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Abstract 

The classical approach of estimating overdispersion parameter, 𝜙, by Pearson's goodness of fit statistic is not appropriate 

when the data are sparse. We have considered several estimators of 𝜙, derived from the Pearson's statistic and the deviance 

statistic for multinomial data. The proposed estimator of 𝜙 depending on the deviance statistic is shown to perform the best 

for increasing level of sparsity and overdispersion, regarding the root mean squared error. As a practical example dead 

recovery data collected on Herring gulls from Kent Island, Canada are considered. A parametric extra variation model 

finite mixture distribution is used in the simulation study. 
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I. Introduction 

Large, sparse multinomial data occur in numerous fields of 

studies, where many out the set of response categories will 

not be observed at all. Overdispersion is common while 

dealing with sparse data. In statistics quasi likelihood 

approach, proposed by Wedderburn
1
 is a way of dealing 

with overdispersion in data. To be specific for multinomial 

data, this approach assumes that the variance of the 

response variable Y is proportional to that specified by the 

multinomial model. That is    ( )  𝜙 , where 𝜙, is the 

measure of the amount of overdispersion and   is the 

variance function. This approach would be more robust 

compared to fitting any parametric extra variation model 

since it does not require any specification of the distribution 

for the response variable. For sparse data even when the 

sample size is very large most of the possible responses will 

be zero. The expected frequencies will be extremely small. 

The rule of thumb of a minimum expected frequency E ( ) 

≥5 will not be met, so the goodness of fit statistics will not 

essentially follow chi square distribution. So, it is not 

reasonable to use Pearson's goodness of fit statistic,   to 

estimate the dispersion parameter, 𝜙, in this situation. 

Farrington
2
 derived a more general goodness of fit statistic, 

   which asymptotically shows smaller variance compared 

to  , specially for sparse data. Farrington
2
 considered an 

assumption on the 3rd cumulant of the response variable 

and derived the estimator of 𝜙 by dividing    with the 

degrees of freedom. Fletcher
3
 considered a different 

assumption on the third cumulant of the response variable 

which is less restrictive compared to Farrington
2
 and 

proposed a new estimator which has smaller asymptotic 

variance compared to all the existing estimators. Deng and 

Paul
4
 derived a modified deviance statistic for discrete data 

and show through a simulation study that the modified 

deviance statistic has some power advantage over the 

modified Pearson statistic of Farrington
2
. We extended this 

modified deviance statistic for multinomial data and 

derived a new estimator of overdispersion following the 

procedure adopted by Fletcher
3
. 

II. Overdispersion Multinomial Model 

For modelling overdispersion in multinomial data two 

parametric extra variation models have been frequently 

used in the literature. These models are Dirichlet-

multinomial distribution, due to Mosimann
5
 and a finite 

mixture distribution proposed by Morel
6
. In this paper we 

used finite mixture distribution for simulation purpose. Let 

   (              
)  denote the observations from a 

typical cluster of size   , where ∑    
  
      . The 

component     denotes the count for the jth category, 

          , in cluster  ,          and     
  

   (                  ). We use the lower case 

   (              
)  to denote the realized values of the 

random variables   . Let    (              
)  be a 

probability vector such that                    

  and        . Let     
   (          

      ) In finite mixture distribution, the overdispersion is 

believed to arise due to clumped sampling. Let 

      
        

           be iid random variables from 

multinomial distribution with    categories, parameter    

and cluster size 1. That is       
        

     
(    ). Also 

let,               be iid uniform (0, 1) random variables. 

Considering a predetermined constant    (     ), 

define  

    {
           

   
          

 

for           . Now let 
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    ∑   

  

   

  

Here the random vector     has a finite mixture distribution. 

Using the indicator function notation, we have 

       ∑  (     )  ∑    
  (     )          ( )

  
   

  
           

where  ( ) is the indicator function. Equation (1) leads to 

the following representation, 

                       (     )                      (2)  

where            (    ),       
(    ),    and    are 

independent, and (     )    
(        ) if      . 

When      ,       becomes zero. The vector of counts 

   in (2) has two parts. The first part, given by     , 

duplicates the response given by       times. This reflects 

the fact that in cluster sampling, some of the response 

within the cluster are similar. The second part, given by 

(     ), is made up of       independent responses. 

Suppose,    is a realization of   . Then the probability 

function of    is given by, 

     (      )  ∑      
  
    (      )           (3) 

where     is distributed as    
((   )       )  

                is the  th column of the       identity 

matrix,     
 is a multinomial random variable with 

parameter (   )   and cluster size   . The probability 

function PM(.) in equation (3) is the probability function of 

a mixture of    multinomial distribution. The mean and 

covariance matrix of the above mixture are as follows: 

 (  )       and  

   (  )  *    (    )+  {    (  )      
 }. 

Therefore, the amount of overdispersion is 

𝜙      (    ).                                                 (4) 

The estimation of this model by maximum likelihood 

technique can be mathematically expensive, hence the 

method of quasi -likelihood estimation can be employed. 

III. Estimators of Overdispersion Parameter 

Suppose, the independent multinomial random vector, 

             has the covariance matrix,    

      (   )        
 and mean vector,    

(         )
       Assume a multivariate generalized 

linear regression model with the link function    

  (  )  .   (   )      (    
)/

 

  

where        
       (           )

  and   

(       ) is a vector of   regression parameters. 

Maximum likelihood estimates of the regression parameters 

        are obtained as solutions of the    quasi-

likelihood estimating equations   ( ̂)               

where 

  ( )  ∑ (     )
  

     
     

   
. 

Goodness of fit is assessed by extending the model to a 

wider family with covariance matrix 𝜙   and evaluating the 

departure from the value 𝜙   . Deng and Paul
4
 used an 

unbiased supplementary estimating equation     ( ̂ �̂�)  

  for estimating the dispersion parameter 𝜙. Where, 

    (  𝜙)   

  ∑   
 (     )

 
     

 ∑ ,(     )
   

  (     )  𝜙(    )- 
     

 ∑ ∑    (       )
  
   

 
                    

      ∑ ∑
(       )

 

   
 

  
   

 
   ∑ (    )𝜙 

                        (5)                                                                                         

The function     in equation (5) define a family of first-

order correction terms to the Pearson statistic. Afroz et al.
7
 

consider the function         
   and for the values 

        𝜙 derive three estimators of 𝜙 which are as 

follows 

�̂�  
 

∑ (    )   
   

{
∑ ∑ (     ̂  )

   
   

 
   

 ̂  
}, 

�̂�   �̂�  
∑ ∑    

  
   

 
   

∑ (    )   
   

, 

�̂�  
 ̂ 

   ̅
,  

where     
(     ̂  )

 ̂  
     ̅  

∑ ∑    
  
   

 
   

∑ (    ) 
   

 . 

IV. Proposed Estimator Based on Deviance Statistic  

The deviance statistic for multinomial data in the previous 

setup can be written as follows: 

  ∑ ∑    
  
   

 
        

  ∑ ∑ {      (
   

 ̂  
)  (     ̂  )}

  
   

 
             (6) 

As in Paul and Deng
8
, the estimator of 𝜙 can be found from 

the solution of the supplementary equation  ( ̂ �̂�)   , 

where,       and     (  𝜙)   

  ∑   
 (     )

 
     

 ∑ {
  (     )

  
( )

(  )
 𝜙(    )} 
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 ∑ ∑    (       )
  
   

 
     

 ∑ ∑
   (     )

  
(  )  

  
   

 
   ∑ (    )𝜙 

                           (7)                                                                                          

Here,   
(  )

  (   ) and     is a set of function to be 

specified. Following Paul and Deng
8
, suppose,     

     
(  )

 (     
(  )

), where    
(  )

  {(      
(  )

)(    

   )}. The particular choice of    and   
(  )

   give us 

usual deviance estimator of 𝜙. Now choosing   

      𝜙 and allowing unbiasedness correction the 

estimators of 𝜙 based on deviance statistic are as follows:               

�̂�  
 

 

∑ (    )   
   

{
∑ ∑        (

    

 ̂  
)

  
   

 
   

 ̂ 
(  ) }, 

�̂�  
 �̂�  

 
∑ ∑    

   
   

 
   

∑ (    )   
   

, 

�̂�    
 ̂  

   ̅ 
, where          and              

  

   
(  )

(     ̂  )

 ̂ 
(  )      ̅  

∑ ∑    
   

   
 
   

∑ (    ) 
   

 . 

Here �̂�    is the proposed estimator. We denoted usual 

deviance estimator by �̂�  
 which is defined as, 

�̂�  
 

 

∑ (    )   
   

∑ ∑ {       (
    

 ̂  
)}

  
   

 
   . 

Closed form expressions for   
(  )

 and    
(  )

 are not found. 

The approximation of    utilizing Taylor expansion does 

not function well. Therefore, in this study we compute   
(  )

 

and    
(  )

 straight as follows 

  
(  )

  (   )  ∑    
 
   ( )      

   
(  )

(   )   .      
(  )

/ (       )  

 ∑ (     )   
 
   ( )      

where for count data,         (    )    
    , here     is 

the expected count in the (   )th cell. 

V. Practical Example 

We illustrate the difference between the estimators of 

dispersion parameters using Herring gulls (Larus 

argentatus) data presented by Paynter
9
. From 1934 through 

1939 total 31, 694 gulls were banded on Kent Island, Grand 

Manan, New Brunswick, Canada. A detail description of 

data can be found in Paynter
[9, 10]

. These 31, 694 banding 

yielded 1, 099 recoveries. There are 6 years of ringing and 

29 years of follow up. In the literature different methods 

have been proposed for analysing such kind of recovery 

data. Recovery data arises in several bird banding and other 

animal tagging studies. The major objective of these kind of 

experiments is to estimate parameters related to population 

survival. A number of animals are captured, banded, and 

released at the beginning of each time period, for several 

equal time periods. In bird banding studies, the time period 

is usually one calendar year. Birds then die through natural 

mortality, hunting, etc. Records are made of bands returned 

from dead birds. Suppose for   consecutive years,    (  

       )  is the no of birds banded and released back in to 

the population at the beginning of  th year,     is the 

number of band recoveries in period   (              

 ) originally banded in year  . Then we can display the 

recovery data in symbolic notation as bellow: 

Table 1. Recovery data 

Year 

banded 

Number 

banded 

Year of recovery Not 

recovered 

1 2 3 …         

1                …              

2             …       
       

. .       

m       …              
 

We have considered Seber
11

 parameterization for modelling 

recovery data. Suppose,   is the probability that the 

individual survives the year,   is the probability that a dead 

marked individual is reported during each period between 

releases. Though, Seber
11

 considered   and   as time 

dependent, for simplicity we considered them to be time 

independent. For the  th cohort suppose 

   ∑     
    
              is the aggregate of all 

recoveries. The probability of non-recovery of a banded 

bird in year 1 is *   (       )+. The joint probability 

function of      , considering all the non-recovered birds are 

at the last category    in each year   can be written as 

follow 

 

 ( )  
   

∏ (   ) (      ) 
    
   

*(   ) +    * (   ) +      { (    )(   ) }
       *   (       )+       

 
   

∏ (   ) (      ) 
    
   

*(   ) +    * (   ) +     { (    )(   ) }
       *   (       )+         

 
   

∏ (   ) (      ) 
    
   

*(   ) +      *   (       )+     .
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We can fit the above product multinomial model to the 

Herring gulls data. By applying maximum likelihood 

method, the estimates of the parameters were found to be 

 ̂         ̂       , with approximate     confidence 

intervals (            ) and (           )respectively. 

We estimate the dispersion parameter of the data by several 

estimators the results are listed below: 

Table 2. Estimates of overdispersion parameter 

Pearson based Deviance based 

 �̂�  4.409 �̂�  
        1.619 

�̂�   1.906 �̂�  
 4.057 

�̂�  1.304 �̂�  
 2.203 

  �̂�    1.421 
 

Thus �̂�  and �̂�  
 suggest that there is substantial 

overdispersion, whereas �̂�   and �̂�  
 suggest moderate 

overdispersion and finally, �̂� , �̂�  
and �̂�    suggest that 

there is relatively little overdispersion. 

VI. Simulation 

Afroz et al.
7
 show that, �̂�  is the best estimator compared to 

the estimators �̂�   , �̂�   and �̂�  
 for sparse multinomial 

data in terms of root mean squared error. Therefore, in this 

simulation we only compared the proposed estimator �̂�     

with �̂� . We now report the results of the simulation studies 

on the performance of the two estimators of the 

overdispersion parameter by using finite mixture 

distribution Morel
6
. 

Simulation results for varying degrees of overdispersion: 

At first, we simulated     data from finite mixture 

distribution. The Herring gulls data is used for simulation 

purpose, where, the number of ringing years is 6 and the 

number of recovery years is 29. All the birds those are not 

recovered are considered at the last category. Here   and   

were set to 0.035 and 0.655 respectively, also total number 

of birds banded each year (  ) are kept fixed to   . The 

overdispersion parameter  𝜙 is varied from 1 to 5. For each 

value of 𝜙,   is calculated using Equation (4). For each 

simulation     observations from uniform (0,1) distribution 

are generated and the number of observations (  ) less or 

equal to   is calculated. Using the value of   and   the 

multinomial probability vector (  ) for each year   is 

computed. Then a random vector    from    
(    ) 

distribution is generated, where        for the first 

ringing year(   ) and    decreases by 1 in each 

consecutive ringing year. After that    is multiplied by    

and another multinomial vector (     ) is generated from 

   
(        ) distribution. Hence our final multinomial 

vector for year   is            (     ). In the simulated 

vector, response in a specific category is duplicating    

times, which essentially produce overdispersion in the 

dataset. When, 𝜙   ,   becomes zero and the data is 

simulated from the classical multinomial distribution. 

Finally, bias, standard error and square root of the mean 

squared error have been calculated for the estimators, for 

different levels of 𝜙. The resulting figure of simulation is 

given in figure 1.   From figure 1 it can be said that, the 

estimators are negatively biased. 

  

 

   
  

Fig 1. The (a) Bias, (b) SE, and (c) RMSE  for �̂� (dotted line) and �̂�    (solid line) for different levels of  verdispersion. 

 

Between the two estimators �̂�    has larger bias and 

the bias increases with the level of overdispersion 𝜙. 

The proposed estimator �̂�    has smaller standard 

error, and consequently it has smaller root mean 

squared error (rmse) compared to �̂� . However, when 

there is no overdispersion that is 𝜙    the estimators 

considered here shows the same performance, but 

when overdispersion is present the proposed estimator 

�̂�    essentially performs the best. 

1(a) 1(b) 
1(c) 
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Simulation results for varying degrees of sparsity: 

Next, we varied  and   from 0.1 to 0.9, and simulated 

data using a finite mixture distribution by setting 

𝜙    following same procedure mentioned earlier. 

As a measure of sparsity, we considered the 

proportion of observations in expected recovery 

matrix those are less than or equal to 1 and denoted it 

by   .    ranges from 0 to 0.9, for 81 different 

combinations of r and s. Table 3 displays the different 

values of   and   and the corresponding values of   . 

 

Table 3. The level of sparsity(  ) produced for different combination of   and  . 

Sl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

   0.89 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.81 0.81 0.81 0.81 0.81 0.81 0.78 

Sl 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

  0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

  0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

   0.78 0.81 0.78 0.78 0.78 0.78 0.74 0.74 0.74 0.74 0.78 0.74 0.74 0.74 0.70 0.70 0.70 

Sl 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

   0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 

  0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 

   0.70 0.70 0.74 0.70 0.67 0.67 0.67 0.63 0.63 0.63 0.63 0.67 0.63 0.60 0.60 0.56 0.56 

Sl 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

  0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 

  0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 

   0.52 0.52 0.52 0.60 0.52 0.49 0.45 0.41 0.41 0.41 0.38 0.38 0.45 0.34 0.27 0.23 0.20 

Sl 69 70 71 72 73 74 75 76 77 78 79 80 81     

  0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9     

  0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9     

   0.16 0.12 0.12 0.09 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00     

 

For each value of    we simulated     dataset.  For 

each estimator, bias, standard error and root mean 

squared error (rmse) have been calculated for all the 

levels of   . Figure 2 gives some insight into the 

behavior of the estimators for different levels of   .
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Fig. 2. The (a) Bias, (b)SE, and (c) RMSE for �̂� (triangle) and �̂�    (solid circle) for different levels of sparsity. 

 

From Fig. 2 it is apparent that, estimator �̂�  is less robust 

compared with the estimator �̂�   . Both the estimators are 

mostly negatively biased and the bias increases with the 

level of sparsity. Finally, for finite mixture distribution �̂�  

shows higher standard error and consequently higher root 

mean squared error (rmse) compared to the proposed 

estimator �̂�   . 

VII. Conclusion 

Afroz et al.
7
 proposed an estimator of overdispersion, that 

was shown to have smaller variance comparing to the 

existing estimators for sparse multinomial data for the 

increasing level of overdispersion and sparsity. The 

proposed estimator by Afroz
7
 was derived from Pearson's 

goodness of fit statistic following the procedure of Fletcher
3
 

and the simulation was done considering the Dirichlet 

multinomial distribution
5
. In this paper we derived a new 

estimator of overdispersion for multinomial data from 

deviance statistic following the procedure by Fletcher
3
 and 

Deng and Paul
4
. Instead of using Dirichlet multinomial 

distribution
5
 we considered finite mixture distribution

6
 for 

simulation purpose and compared the new estimator of 

overdispersion with the estimator proposed by Afroz et al.
7
 

for sparse multinomial data. We found that our proposed 

estimator is more robust compared to that proposed by 

Afroz et al.
7
 for overdispersed multinomial data for the 

growing level of overdispersion and sparsity. Afroz et al.
12

 

made a comparison among Dirichlet multinomial 

distribution
5 

and finite mixture distribution
6
 through 

simulation and mentioned that in these two models the 

overdispersion arises in different mechanism, therefore they 

cannot be meaningfully compared.  Newcomer et al.
13

 

showed that the higher order moments from the finite-

mixture and Dirichlet-multinomial distributions are 

different, though the first two moments of these 

distributions are the same. This could be a reason behind �̂�   

performing worse for finite mixture distribution.  Afroz
14

 

found that the third cumulant of the mixture of Dirichlet 

multinomial distribution does not satisfy the assumption 

considered by Fletcher
3
 while deriving the estimator of 𝜙 

for count data. Therefore, checking that assumption on the 

third cumulant of the finite mixture
6
 distribution would be 

helpful for understanding the results found in this research. 

Though our proposed estimator performs better it has large 

rmse, as for example it has rmse approximately 4 while the 

true value of 𝜙 is 5. Therefore, it would be worthwhile to 

2(a) 2(b) 

2(c) 
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find out a reasonable confidence interval for the 

overdispersion parameter 𝜙. 
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