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Abstract 

Data mining is the technique for deriving valuable data from a more extensive collection of raw data. It is the process of 

looking for irregularities, trends, and correlations in huge data sets in order to forecast results. Although a number of 

techniques have been developed to perform data mining on conventional data in the past years, there are huge scope to 

work with Interval Valued data (IVD). Working with IVD has been shown to be of significant importance when it comes to 

identifying the objective entity in a precise manner or representing incomplete knowledge on life situations. Unlike 

classical data where each object is represented by a point, in IVD the objects are represented by regions in Rp. In this 

paper, an extension of Principle Component Analysis (PCA) known as Vertices Principal Components method for interval-

valued information has been explored. It additionally incorporated the relative contributions of the vertices depending on 

different choices of weighting schemes. A new idea for classification of the supervised IVD is proposed which is based on 

the idea of K-Nearest Neighbor (KNN) technique. The proposed approach is implemented on several benchmarking data 

sets. Numerical results suggest the proper choice of weighting schemes for each of the data set that will lead to better 

recognition rate. 

Keywords: Data Mining, Interval Valued Data, Principal Component Analysis, Vertices Principal Component Analysis, 

K-Nearest Neighbor, Distance Matrix.

I. Introduction 

Within the interest of knowledge, information plays an 

important role. Data
1,2

 is made up of discrete values that 

describe amount, quality, fact, statistics, and other 

fundamental units of meaning. It can be expressed in words, 

details, observations, pictures, numbers, graphs, or symbols. 

Data is information that has been transformed into a format 

that is useful for transfer or processing in computing.   

Generally, we use the classical data set to represent 

information or knowledge in which each data point is 

considered as single point. To represent the data set which 

is not possible to express by a particular point, Diday.
2
 

introduced the idea of symbolic data set to present such 

phenomenon. Symbolic dataset
1,2

 consists of intervals, lists, 

histograms, distributions etc. Interval-valued data (IVD), a 

type of symbolic data, is given as an interval in which the 

observation object can occur frequently in the process of 

aggregating large databases into a form that is easy to 

manage. Medical Health Demographics, Iris data, 

Haemoglobin by gender age groups, Cholesterol by gender 

age groups, Blood pressure data, Mushroom data, 

temperature (in Celsius or Fahrenheit), mark grading etc. 

are the examples of IVD. In market research or in any other 

forms of medical, educational, social, economic or business 

research interval valued data
3,4

 plays a pivotal role. 

L. Billard et al.
2
 extended the method of finding principal 

components in case of interval valued data. They proposed 

vertices method
2 

on the basis of all vertices of hypercube 

and centre method using the centroid values. A. Douzal-

Chouakria et al.
1
 studied principal aspect evaluation for 

interval-valued data and added the concept of vertex 

contributions
1
 to the underlying primary additives. By 

combining both the midpoints (or centers) and the radii (a 

measure of the interval width) of (IVD), P. D’Urso et al.
7
 

proposed an extension of convention or classical PCA 

which is Midpoint Radius Principal Component Analysis 

(MR-PCA)
7
. H. Wang et al.

8
 proposed a new PCA method 

called Complete Information based Principal Component 

Analysis (CIPCA)
8
 which defines the inner product of 

interval-valued variables and gives a proficient and 

powerful way for directing PCA for enormous scaled 

mathematical information, X. Qi et al.
9
 introduced the 

Uniform Representative Framework (URF)
9
 to better 

describe the structural information of the IVD. In addition, 

symmetric uncertainty (SU)
9
 was applied to quantitatively 

measure the relationship between features and classes. t is 

quite common for real random variables to be seriously 

observed or so improbable that the results would need to be 

recorded as actual intervals containing specific data from an 

experiment. In some cases, due to specific confidentiality 

reasons, the specified value of a variable may be kept in an 

encrypted format. In such cases, researchers are interested 

to consider interval valued observations instead of classical 

data.  

Our main contributions in this work are 

 Here, selection process of appropriate weight scheme
15

 

is suggested depending on the relative contribution of 

the reconstructed datasets (expressed in terms of 

vertices) on principal components which will lead to 

better recognition rate of testing data. 
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 This paper works with supervised data. Vertices 

principal component analysis is applied on training 

data. Therefore, transformation matrix is obtained 

which is applied on testing data set to project the data 

in reduced dimensional space.  

 Finally, a new idea for classification of the supervised 

IVD is proposed which is based on the idea of K-

Nearest Neighbor (KNN) technique.  

 The proposed approach is implemented on several 

benchmarking data sets. Numerical results suggest the 

proper choice of weighting schemes for each of the 

data set that will lead to better recognition rate 

The rest of the paper is designed as follows. 

In the next section, formulation process of the problem has 

discussed including classification. The following sections 

(III to IV) include a brief review of PCA, Vertices PCA, 

Variance-Covariance matrix and Calculation process of 

finding Principal component with contribution. In section 

V, the idea of Distance matrix for interval dissimilarities 

has discussed. In section VI, the determination process of 

appropriate weight scheme has discussed depending on 

relative contribution of vertices and idea Distance matrix 

for interval dissimilarities has applied as classification 

process. Finally, the conclusion of this work has drawn in 

section VII. 

Problem Formulation  

Given a set of interval valued data where the data points 

belong to two or more classes.  The problem is to reduce 

the dimension of data set to select important features and 

use these features to identify the class or label of unknown 

or new data.  

Suppose the original Interval Valued Dataset consists of   

observations     (             )             with   

variables    (           ). Each observation     [     

   ]                     is a non-trivial interval 

valued data that is          . Thus, the data set has the 

form 

(

  
  
 
  

)  

(

 
 

[        ] [        ]  [        ]

[        ] [        ]  [        ]
            

[        ] [        ]  [        ])

 
 
  

 

The basic steps that are taken in this work to deal with this 

interval valued data is illustrated in Fig. 1. 

  

 

 Fig. 1. Basic structure for classification for IVD by dimension reduction using VPCA 

Principal Component Analysis (PCA) 

Dimension reduction is a very important pre-processing 

step for classification of data. Many data set are usually 

reduced to 2 or 3-dimension for visualization purpose. Also, 

data with less dimension are simpler to investigate. 

PCA
11,12

, is one kind of   dimensionality-reduction strategy 

that’s frequently utilizes to reduce the dimensionality of 

data yet preserves important information that highlight the 

similitudes and contrasts.  

PCA reduces the dimension of the data sets by computing 

new variables Principal Components (PCs) that are 

constructed as linear combinations or mixtures of the initial 

variables. The first principal component has maximum 

variance (among all linear combinations) and accounts for 

as much variation in the data as possible. 

Principal Component Analysis
12

 can be spitted into the 

following steps: 

1.  Standardize the initial variables. 
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2.  Computation of covariance matrix. 

3. Finding the eigenvectors and eigenvalues of the 

covariance matrix and choose the  

     dominant eigenvalue to calculate the Principal 

Components. 

4. Represent the original data set in terms of Principal 

Component’s axes. 

Vertices Principal Component Analysis (VPCA) 

VPCA
2
 was first introduced by L. Billard et al. in 2008. 

They proposed this method
 
on the basis of all vertices of 

hypercube. In this section we will briefly discuss the 

process of applying VPCA on IVD.  

To apply VPCA the first step is to construct data in term of 

vertices as discussed below    

Transformation Process of Interval Valued Dataset to 

Classical Dataset 

Suppose the number of nontrivial intervals in    is   , then 

the number of vertices corresponding to     is     . Thus, the 

total number of vertices in dataset (            ) is 

   ∑   
 
    ∑           

                                                   (1)                                                                               

The data matrix for the observation    can be written as 

    

(

  
 

   
     

 

   
   
     

 

   
    
      

 
)

  
 
   

where   
  (   

     
       

 )  is the coordinate of the 

vertex           related to the hypercube    
representing the observation             . 

 

Then the complete data matrix    in terms of vertices is the 

following     matrix 

                    (   )            (

   
 
   

) 

             

(

 
 
 
 
 (

   
     

 

   
    
      

 
)

 

(

   
     

 

   
    
      

 
)

)

 
 
 
 
 

                        (2) 

where       
              where    ∑   

 
   .  

                                    

Variance-Covariance matrix 

After generating the matrix X, the Variance – Covariance 

matrix is calculated by  

         ,                                                             (3) 

where X is defined as (2) and   is the     diagonal 

matrix containing the weight functions 

        (  
    

       
      

       
 )                (4) 

where (  
    

       
 )   denotes the weight corresponding 

to the observation   . In the next section, different weigh 

scheme that can be applied to this variance -covariance 

matrix is discussed. 

Weights 

In determining relative contribution of vertices on principal 

component, weights imposed on vertices plays an important 

role.  L. Billard et al. suggested different weighting 

schemes in their work: i) Equal weight for each 

observation, ii) weights based on internal variations of 

hypercubes, iii) weights inversely proportional to the 

volume of hypercubes. Each of these weight schemes are 

analysed by applying them of several datasets which are 

discussed in numerical part. The following section includes 

a brief description of these weight scheme 

Weight Scheme 1 (Equal weight for each observation)  

 Let the weight function associated with the vertex k (of    ) 

be   
                          Here each 

observation    has    vertices and have a weight factor   . 
Therefore,  

        ∑   
   

    ∑   
 
     .                                             

If we consider equal weight for each observation then  

        
 

 
                                                         (5) 

  and therefore     
  

 

    
                     . 

Weight Scheme 2 (   based on internal variations of 

hypercubes)  

Suppose i
V  is the volume of hypercube i

H  associated 

with the observation     given by    

     ∏ (       )       
               (6)                                  

Weight based on internal variations of hypercubes         
        can be written as  

         
  

∑   
 
   

               (7) 
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Weight Scheme 3 (   inversely proportional to the volume 

of hypercubes)  

In this case, the weight functions are considered to be 

inversely proportional to the volume of hypercube i.e.             

          
  

  
∑   
 
   

∑ [  
  

∑   
 
   

] 
   

                  (8)                             

 

Vertices Principal Components and Relative Contribution 

of Vertices 

Here we first determine the eigenvectors and eigenvalues of 

the weighted variance–covariance matrix V and choose the 

dominant eigenvalue to calculate the Principal Components. 

The     symbolic vertices principal components of 

weighted variance–covariance matrix V given by equation 

(3) for the observation    is given by  

     

   
  [   

     
 ]            
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 }  

   
     {   

 }

          
      

             

                           }
 
 

 
 

                           (9) 

Then principal components related to     eigenvector and 

associated with       
   is , 

       ∑    (      ̅)  
 
          (10)                                                                                                                                    

where    (               )             and the 

weighted sample mean is 

 ̅  ∑∑  
    
  

  

   

 

   

 

 

Relative contribution of Vertices on Principal Components 

Finally, the relative contribution of vertices on principal 

components      is determined by     

        (  
     )  

(   
 )

 

* (  
   )+

                                             (11)                                                               

where G is the centroid of the data set. 

Next, the required principal components (   )  are 

determine which will be used to project the data set into 

lower dimensional space.  

In the next section, distance matrix for interval valued data 

is discussed which will be used for classification of testing 

data. 

Distance Matrix for Interval Valued Dataset 

To develop distance matrix
10

 for interval valued dataset, the 

ranges of dissimilarities
3
 must be represented by ranges of 

distances. For this the hypercubes are considered as the 

objects and the upper and lower bound of the distance 

interval are approximated.  

Let the rows of the matrix X of order     contains   

intervals each of which represents the coordinates of the 

centers (denoted by    ) of edges of the hypercubes and the 

corresponding radius or spread , where n is the number of 

objects and p is the dimensionality. 

The coordinates of center     are defined by 

    
   
     

 

 
                                                  (12) 

and the distance from the center of hypercube i along the 

axis s called the spread, is denoted by      ≥ 0 and is defined 

by 

        
|   
     

 |

 
          .                              (13)            

Then the maximum Euclidean distance between rectangles   
and   is given by: 

     
( )(   )  (∑ [|       |  (       )]

  
   )

 

 
        (14) 

and the minimum Euclidean distance by 

   
( )(   )  (∑    [|       |  (       )]
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    (15) 

Thus, the distance matrix   containing the entries as 

intervals of distances is given by 
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 .       (16) 

Eq.14 and 15 and therefore the distance matrix   will be 

used for the classification task in the next section. 

II. Experiment and Results 

Dataset description 

We have implemented the idea of Vertices Principal 

Component Analysis on two different interval valued 

datasets (Facial dataset and Blood Pressure dataset). 

Face Dataset 

The importance of face recognition
5
 problem has increased 

rapidly specially in the context of security. However, for 

different portraits of the same person sometimes there may 

be slight variations in measurements due to several reasons. 

In that case, to develop a model for face recognition, 
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interval valued measurement will lead to better 

performance.  In this work, a VPCA is applied on face 

dataset
3
 which is collected from Leroy et al. (1996). In this 

dataset, each observation contains 6 (six) random variables 

each of which is an interval and represents, the distance 

between two points of some specific part of face image is 

measured based on the number of pixels on that image. For 

example, the variable X1 stands for the distance spanned by 

the eyes (AD in Fig. 02) that is the distance between the 

outer corner of two eyes , X2 defines the distance between 

the inner corner of two eyes (BC), X3 stands for the 

distance between outer corner of right eye and upper middle 

lip (AH), X4 denotes corresponding length for left eye 

(DH), X5 stands for the distance between the outside of the 

mouth on right side and upper middle lip (EH) and X6 

indicates the corresponding length to the left side of the 

mouth (GH).    

 

Fig. 2. Faces
3,4

: Description of 6 random variables 

Due to the different conditions of alignment, illumination, 

pose and occlusion, the lengths will vary for different image 

of the same person. That’s why three sequences of images 

are considered for one person. Here this dataset included 9 

(nine) men with 3 (three) sequences of images which gives 

a total of 27 observations. The complete dataset will be 

     dimensional Interval valued dataset. 

  Table 1. First three rows of       dimensional interval valued face dataset 

Person X1 = AD X2 = BC X3 = AH X4 = DH X5 = EH X6 = GH 

FRA1 [155, 157] [58, 61.01] [101.45, 103.28] [105, 107.3] [61.4, 65.73] [64.2, 67.8] 

FRA2 [154, 160.01] [57, 64] [101.98, 105.55] [104.35, 107.3] [60.88, 63.03] [62.94, 66.47] 

FRA3 [154.01, 161] [57, 63] [99.36, 105.65] [101.04, 109.04] [60.95, 65.6] [60.42, 66.4] 

 

Blood Pressure Dataset  

Blood pressure data has been obtained from the data table 

jointly formed by Lynn Billard and Edwin Diday in 2007. 

This dataset is available in the webpage of Department of 

statistics, Franklin College of Arts and Sciences, University 

of Georgia.  It consists of 15 data points each with 3 

attributes. The three attributes each of which are given in 

interval valued form, describe the Pulse Rate, Systolic 

Pressure, and Diastolic Pressure of a person.

Table 2. Blood Pressure dataset 

Person Pulse Rate Systolic Pressure Diastolic Pressure 

1 [44, 68] [90, 110] [50, 70] 

2 [60, 72] [90, 130] [70, 90] 

3 [56, 90] [140, 180] [90, 100] 

4 [70, 112] [110, 142] [80, 108] 

5 [54, 72] [90, 100] [50, 70] 

6 [70, 100] [134, 142] [80, 110] 

7 [72,100] [130, 160] [76, 90] 

8 [76, 98] [110, 190] [70, 110] 

9 [86, 96] [138, 180] [90, 110] 

10 [86, 100] [110, 150] [78, 100] 

11 [53, 55] [160, 190] [205, 219] 

12 [50, 55] [180, 200] [110, 125] 

13 [73, 81] [125, 138] [78, 99] 

14 [60, 75] [175, 194] [90, 100] 

15 [42, 52] [105, 115] [70, 82] 
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Numerical Results 

The procedure of applying vertices principal component 

analysis and classification for both datasets is given bellow: 

• Reconstruct the data set in terms of vertices. 

• Chose an appropriate Weighting Scheme depends on 

relative contribution of vertices on principal 

components. 

• Split the constructed data set into training set those are 

labelled and testing whose classes will be identified. 

• Determine distance between a test image to each of the 

training images to classify the testing image.   

In Face dataset, there are 27 observations and 6 variables. 

So according to (1) the total number of vertices will be 

            that means we will get        

dimensional dataset in terms of vertices. The comparison of 

Average Relative Contributions (ARC) of vertices on 

Principal Components (PC) (Using Eq. 11 and 12) for three 

different choices is given in the following Fig. 03. 

 
 

 Fig. 3. Average Relative Contributions (ARC) of vertices on Principal Components (PCs) for three different weighting schemes for face 

dataset 

From Fig. 3, we observed that the average relative 

contribution of vertices on principal components is the 

highest for the choice of weight scheme 1 that means equal 

weight, So calculation of the next portion will be carried 

using equal weight to each observation. Split the 

constructed dataset into training set which contains the 

information of the first two images of each person and 

testing set which contains the information of the third 

image of each person. Calculate first two principal 

components of the training set. Then applying the idea of 

Supervised PCA (eigenvectors obtained from the training 

set), calculate the first two principal components of the 

testing set. 

 

 

Fig. 4. Rectangular representation3,4 of principal components for training and testing sets for face datasets where each rectangle is drawn 

considering minimum and maximum value of PCs. Solid lined rectangle represents the training set and the dotted lined rectangle 

represents the testing set. 
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From Fig. 4, it is clear that same-coloured solid lined 

rectangles and the dotted lined rectangle stay almost 

together which means testing data match with training data. 

  

Table 3. Distance Matrix of order      of face dataset 

[13.42, 15.48] [13.43, 33.45] … … … … 

[15.70, 17.63] [10.35, 34.57] … … … … 

… … … …. [7.23, 16.87] [11.95, 17.17] 

… … …. … [9.10, 27.97] [15.19, 18.00] 

 

Each element of Table 3 represents the distance interval 

where the lower limit (using Eq. 14) has obtained by 

considering the minimum distance between each testing 

image with all training images. Similarly, for the upper 

limit (using Eq. 15) the maximum distance has considered.   

Table 4 represents the difference matrix where each 

element is computed by taking the difference between the 

upper limit and lower limit of each interval of distance 

matrix which is given in Table 3. 

Table 4. Difference matrix of order       of face dataset 

Training 

Image 

Distances 

   

 FRA3 HUS3    INC3           ISA3        JPL3 KHA3    LOT3      PHI3      ROM3 

FRA1 2.06 20.01 15.33 20.75 12.79 24.72 17.83 14.04 18.77 

FRA2 1.93 24.22 15.65 23.59 15.55 26.03 22.09 14.91 20.85 

HUS1 26.69 2.58 25.05 23.55 10.32 27.69 17.23 14.85 28.05 

HUS2 31.47 1.78 29.80 25.75 12.95 31.74 20.51 16.00 33.41 

INC1 15.26 22.38 0.64 21.34 16.25 28.01 19.00 15.90 19.49 

INC2 18.03 29.00 6.59 23.83 22.09 30.75 22.86 21.42 21.83 

ISA1 26.52 23.22 23.01 3.37 21.84 20.91 14.64 20.00 18.18 

ISA2 27.97 24.36 24.53 1.09 22.09 24.00 17.07 16.46 17.37 

JPL1 17.63 14.93 19.62 20.95 2.35 28.34 15.84 3.72 19.36 

JPL2 20.03 11.42 21.24 20.69 1.74 29.46 18.07 4.37 21.36 

KHA1 31.01 27.31 32.51 27.65 24.03 7.56 15.40 27.23 29.60 

KHA2 29.53 27.98 32.02 26.13 24.80 4.26 14.97 27.46 28.34 

LOT1 31.39 22.38 27.09 20.63 17.68 11.00 2.49 21.04 26.63 

LOT2 28.70 20.35 24.48 17.57 15.67 13.22 1.19 19.07 23.70 

PHI1 20.16 15.78 21.18 14.45 7.48 29.07 19.29 3.36 18.89 

PHI2 21.85 14.71 23.38 16.38 5.75 32.67 21.79 3.95 20.68 

ROM1 24.21 26.33 21.33 13.77 20.01 22.99 17.20 19.64 5.22 

ROM2 25.18 29.50 22.49 16.89 20.80 26.60 20.98 18.87 2.82 
 

Table 5. Classification of testing images for face dataset 

Testing Image Minimum Differences Match with Training 

Image 

FRA3 1.93 FRA2 

HUS3 1.78 HUS2 
INC3 0.64 INC1 

ISA3 1.09 ISA2 

JPL3 1.74 JPL2 

KHA3 4.26 KHA2 

LOT3 1.19 LOT2 
PHI3 3.36 PHI1 

ROM3 2.82 ROM2 

Table 5 indicates that all the images of the testing set are 

recognized based on the minimum differences of distance 

matrix that means recognition rate is 100 percent. 

 

 

For blood pressure dataset, at first need to classify the whole 

data set into three parts based on the following Table 6. 

Table 6. Blood Pressure (BP) Levels 

BP at Normal Ranges  Systolic:  <120 mm Hg  

Diastolic: <80 mm Hg 

BP at Risk Level Systolic: From 120 to 139 mm Hg  

Diastolic: From 80 to 89 mm Hg  

High Blood Pressure (BP) Systolic: ≥140 mm Hg 

Diastolic: ≥90 mm Hg 
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Table 7. Different Classes of Patients based on Blood Pressure Labels 

Blood Pressure Levels  Persons Label 

Normal 1,5,15 1 

At Risk (prehypertension) 2,13 2 

High Blood Pressure (hypertension) 3,4,6,7,8,9,10,11,12,14 3 

 

  

Fig. 5. Average Relative Contributions (ARC) of vertices on Principal Components (PCs)  for three different weighting schemes for 

Blood Pressure dataset 

According to the above Fig. 05, for blood pressure dataset 

the ARC of vertices on Principal Components is the highest 

for the choice of Weight Scheme 3. So, calculation of the 

next portion will be carried using Weights those are 

inversely proportional to the volume of the hypercube.  

 

Fig. 6. Rectangular representation3,4 of principal components for training and testing sets of Blood pressure dataset where each rectangle 

is drawn considering minimum and maximum value of PCs. Solid lined rectangle represents the training set and the dotted lined 

rectangle represents the testing set. 

From Fig. 6, it is clear that same-coloured solid lined 

rectangles and the dotted lined rectangle stay almost 

together which means testing data match with training data. 

Split the constructed dataset into training set and testing test 

according to Table 8. 
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Table 8. Training and Testing sets for Blood Pressure 

dataset 

Data Sets Persons 

Training Set Normal (2), At Risk (1), High (7) 

Testing Set Normal (1), At Risk (1), High (3) 

 

Table 9 gives the recognition rate of classification of testing 

image of blood pressure data based in different values of 

distance interval of the distance matrix. The number of 

misclassified testing data is one (out of five) for the upper 

limit of distance interval that is the recognition rate is 80%. 

But in terms of lower limit recognition rate is 60% and 40% 

for the choice of minimum differences. 

Table 9. Classification of testing data of Blood Pressure 

Dataset based on Distance Matrix 

 Match with Training Patient’s Label 

Testing 

Patients 

(Label) 

Using Upper 

Limit of 

Distance 

Interval 

Using Lower 

Limit of 

Distance 

Interval 

Using 

Difference of 

Distance 

Interval 

15(1) 1 3 1 

13(2) 3 1 3 

11(3) 3 3 1 

12(3) 3 3 1 

14(3) 3 3 3 

Recognition 

Rate 

4 out of 5 

(80%) 

3 out of 5 

(60%) 

02 out of 5 

(60%) 
 

III. Conclusion 

For the time being, more and more research is devoted to 

Interval Valued Observations than classical datasets. 

Different dimension reduction techniques are being 

explored and modified by researchers, which have 

traditionally been used for classical data. First part of this 

research includes the implementation of the vertices 

principal component analysis on different interval valued 

observations. To reduce the complexity, some authors have 

been suggested to work with midpoint
2,17,18

 of each interval, 

thus converting the interval valued data into a classical data. 

But use of midpoints of the intervals ignores internal 

variations present in the data. Methods involving a range 

variable could not always distinguish between differing 

observations with similar range values Thus VPCA proved 

superior most especially with respect to computational 

complexity and optimum covering envelopes. In this work, 

different weight schemes depending on the vertices relative 

contribution on principal components are analysed to 

choose appropriate weights that will lead to better 

classification. Second part of this research involves distance 

matrix for interval valued data to classify testing data 

points. It is observed that, the recognition rate varies with 

different information of distance interval (like length of 

distance interval, upper limit, lower limit). For face data, 

length of distance interval gave 100% accuracy in 

recognizing testing images, whereas for blood pressure 

data, upper limit of distance interval showed 80% accuracy. 

It should be noted that, classifier for IVD is yet to develop. 

Idea of classifiers for classical data such as Support Vector 

Machine (SVM), K-NN can be extended to use them for 

interval Valued Observations to get better identification. 
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