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Abstract 

This paper aims to determine the significant factors which influence two correlated count responses, namely the total 

number of cars involved in an accident and the total number of fatalities due to that accident, of United Kingdom (UK) road 

accident count data. The bivariate Poisson (BVP) of two different forms and zero truncated bivariate Poisson regression 

(ZTBVP) models are considered to analyze UK road accident count data and the best model is selected based on the AIC 

and BIC values. From the data analysis, it is observed that the ZTBVP model provides the best fit (AIC value: 20563.26) 

for the UK road accident count data compared to all two variants of the BVP model (AIC value: >20563.26). From the 

results obtained from ZTBVP model, it is also observed that sex of driver, area, serious severity, and light condition are the 

significant covariates for the total number of cars involved in an accident while area, fatal severity, serious severity, light 

condition and year 2021 are the significant covariates for the total number of fatalities due to that accident. 

Keywords: Bivariate Poisson Regression, Zero Truncated Bivariate Poisson Regression, Akaike Information Criterion, 

and Bayesian Information Criterion. 

I. Introduction 

Accidents are unfortunate occurrences that happen 

unexpectedly and unintentionally due to a variety of factors, 

causing harm to people and property. Such unfortunate 

events can be prevented or mitigated if the risk factors 

responsible for such unfortunate events are identified ahead 

of time and effective counter measures are implemented. 

Therefore, public health researchers or higher authorities of 

a state want to identify the factors which are responsible for 

such unfortunate events. In addition to identifying the 

responsible factors for such unfortunate events, they also 

want to know the total number of fatalities or total amount 

of accident related cost which depends on how many 

vehicles are involved in an accident. Data obtained from 

such types of real life problems are known as correlated or 

paired data. This paired data is called paired count data 

when both of the response variables denote the total number 

of counts.    

Paired count data arise vastly in our everyday life from 

different disciplines, most importantly, medical science, 

engineering and public health. For example, the total 

number of cars involved in an accident and the total number 

of fatalities as a result of this accident are considered as 

paired count variables. Furthermore, the frequency of 

antenatal care (ANC) visits and number of antenatal care 

services received by a pregnant mother is another example 

of paired count data. 

Researchers’ main aim is to investigate the effects of 

covariates on these count outcomes through suitable 

statistical modeling. Choosing a suitable statistical model to 

model a phenomenon depends on the context of the 

problem. The univariate and bivariate Poisson regression 

model can be used as a primary model to model a 

phenomenon with single and correlated count responses 

respectively. When the count response is overdispersed, the 

Quasi-Poisson or the negative binomial regression model 

can be used as a primary model. Furthermore, zero inflated 

Poisson and zero inflated negative binomial regression 

model can be used when response possess excess zero 

count for equidispersed and overdispersed count data 

respectively. The road accident data considered in this 

paper are correlated zero truncated count data and suitable 

models for such types of data are any zero truncated 

bivariate count models. 

Chowdhury and Islam (2016) proposed covariate dependent 

zero truncated bivariate Poisson model: marginal 

conditional approach to analyze UK road safety data 

collected from 2005–2013, published by the Department of 

Transport, United Kingdom and compared the performance 

of their proposed model with the performance of zero 

truncated bivariate Poisson model without covariates (null 

model). They showed that their proposed model offered 

better fittings to the UK road safety data compared to the 

null model. However, they did not explore how other 

competing models perform in such situations compared to 

the performance of their proposed model. 

Motivated by the lack of their study, we consider two other 

competing models along with their proposed model to 

analyze UK road safety data and compare the performance 

of all models considered in this paper. This paper also 

considers an updated road safety data set recorded from 

2017–2021 instead of data recorded from 2005–2013. All 
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the results presented in this paper are produced for updated 

road safety data, and the detailed discussion about the 

similarities and dissimilarities between the updated and 

previous data sets are provided in the data description 

section.  

The rest of the paper is organized as follows. In section 2, 

the related methodologies of all competing models 

considered in this paper are presented in detail. A detailed 

overview of the data and variables are presented in section 

3. Finally, we discuss the results of our study which is 

followed by the conclusion presented in section 4 and 

section 5, respectively. 

II. Methodology 

In this study, the bivariate Poisson (BVP) of two different 

forms and zero truncated bivariate Poisson regression 

(ZTBVP) models are considered to analyze UK road 

accident count data. 

Bivariate Poisson model (BVP-1) 

Consider the random variables   , i= 1, 2, 3 which are 

independent Poisson distribution with parameters   , 

respectively. Let the random variables         and 
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The two random variables can positively depend on one 

another according to the bivariate distribution shown 

above. Moreover,    (   )    , and     represents 

the degree of dependence between the two random 

variables. The bivariate Poisson distribution simplifies to 

the double Poisson distribution if     , indicating 

that the two variables are independent. The 

correlation coefficient   between   and   is 
  

√(     )(     )
. Under generalized linear model 

framework,        
   ,         

    and      

  
    are considered as the link functions where   

denotes the regression coefficients. To estimate these 

regression coefficients, we use the Expectation 

Maximization (EM) estimation technique. EM algorithm is 

an iterative procedure for maximum likelihood estimation. 

It is primarily useful when there is missing data. Missing 

data can be (i) actual missing data (ii) hypothetical variable 

which makes likelihood function simpler to solve. 

EM algorithm produces a sequence of values that converge 

to a stationary value. Each iteration consists of two steps: 

E-step and M-step. In the E step missing value is replaced 

by its conditional expectation while expected log likelihood 

is maximized in the M step.  In order to construct the EM-

algorithm we need to estimate the unobserved data by their 

conditional expectations and then fit Poisson regression 

models to the pseudo values obtained by the E-step. 

Denoting as   the entire vector of parameters, that is 
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 ), the complete data log-likelihood is 

given by 
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The EM-algorithm works in two steps:  

E-step: Using the current parameter values of   iteration 

noted by  ( ) ,    
( ) 

,    
( ) 

 and    
( ) 

calculate the 

conditional expected values of    , for              
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M-step: Update the estimates 
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where   (       )  is the     vector calculated in the 

E-step,  ̂(   ) are the maximum likelihood estimates of a 

Poisson model with response vector x and design or data 

matrix given by W. Each data matrix    is a      matrix 

and    
  is its corresponding     row (               )  If 

we wish to have common (or equal) parameters among 

different    then we should construct a common design 

matrix W and the corresponding parameter vector   will be 

estimated as       ̂(   ) with    (          

      ). In the functions provided, we have considered the 

possibility to have common parameters only between    

and   . It is also noted that standard GLM procedures can 

be used for the M-step despite the fact that the responses 

are not any more integers. The latter does not cause any 

numerical problems. 

Bivariate Poisson Model (BVP-2) 

The joint distribution of BVP proposed by Islam and 

Chowdhury (2016) is 
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where                                   The 

exponential version of the above equation can be expressed 

as  (   )     (         (  )         (   )  

       (  )), where the link functions are           

and         and    denotes the regression coefficients. 

The maximum likelihood estimation technique is used to 

estimate these regression coefficients. The estimates of the 

regression parameters vectors    and    can be obtained 

iteratively by using Newton-Raphson method as follows 

 ̂   ̂      
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where  ̂  denotes the estimate at     iteration,   
   ( ̂   ) 

is the information matrix of the parameters and  ( ̂   ) is 

the score function of the parameters. 

Zero Truncated Bivariate Poisson (ZTBVP) 

Model: 

The joint distribution of ZTBVP proposed by 

Chowdhury and Islam (2016) is 
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where                              

The ZTBVP’s exponential form can be written as 
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where the link functions are           and         

and    denotes the regression coefficients. To estimate 

these regression coefficients we use maximum likelihood 

estimation technique. The estimates of the regression 

parameters vectors    and    can be obtained iteratively by 

using Newton-Raphson method as follows 

 ̂   ̂      
  ( ̂   )  ( ̂   )  

where  ̂  denotes the estimate at     iteration,   
  ( ̂   ) 

is the information matrix of the parameters and  ( ̂   ) is 

the score function of the parameters. 

AIC and BIC  

‘Information criterion’ (IC) is used to select optimal model. 

Most of the ICs are calculated using logarithm of likelihood 

and a penalized term. Based on this ‘penalty’, they are 

known with different name. AIC and BIC are the most 

common ICs found in the literature. The mathematical form 

of AIC and BIC are: 

        ( )    , 

        ( )    ( )   , 

where   is number of observations and   is number of 

parameters to be estimated. Both of the above ICs make 

same decision for simple models. Different conditions, 

however, lead to different conclusions, and arguably none 

of them captures the full complexity of real model selection 

problems. So, it is better to choose optimal model when 

both of them makes same conclusion [Kuha’ 2004]. 

  

 

Table 1. Type of the selected variables 

Variables Type Leveling 

Outcome ( ) Count - 

Outcome ( ) Count - 

Sex of Driver Categorical Male and Female 

Area Categorical Rural and Urban 

Accident Severity Categorical Fatal, Serious and Slight 

Light Condition Categorical Daylight, and Others 

Year Categorical 2017, 2018, 2019, 2020,  2021 

 

III. Data and Variables 

Chowdhury and Islam (2016) showed the application of 

their proposed ZTBVP model on UK road safety data 

collected from 2005-2013, published by the Department of 

Transport, United Kingdom. In this paper, we will also 

consider ZTBVP along with other two variants of the BVP 

model for analyzing updated road safety data recorded from 

2017−2021. In the updated data set, there are 562439 

observations with many variables. A random sample of 

5624 accident reports is chosen, representing approximately 

1% of all accident records. In the context of our problem, 

we have two outcome variables namely number of cars 

involved in an accident ( ) and the total number of 
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fatalities ( ) while sex of driver, accidental area, accident 

severity, lighting condition and years are explanatory 

variables. All of these factors were taken into account by 

Chowdhury and Islam (2016) as an explanatory factors. It is 

noted that all the categorical variables considered here are 

dummy variables. Table 1 shows the number of variables 

and their corresponding type considered from the road 

safety data set. 

Dummy variables for the above five categorical variables 

are created as: sex of the driver (male = 1; female = 0), 

area (rural = 1; urban = 0), accident severity (fatal 

severity = 1, else 0; serious severity = 1, else = 0; slight 

severity is the reference category), light condition 

(daylight = 1, others = 0) and four dummy variables for 

year 2018 to year 2021, where year 2017 is considered as 

reference category.  

Bivariate count data considered in this paper need to be 

tested whether they are overdispersed or not. The 

Likelihood Ratio test and the Dean‘s test are considered to 

test whether there exists  

Overdispersion in the count data. The hypothesis is defined 

as     count data is not overdispersed versus     there 

exists overdispersion in the count data. To test the 

overdispersion, we use DCluster R package in R 

programming language. From the result (shown in Table 2), 

we see that the p-value of this three tests are very high 

(1.00) that means we may not reject the null hypothesis. So, 

there is no overdispersion in the road accident data set.  

 

 

Table 2. Results of Overdispersion test 

Variable Test Name Test statistic p-value 

 

  

Likelihood 

Ratio Test 

-0.062 1 

Dean's    -38.882 1 

Dean's   ́ -38.789 1 

 

  

Likelihood 

Ratio Test 

-0.074224 1 

Dean's    -32.13 1 

Dean's   ́ -32.031 1 

 
IV. Results and Discussion 

In this section, firstly, we decide which covariates are used 
as regressors to model    in BVP-1 model. Here, we have 

fitted seven BVP-1 models under GLM setup of   : 1) a 
model without any covariance; 2) a model with constant 
covariance term; 3) a model with covariate sex of driver on 
the covariance term   ; 4) a model with covariates sex of 

driver and area on the covariance term   ; 5) a model with 
covariates sex of driver, area, and fatal severity on the 
covariance term     6) a model with covariates sex of 
driver, area, fatal severity, and serious severity on the 
covariance term   ; 7) a model with covariates sex of 
driver, area, fatal severity, serious severity, and light 
condition on the covariance term   ; 8) a model with 
covariates sex of driver, area, fatal severity, serious 
severity, light condition and all years on the covariance 
term   . For    and    we consider sex of driver, area, fatal 
severity, serious severity, light condition and all years as 
covariates. Now, different performance criteria of the 8 
fitted models are presented in Table 3. 

 

Table 3. Results from the fitted bivariate Poisson (BVP-1) models for the accident data 

Mode
ls 

AIC BIC Log-Like Par 

1 29092.05 29238.60 -14526.02 20 

2 27255.67 27409.56 -13606.84 21 

3 27257.51 27418.73 -13604.63 22 

4 27255.26 27423.80 -13604.63 23 

5 27256.33 27432.20 -13604.16 24 

6 27258.33 27449.67 -13604.16 25 

7 27259.14 27449.67 -13603.57 26 

8 27266.28 27486.11 -13603.14 30 

 

Table 3 shows that BIC is the minimum for model 2, which 

is 27409.56. But AIC is the minimum for model 4, which is 

27255.26 and 2
nd

 minimum value of AIC is got for model 2, 

which is 27255.67. The AIC values of the 2
nd  

and 4
th 

models differ by a little amount in this area, and the 4
th 

model has 2 covariates with constant terms, but the 2
nd

 

model contains just one constant term which is estimated 

from the data as a constant covariate. If we consider model 

4, we can see that to gain a modest quantity of AIC value 

which is 0.41, a large number of covariates are required to 

estimate, and the interpretation will be challenging. Due to 

this, we decided to choose the second one as the optimal 
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model among these 8 models and compare this second 

model (BVP-1) to the BVP-2 and ZTBVP models. Now the 

question is which model is the best to analyze zero 

truncated bivariate count data? Here, we use AIC and BIC 

to select the optimal model among these three models. 

Table 3 represents the results of the log likelihood, AIC, 

BIC, and number of parameters of the BVP-1, BVP-2, and 

ZTBVP models. 

 

Table 4. Test statistics results of BVP and ZTBVP models 

Model 
Statistics 

BVP-1 BVP-2 ZTBVP 

Log likelihood -14526.02 -14727.21 -10261.63 

AIC 27255.67 29494.42 20563.26 

BIC 27409.56 29627.11 20695.96 

Par 21 20 20 

 

From Table 4, it is observed that the AIC and BIC values 

for BVP-1, BVP-2, and ZTBVP models are 27255.67 and 

27409.56, 29494.42 and 29627.11, and 20563.26 and 

20695.96, respectively. This demonstrates that the ZTBVP 

model has lower AIC and BIC values than the BVP-1 and 

BVP-2 models. Therefore, the ZTBVP model can be 

considered as a better model to analyze UK road accident 

data compared to all two variants of the BVP model as far 

as AIC and BIC are concerned. 

Finally, the ZTBVP model was chosen as a better model to 

analyze UK road accident data over the BVP-1 and BVP-2 

models based on the above performance comparison of the 

BVP-1, BVP-2, and ZTBVP models. Therefore, only 

regression outputs obtained from the ZTBVP model were 

considered to determine the significant factors of road 

accident which are presented in Table 5. 

 

Table 5 .  Parameter estimates of ZTBVP model for road safety data 

 ZTBVP 

Variables Estimate  Std. Error p-value 

Marginal Model for X    

constant 0.193198 0.042801             

sex of driver 0.068552 0.028521           

area 0.077869 0.028342            

fatal severity -0.111077 0.114856 0.333539 

serious severity -0.170630 0.036921             

light condition 0.115211 0.030778             

year 2018 0.002491 0.040179 0.950559 

year 2019 0.016183 0.040403 0.688786 

year 2020 -0.012440 0.043519 0.775010 

year 2021 0.009116 0.042737 0.831096 

Conditional Model for Y    

constant -1.283057 0.071122             

sex of driver -0.051581 0.048905 0.291595 

area 0.559077 0.046801             

fatal severity 0.790931 0.113374             

serious severity 0.174728 0.057834            

light condition -0.119616 0.050741           

year 2018 -0.105068 0.067058 0.117213 

year 2019 -0.116095 0.067947 0.087578 

year 2020 -0.049916 0.071890 0.487500 

year 2021 -0.277163 0.077233             

       ,                    

From Table 5, it is observed that in the marginal model, the 

explanatory variables such as area, sex of a driver, serious 

severity and light condition have statistically significant 

effects on the total number of cars involved in an accident 
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while fatal severity, year 2018, year 2019, year 2020 and 

year 2021 do not have statistically significant effects on the 

total number of cars involved in an accident. More 

specifically, the effects of serious severity and light 

condition on the total number of cars involved in an 

accident are statistically significant at 0.1% level while the 

effects of area on the total number of cars involved in an 

accident and the effects of sex of driver on the total number 

of cars involved in an accident are statistically significant at 

1% and 5% levels, respectively. On the other hand, 

Chowdhury and Islam's found all the variables are 

statistically significant except years from their analysis. The 

variable fatal severity was found to be significant in the 

analysis conducted by Chowdhury and Islam's but it is not 

found significant in the analysis shown in this paper which 

is the only dissimilarity between these two analysis as far as 

marginal model is concerned.   

Moreover, in the conditional model, the explanatory 

variables such as area, fatal severity, serious severity, light 

condition and year 2021 have statistically significant effects 

on the total number of fatalities while sex of a driver, year 

2018, year 2019 and year 2020 do not have statistically 

significant effects on the total number of fatalities. More 

specifically, the effects of area, fatal severity and year 2021 

on the number of fatalities are statistically significant at 

0.1% level while the effects of serious severity on the 

number of fatalities and the effects of light condition on the 

number of fatalities are statistically significant at 1% and 

5% levels, respectively. Like earlier, one dissimilarity has 

been found in both analyses: the variable sex of driver is 

not found to be significant in our analysis but it was 

significant in previous analysis as far as marginal model is 

concerned. 

V. Conclusion 

In this study, an attempt is made to explore the performance 

of the BVP-1, the BVP-2, and the ZTBVP models to 

analyze the zero-truncated bivariate pair count data based 

on AIC and BIC values. We use UK road safety data 

collected from 2017–2021 which is zero truncated pair 

count data. According to our data analysis, it is observed 

that the ZTBVP model provides the best fit for the UK road 

accident count data compared to all two variants of the BVP 

model. From the results obtained from ZTBVP model, it is 

also observed that sex of driver, area, serious severity and 

light condition are the significant covariates for the total 

number of cars involved in an accident while area, fatal 

severity, serious severity, light condition and year 2021 are 

the significant covariates for the total number of fatalities 

due to that accident. 
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