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Abstract 

This paper aims to evaluate the accuracy of probability calculation using Chebyshev’s inequality based on simulation study. We consider 
symmetric ( ) ( ) ( )( )2

5Normal 3,1.5 ,  Laplace 3, 2 , Beta 7, 7 , ,t   positively skewed, negatively skewed ( ) ( )( )2
5 ,   Beta 3, 8 ,  Gamma 5,1 χ (Beta 

(7, 2)), Exponential (5) and Uniform ( )0,1   distributions, fx(x) in our simulation study to measure the performance of Chebyshev’s 
inequality. We then calculate ( )Pr k X kµ σ µ σ− ≤ ≤ +  for ( )~ XX f x , ( ) E Xµ =  and ( )2 ,Var Xσ =  and compare this with the 
approximated probability obtained from Chebyshev’s inequality to measure the accuracy of Chebyshev’s inequality. From our simulation 
study, it is observed that loss due to using Chebyshev’s inequality for probability calculation is the least and the maximum when fx(x) 
is the Exponential and the Beta (symmetric) distributions, respectively for 2.5.k ≥  Moreover, the value of ( )Pr k X kµ σ µ σ− ≤ ≤ +  
calculated using Chebyshev’s inequality is underapproximated for all the probability distributions considered in the study. 
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I. Introduction
The Chebyshev’s inequality is one of the most widely used 
inequalities in Statistics which can be used to calculate the 
probability of a random variable X  when its distribution 
function is unknown. More specifically, it can be used to 
calculate ( )Pr k X kµ σ µ σ− ≤ ≤ +  provided that ( )E Xµ =  
and ( )2 Var Xσ = < ∞  of a random variable X  exist. In other 
words, calculating ( )Pr k X kµ σ µ σ− ≤ ≤ +  does not 
require knowing the shape of the distribution as long as ( )E X  
and ( )Var X  exist. This non-parametric assumption made this 
inequality so popular and useful in different disciplines. 

Bienayme1 (1853) first introduced Chebyshev’s inequality 
but he did not provide its mathematical proof during that 
time. Later in 1867, a Russian mathematician Pafnuty 
Chebyshev’s provided its mathematical proof2 and therefore, 
this inequality is named after Pafnuty Chebyshev’s. 

Although Chebyshev’s inequality is widely applicable, 
it has two main issues as far as probability calculation is 
concerned. Firstly, when the lower bound on the probability 
of ( )Pr k X kµ σ µ σ− ≤ ≤ +  for a known ( )~ XX f x  is 
considered to be p , then to achieve the same probability 
Chebyshev’s inequality requires a wider interval compared 
to the interval of ( ),  .k kµ σ µ σ− + For example, 95% 
observations lie within 1.96σ  from the mean of X  where 

( )2~ , X N µ σ  while Chebyshev’s inequality requires 
4.47σ  distance from the mean of X  to produce the same 
probability, which is about 2.29 times higher. This interval 
which is 4.47σ  distance from the mean of X  is termed as 
Chebyshev’s greater-than-95% interval3. In other words, for a 
known ( )~ XX f x  the value of ( )Pr k X kµ σ µ σ− ≤ ≤ +  is 
much higher than the lower bound on probability calculated 
using Chebyshev’s inequality for the same interval. That is, 
calculating the value of  ( )Pr k X kµ σ µ σ− ≤ ≤ +  using 
Chebyshev’s inequality is underapproximated. For example, 

when ( )2~ , X N µ σ  then ( )Pr 0.95k X kµ σ µ σ− ≤ ≤ + ≈  
while it is at least 0.75  under Chebyshev’s inequality and 
the loss of information incurred due to using Chebyshev’s 
inequality in this case is 21.05% . The amount of loss 
incurred due to using Chebyshev’s inequality for probability 
calculation varies and it depends on the type of parent 
distribution of the random variable4.

To the best of our knowledge, we have not found any study in 
the literature which covered this issue. In other words, there is 
no study in the literature which investigates the performance 
of Chebyshev’s inequality for probability calculation. In 
this paper, we mainly focus on quantifying the amount of 
loss incurred because of using Chebyshev’s inequality for 
probability calculation.

The rest of the paper is organized as follows. In section 2, 
the methodology of the paper is presented briefly. In section 
3, a brief overview of the simulation settings is presented. In 
section 4, we discuss the results of our study and the paper 
concludes in section 5.

II. Methodology
In this section, we discuss the methodologies used in 
this paper briefly. More specifically, how to calculate 

( )Pr k X kµ σ µ σ− ≤ ≤ +  for both the known and 
unknown form of ( )Xf x  is discussed here. When the 
form of ( )Xf x  is unknown, Chebyshev’s inequality is 
used to find ( )Pr k X kµ σ µ σ− ≤ ≤ +  provided that 
( )E X  and finite variance ( )2 Var Xσ =  exist.  Let X  be a 

random variable having finite mean  ( )E Xµ =  and finite 
variance ( )2 .Var Xσ =  Then for any real number 1,k >  the 
Chebyshev’s inequality takes the form

( ) 2
1Pr 1k X k
k

µ σ µ σ− ≤ ≤ + ≥ − .
This inequality proves to be impractical for 1.k ≤  The 
calculated probabilities of Pr(µ k X µ kσ σ− ≤ ≤ + ) 
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express the minimum proportion of data that fall within or 
beyond k  standard deviations from the mean for the given 
data set. In other words, they characterize the dispersion 
of the data from its mean. In fact, when actual probability 
distributions are known they provide tighter bounds 
compared to the inequality. 

If a random variable X  follows a Uniform (0, 1), then 
( ) 0.5E Xµ = =  and ( )2 112 .Var Xσ −= =  Mathematically, it 

is shown that

( ) 1Pr Pr
2 12

kX µ k Xσ  
− < = − < 

 

0.5
12

0.5
12

                                   ,
3

k

k
kdx

+

−
= =∫

where 3.k ≤ This implies that, for different values of k , the 
exact probabilities of X  falling within k  standard deviations 
of the mean is  

3
k when the random variable originates 

from a Uniform(0, 1). When X  follows an exponential 
1
l

 
 
   then ( )E Xµ l= =  and ( )2 2.Var Xσ l= =  Then, 

( )Pr X µ kσ− <  can be determined as

( ) ( )Pr PrX µ k X kσ l l− < = − <

11                                   
xk

k
e dx

l l
l

l l l
−+

−
= ∫

                                       
( )11 kke e− +−= − ,

where ( ) 0. kl l− ≥ However, for some probability 
distributions considered in this paper deriving such 
mathematical forms for obtaining exact probabilities 
is not quite as straight-forward and often proven to be 
computationally tedious. In such situations, we use statistical 
package R to calculate the required probability. 

III. Simulation Settings
We conduct a simulation study in this paper to compare 
the performance of Chebyshev’s inequality for probability 
calculation. In our simulation study, different known 
symmetric, positively skewed and negatively skewed 
continuous probability distributions are considered to 
compare the performance of Chebyshev’s inequality. 
More specifically, Normal(3, 21.5 ) , Laplace(3, 2) (Double 
Exponential), Beta(7, 7), and 5t  distributions are considered 
to cover symmetric distributions while 2

5χ , Gamma (5, 1), 
and Beta(3, 8) distributions and Beta(7, 2) distribution are 
considered to cover positively skewed and negatively skewed 
distributions, respectively. 

Table 1. Mean and Variance of ( )~ .XX f x

Distribution Parameter Mean Variance
Exponential 1l−  (rate) l 2l

ϑ  ϑ 2  ϑ

Uniform
	

,a b
	

( )0.5 a b+ ( )2112 b a− −

Normal 	 2, µ σ µ   2σ

Gamma

	
( ) ,shapeα

	 ( )scaleβ
	

αβ α 2β

Laplace

	

( ) ,locationµ	
( )scaleβ

	 µ 22β

Beta

	
( ) ,shapeα

	 ( )scaleβ

	
α

α β+ ( ) ( )2 1
αβ

α β α β+ + +

t ϑ  0 ( 1)ϑ > 2
ϑ

ϑ −
 
( 2)ϑ >

Furthermore, we also considered Uniform(0, 1) and 
Exponential(5) distributions. Then for the known 
probability distributions the exact probability of 

( )Pr k X kµ σ µ σ− ≤ ≤ +  is compared with the probability 
of that interval obtained using the Chebyshev’s inequality 
pretending that the form of  ( )Xf x  is not known but mean 
and variance exist. The mean and variance of the probability 
distributions considered in the study are presented in Table 1.

IV. Results and Discussions
This section presents the results of our comparative study 
for calculating ( )Pr k X kµ σ µ σ− ≤ ≤ +  using the exact 
form of ( )Xf x  and Chebyshev’s inequality (pretending 
that we do not know the exact form of ( )Xf x  but the mean 
and variance are known to us). The exact probabilities of 

( )Pr k X kµ σ µ σ− ≤ ≤ +  obtained from the probability 
distributions are displayed in Table 2 along with the 
corresponding probabilities obtained using Chebyshev’s 
inequality for different values of .k  

Table 2 illustrates that when mean and finite variance 
exist, Chebyshev’s inequality generally provides a poorer 
bound as compared to what may be obtained if the original 
distribution of the random variable X  is known. From 
Table 2, it is evident that, for any particular k -value, 

(Pr µ k X µ kσ σ− ≤ ≤ + ) is higher when directly 
obtained from the probability distributions compared to the 
probability values obtained using Chebyshev’s inequality. 
That is, Chebyshev’s inequality underapproximates the 
values of  (Pr µ k X µ kσ σ− ≤ ≤ + ) for the distributions 
taken under consideration.
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Table 2. The values of  when   is Uniform(0, 1), Exponential(5), Normal(3,  ), 
Laplace(3, 2), Beta (7, 7),  Gamma(5, 1), Beta(3, 8), and Beta(7, 2) distributions and using Chebyshev’s 
inequality for different values of .

Distribution                                                                                           k	

1 1.1 1.5 	
3 2 2.5 3 3.5 4 5 10

Uniform(0,1) 0.5774 0.6351 0.8660 1.0000      -      -      -      -      -      -      -

Exponential
(5)

0.8647 0.8775 0.9179 0.9349 0.9502 0.9698 0.9817 0.9889 0.9933 0.9975 0.9999

Symmetric
Normal
(3, 21.5 )

0.6827 0.7287 0.8664 0.9167 0.9545 0.9876 0.9973 0.9995 0.9999 0.9999 1.0000

Laplace(3, 2) 0.7569 0.7889 0.8801 0.9137 0.9409 0.9708 0.9856 0.9929 0.9965 0.9992 0.9999

Beta(7, 7) 0.6657 0.7136 0.8617 0.9176 0.9594 0.9931 0.9996 0.9999 1.0000 1.0000 1.0000

t5
0.7468 0.7852 0.8894 0.9244 0.9507 0.9767 0.9883 0.9937 0.9964 0.9987 0.9999

Positively Skewed
Gamma(5, 1) 0.7007 0.7507 0.8926 0.9346 0.9588 0.9801 0.9907 0.9958 0.9981 0.9997 1.0000

Beta(3, 8) 0.6699 0.7207 0.8767 0.9305 0.9630 0.9864 0.9959 0.9991 0.9999 0.9999 1.0000

0.7236 0.7788 0.9155 0.9372 0.9547 0.9757 0.9872 0.9933 0.9966 0.9991 0.9999

Negatively Skewed
Beta(7, 2) 0.6764 0.7311 0.8966 0.9368 0.9579 0.9821 0.9935 0.9981 0.9996 0.9999 1.0000

Chebyshev’s
Inequality

0.0000 0.1736 0.5556 0.6667 0.7500 0.8400 0.8889 0.9184 0.9375 0.9600 0.9900

Moreover, it is observed that for 3k <  Exponential(5) 
distribution and for 2.5k ≥  Beta (symmetric) distribution 
provide bounds of (Pr µ k X µ kσ σ− ≤ ≤ + ) that are 
higher than those obtained from the rest of the distributions. 
For 1.5 k < Uniform ( )0,1  distribution, for 1.5 2.5k< <  
Laplace(3,2), and for 2.5k ≥  Exponential(5) distribution give 
probabilities that are comparatively nearer to those obtained 
from Chebyshev’s Inequality. In addition, it is observed that 
in the case of Uniform ( )0,1  distribution, for 3k >  and 

0,X ≥  the values of (Pr µ k X µ kσ σ− ≤ ≤ + ) are greater 
than 1 which contradicts an important axiom of probability 
(i.e., probability of an event is always between 0 and 1). Thus, 
Chebyshev’s Inequality does not demonstrate much use in 
case of a Uniform distribution. For 4k >  almost all of the 
observations are encompassed within the range µ kσ± .

To put the idea of tighter bounds into perspective, the bounds 
of (Pr µ k X µ kσ σ− ≤ ≤ + ) are plotted in Figure 1. Upon 
closer look at Figure 1, it is revealed that the probabilities

Fig.1. Values of (Pr µ k X µ kσ σ− ≤ ≤ + ) when ( )~ XX f x  
is Uniform(0, 1), Exponential(5), Normal(3, 21.5 ), Laplace(3, 
2), Beta(7, 7), 

5t , 2
5χ , Gamma(5, 1), Beta(3, 8), and Beta(7, 2) 

distributions and using Chebyshev’s inequality.
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obtained when ( )~ XX f x  is an Exponential(5) distribution 
are farthest from those obtained from Chebyshev’s inequality 
for 3k <  but nearest for 2.5k ≥ . Again when ( )~ XX f x  
is a symmetric Beta distribution (i.e., Beta(7, 7)) for 2.5k ≥  
the probabilities are farthest from those obtained using 
Chebyshev’s Inequality. Furthermore, Figure 1 shows that 
the probabilities obtained using the exact knowledge of 
probability distributions remain way above those obtained 
from Chebyshev’s inequality, indicating the value of  

( )Pr k X kµ σ µ σ− ≤ ≤ +  using Chebyshev’s inequality 
is generally under approximated. 

The greater distance of the probabilities obtained using the 
exact knowledge of probability distributions compared to 
those obtained using Chebyshev’s inequality demonstrate a 
greater loss of accuracy of Chebyshev’s inequality when it is 
used (distribution of the random variable X is not known). For 
better visualization the probabilities are plotted for different 
scenarios in Figure 2. More specifically, we have considered 
four different scenarios in Figure 2: (a) Exponential and 
Uniform, (b) symmetric, (c) positively skewed and (d) 
negatively skewed distributions. Figure 2(b) displays that 

in the case of symmetric distributions, the probabilities of 
Chebyshev’s inequality are comparatively near to those 
obtained from a symmetric Beta distribution for 1.5, k ≤
from a Laplace(3, 2) distribution for 1.5 4k< <  and from a t  
distribution for 4.k ≥  

Again, the Chebyshev’s inequality probabilities are at 
a greater distance from those obtained from a Laplace 
distribution for 1.1k ≤ , from a t  distribution for1.1 2k< < , 
and from a symmetric Beta distribution for 2k ≥ . Similarly, 
Figure 2(c) shows that for positively skewed distributions, 
the probabilities of Chebyshev’s inequality are comparatively 
near to those obtained from a positively skewed Beta 
distribution for 2k <  and from a Chi-square distribution 
for 2k ≥ . Again they farthest from those obtained from a 
Chi-square distribution for 2k <  and a positively skewed 
Beta distribution for 2k ≥ . Table 3 provides clear insight 
regarding the loss of accuracy that ensues when Chebyshev’s 
inequality is used which is the graphically shown in Figure 3. 
At 1k = , there is 100% loss of accuracy when Chebyshev’s 
inequality is used -

Fig. 2. Values of (Pr µ k X µ kσ σ− ≤ ≤ + ) when ( )~ XX f x  is (a) Uniform(0, 1) and Exponential(5) distributions, (b) Symmetric 
distributions (Normal(3, 21.5 ) , Laplace(3, 2), Beta(7, 7), 5t ), (c) Positively skewed distributions ( 2

5χ , Gamma(5, 1), Beta(3, 8), and (d) 
Negatively skewed distribution (Beta(7, 2)) and using Chebyshev’s inequality.

(a)

(c)

(b)

(d)
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Table 3. Loss of accuracy in absolute difference (and Loss of accuracy in %) due to Chebyshev’s inequality when 
( )~ XX f x  is Uniform(0, 1), Exponential(5), Normal(3, 21.5 ) , Beta (7, 7), Laplace(3, 2),  Gamma(5, 

1), Beta (3, 8), and Beta (7, 2) distributions.

Distribution 	 k
1 1.1 1.5 	 3 2 2.5 3 3.5 4 5

Uniform (0, 1) 0.5774
(100)

0.4615
(72.67)

0.3105
(35.85)

0.3333
(33.33)        -       -       -        -       -       -

Exponential (5) 0.8647
(100)

0.7040
(80.22)

0.3624
(39.48)

0.2683
(28.69)

0.2002
(21.07)

0.1298
(13.38)

0.0928
(9.45)

0.0705
(7.13)

0.0558
(5.61)

0.0375
(3.76)

Symmetric

Normal (3, 21.5 )
0.6827
(100)

0.5551
(76.18)

0.3108
(35.88)

0.2501
(27.28)

0.2045
(21.42)

0.1476
(14.94)

0.1084
(10.87)

0.0812
(8.12)

0.0624
(6.24)

0.0399
(3.99)

Laplace (3, 2) 0.7569
(100)

0.6154
(78.00)

0.3246
(36.88)

0.2470
(27.03)

0.1909
(20.29)

0.1309
(13.48)

0.0967
(9.82)

0.0745
(7.51)

0.0590
(5.92)

0.0392
(3.92)

Beta (7, 7) 0.6657
(100)

0.5401
(75.70)

0.3061
(35.53)

0.2509
(27.35)

0.2094
(21.83)

0.1531
(15.41)

0.1107
(11.07)

0.0816
(8.16)

0.0625
(6.25)

0.0400
(4.00)

t5

0.7468
(100)

0.6116
(77.90)

0.3339
(37.54)

0.2577
(27.88)

0.2007
(21.11)

0.1367
(13.99)

0.0994
(10.06)

0.0753
(7.58)

0.0589
(5.91)

0.0387
(3.87)

Positively Skewed
Gamma (5, 1) 0.7007

(100)
0.5771
(76.88)

0.3371
(37.76)

0.2679
(28.67)

0.2088
(21.78)

0.1401
(14.30)

0.1018
(10.28)

0.0774
(7.77)

0.0606
(6.07)

0.0397
(3.97)

Beta (3, 8) 0.6699
(100)

0.5471
(75.92)

0.3212
(36.63)

0.2638
(28.35)

0.2130
(22.11)

0.1464
(14.84)

0.1071
(10.75)

0.0807
(8.08)

0.0624
(6.24)

0.0399
(3.99)

χ 0.7236
(100)

0.6053
(77.72)

0.3600
(39.32)

0.2705
(28.87)

0.2047
(21.44)

0.1357
(13.91)

0.0983
(9.96)

0.0750
(7.55)

0.0591
(5.93)

0.0391
(3.92)

Negatively Skewed
Beta (7, 2) 0.6764

(100)
0.5576
(76.26)

0.3411
(38.04)

0.2701
(28.83)

0.2079
(21.70)

0.1421
(14.47)

0.1046
(10.53)

0.0797
(7.99)

0.0621
(6.21)

0.0399
(3.99)

which shows the inequality is impractical for 1.k ≤  
There is a gradual decrease in the loss of accuracy with 
an increase in the values of .k  Table 3 shows that loss of 
accuracy when ( )~ XX f x  is Exponential distribution is 
the least (as observed from the small absolute difference of 
the probabilities as well as the low percentage  of loss of 
accuracy) and highest when ( )~ XX f x  is a symmetric 
Beta distribution (as observed from the greater percentage of 
loss of accuracy and absolute difference of the probabilities) 
for 2.5k ≥ . Normal distribution shows the second highest 
loss of accuracy after symmetric Beta distribution for 

2.5k ≥ . While for 2.5k ≥  we see a general pattern of loss 
of accuracy, for 2.5k <   no such general pattern is easily 
discernible.

In case of symmetric distributions, for 1.5 k ≤ symmetric 
Beta distribution, for 1.5 4 k< < Laplace distribution and 
for 4k ≥  t -distribution show the least amount of loss while 
for 2k ≥  symmetric Beta distribution show the greatest 
amount of loss. Again we may further classify the symmetric 
distributions with respect to their nature of symmetry. 

Normal, ,t  and Beta distributions have more of a bell-shaped 
symmetry while Laplace distribution has a sharper peak. For 
bell-shaped symmetric distributions,  t   distribution shows 
lower loss of accuracy when 2k > . 

In case of positively skewed distributions, Beta distribution 
shows lower amount of loss for 2k <  and Chi-square 
distribution shows lower amount of loss for 2. k ≥ On the 
contrary, Beta distribution shows a greater amount of loss for 

2k ≥  while Chi-square distribution shows a greater amount 
of loss for 2k < . 

Figure 4 is constructed for 2.5≤ k ≤5 to get a clearer view 
of the general pattern of loss of accuracy. Beyond 2.5 
Exponential distribution generates the least percentage of 
loss while symmetric Beta distribution generates the greatest 
percentage of loss.

V. Conclusion
Taking into account all the findings, the study concludes 

2
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that generally loss of accuracy incurred due to Chebyshev’s 
inequality is the least when data came from Exponential 
distribution and highest when data came from Beta 
(symmetric) distribution for k 2.5≥ . However, no general 
pattern was apparent for 2.5. k <  While this paper 

showed the results obtained from continuous probability 
distributions, similar type of results can be showed in case of 
discrete distributions by considering the cases of symmetric, 
positively skewed, and negatively skewed distributions.

Fig. 3.  Loss of Accuracy (absolute difference) and Loss of Accuracy (%) due to Chebyshev’s inequality

                                                                 

Fig. 4. Loss of Accuracy (%) due to Chebyshev’s inequality for 2.5 5k≤ ≤

For all the probability distributions considered in the study, 
the Chebyshev’s inequality underapproximates the values 
of ( )Pr .k X kµ σ µ σ− ≤ ≤ +  These findings enable 
us to understand that Chebyshev’s inequality provides 
us with approximations as the results obtained are rather 
conservative as well as crude. But while it does not provide as 
sharp a bound as obtained when the actual distribution of the 
random variable is known, the inequality offers at least some 
information regarding how spread the dataset is when the 
actual distribution is unknown. Consequently, Chebyshev’s 
inequality renders such universal utility since it can be used 
for any probability distribution as long as we can define the 
mean and the variance.
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