

(22)

(23)

(24)
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Fig. 6. ACF plot of original data

Fig. 7. PACF plot of original data

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2      2      2     4     4     2     2     2      4     3      3

Fig. 8. Graph of differenced data

Fig. 9. ACF graph of differenced data

Fig. 10. PACF graph of differenced data

Step 5:  Model Building

We run several model with various combination of p and q 
keeping d fixed in ARIMA (p, d, q) and nearest model as 
possible and list the AIC values in the following table.

Since AIC value for ARIMA (1, 1, 0) is the lowest we choose 
it our primarily fitted model.

Step 6: Forecast

Step 7: Error analysis

Table 7. AIC values

ARIMA (p, d, q) AIC

ARIMA(0, 1, 1 ) 49.94

ARIMA(1, 1, 1) 39.62

ARIMA(1, 1, 0) 39.33

Table 8. Forecast values with 95% confidence level

             Point  Forecast Lo 95 Hi 95

January 2014 36.73752 34.55905 38.91599

February 2014 39.23553 34.53402 43.93704

March 2014 41.51498 33.90787 49.12208

April 2014 43.59499 32.81679 54.37318

May 2014 45.49301 31.35732 59.62871

June 2014 47.22498 29.60178 64.84817
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Table 9. Errors from different methods

Error measures ME RMSE MAE MPE MAPE MASE

Training set 0.3487024 1.064168 0.732045 2.905805 4.630305 0.08873272

V. Conclusion
This paperfocused on basic concept of time series forecasting 
and analyzed some rigorous forecasting techniques. We 
analyzed the business strategies of a company in Bangladesh 
by comparing the results obtained from three different 
rigorous forecasting techniques such as Holt’s method, Holt-
Winter’s method and Autoregressive Integrated Moving 
Average (ARIMA) method. For this, we first illustrated and 
studied basics of forecasting and time series analysis, usual 
forecasting methods, some rigorous methods e.g., Holt’s 
method, Winter’s method and Autoregressive Integrated 
Moving Average (ARIMA) models. We carried out our 
analysis and calculation by using Microsoft Excel, statistical 
data analysis tool R and MATHEMATICA.  We hope that, 
this research will help the business organization to select 
perfect forecasting method for minimizing the cost and 
maximizing the profit. 
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