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Abstract 

We examined the qualitative behaviors of a two-dimensional discrete-time predator-prey model with mixed functional 

responses. Mixed functional responses provide a more accurate representation of the complexities in predator-prey 

interactions compared to simple functional responses. Applying the center manifold theorem and bifurcation theory, we 

demonstrated analytically that the system passes through a Neimark-Sacker bifurcation and a Period-Doubling bifurcation 

in the interior of   . The influence of step size parameters on the dynamics of the model is examined. Numerical 

simulations are used to display chaotic behavior, such as phase portraits, in addition to validating theoretical research. The 

parameter values have been discovered to have a significant impact on the dynamic behavior of the discrete prey-predator 

model. Eventually, the chaotic orbits are stabilized at an unstable fixed point via a hybrid control technique. 
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I. Introduction 

Ecological systems are primarily defined by how organisms 

interact with the surrounding natural environment
1
. Because 

of their importance, population models are a major subject 

in many sciences. They examine how populations change 

over time. Malthus
2
 is credited with being one of the first 

scientists to observe geometric population growth. His 

model, the exponential model, bears his name. Lotka
3
 and 

Volterra
4
 each completed independent studies that depict 

the prey-predator interaction.  The Lotka–Volterra prey-

predator model, which was the first significant development 

in this field, is the name given to this work. A basic reaction 

function proportional to the number of predators was 

employed by them. Later, to better simulate the 

phenomenon of predation, the model was expanded to 

incorporate three different types of functional responses for 

various species
5,6

. Subsequently, other adjustments to this 

model were proposed to create a more realistic prey-

predator model by utilizing various types of functional 

response
7,8,9

. The study of bifurcation theory examines how 

dynamical models alter in relation to a control parameter. 

As a result, the system's behavior in relation to a control 

parameter is noted. Conversely, the bifurcation is the 

change in the qualitative structure of dynamical systems 

related to different values of the parameters. Numerous 

studies have been conducted on differential and difference 

equations
14,15

. A vast variety of population systems have 

been studied using differential and difference equations. 

Differential equations describing continuous-time systems 

suggest that discrete-time systems regulated by them make 

for more efficient computational systems for numerical 

simulations. Furthermore, where there are non-overlapping 

generations in the populations, discrete systems work better 

than continuous ones. In ecology, the population of many 

species evolves in discrete time steps because there is little 

overlap between generations. The discrete-time population 

models have also received attention recently since these can 

create more sophisticated and intriguing dynamical 

behaviors than continuous-time models and are better suited 

to simulate populations with non-overlapping generations. 

For instance, a 1-dimensional discrete-time autonomous 

system can display chaos, but a continuous-time 

arrangement requires chaos in at least a 3-dimensional 

autonomous system
22

. 

 In mathematics, the predator-prey relationship is explained 

using a variety of models. A discrete predator-prey system 

of the Lotka–Volterra type with refuge effect, for example, 

has been studied for its bifurcation and dynamical behavior 

by Yildiz et al.
10

. The following discrete predator-prey 

model has been studied for its dynamic behavior and 

bifurcation by Li & Shao
11

:   

{
        

     
   
      

        
 (

  
     

  )
 

        (1) 

where the parameters     and   are positive. The Neimark-

Sacker bifurcation of the following discrete predator-prey 

model has been studied dynamically by Kangalgil
12

: 

{
        (    )      (

  

    
)  

     
 

 
     

  (2)         

where 
  

    
   represents the Allee effect with   is the 

positive constants,   and   represent the growth rate of 

prey and predator respectively. The biological relevance of 

Allee effects, as reported in a manuscript, can vary 
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depending on the unique circumstances of the study and the 

species being investigated. Allee effects refer to a 

phenomenon in population ecology where the per capita 

growth rate of a population falls at low population densities, 

often leading to a critical threshold beyond which the 

population may struggle to exist or recover. Various types 

of functional responses are taken into account in 

formulating the mathematical model for both the predator 

and generalist predator in the study
23

. 

The Allee effect on the prey population affects the 

following discrete-time predator-prey system, which is 

described by Seval I.
13

. 

{
        (    )       (

  

    
)  

               
   (3)            

where the Allee constant is applied to the prey population 

with parameter m > 0.   

The biological significance of using mixed functional 

responses, such as the Holling Type I and Ivlev functional 

responses, in a discrete prey-predator model, is in 

portraying the intricacy of predator-prey interactions and 

their impact on population dynamics. Incorporating mixed 

functional responses in a discrete prey-predator model 

enhances its realism and biological relevance by accounting 

for the diversity of predator’s foraging behavior and its 

ramifications for population dynamics, species coexistence, 

community structure, and ecosystem functioning. The 

objective of this study is to develop a discrete-time prey-

predator model with an Ivlev and Holling type-I mixed 

functional response. We examine local asymptotic stability 

in detail of the fixed points in the suggested model. There 

are certain control parameters in the model. Any alteration 

to one of these control parameters will have an impact on 

the model's long-term behavior. We thus examine these 

impacts. Additionally, we provide a few numerical 

simulations to bolster and clarify our analytic findings. Our 

proposed model is given by the following system of 

differential equations 

{

  

  
      

  

 
      

  

  
   (   

    )      
     (4)                 

In this case, y represents the number of predators at any 

time, while x represents the number of prey in the 

population. In this system, in the absence of predators, the 

prey growth follows Gompertz law with an inherent growth 

rate of    and a carrying capacity of   . The values of each 

parameter                and    are positive. Furthermore, 

   reflects the rates of predation, while    signifies the 

intrinsic growth rate of the prey population. Additionally, 

the per capita predator mortality rate is represented by   . 

By utilizing the forward Euler technique, we can get the 

following discrete-time model with step size   : 

{
          (      

  

  
       ) 

          (  (   
     )       ) 

   (5)           

The structure of this paper is as follows. The stability 

criterion and existence condition for the fixed points of the 

system (5) are presented in Section II. In Section III, we 

demonstrate that system (5) admits an NS bifurcation and in 

Section IV system (5) admits a PD bifurcation in the 

interior of    under specific parametric conditions. We do 

our numerical simulations in Section V which contains the 

phase portraits and bifurcation diagrams. In Section VI, the 

hybrid control approach is used to control chaos about an 

unstable fixed point. Section VII contains a brief discussion 

at the end. 

Remark: There are various reasons and benefits to adding 

a mixed functional response to traditional discrete-time 

prey-predator models. Compared to simple functional 

responses, mixed functional responses more accurately 

depict the intricacies of predator-prey interactions. 

Predator’s eating behavior in the wild frequently varies 

according on prey population, prey species, and 

environmental circumstances. Models that include mixed 

functional responses can more accurately capture the 

dynamic character of predator-prey interactions. Models 

with diverse functional responses contribute to more 

accurate predictions regarding population dynamics and 

ecological stability by taking into consideration a wider 

variety of predator’s feeding behaviors. Better management 

practices for natural ecosystems can be derived from prey-

predator models that incorporate mixed functional 

responses. Overall, the goal of modeling and 

comprehending complex predator-prey interactions and 

ecosystem dynamics is to increase realism, flexibility, 

predictive accuracy, and ecological relevance. This drives 

the incorporation of mixed functional responses into 

traditional discrete-time prey-predator models. 

II. Existence of Fixed Point and Stability Analysis  

The nonnegative fixed points of the discrete prey-predator 

system (5) are computed in this section. The fixed points 

are   (    ) and   ( 
   

  *  
  
  
+

  
    

    *
  
  
+

  
). The 

following table displays the existence condition of the fixed 

points of the system (5). 
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Table 1. Existence Condition for Fixed Points 

Fixed Points Conditions 

   always 

        (   
     ) 

 

The Jacobian matrix of system (5) at any arbitrary point 

(   ) is given by 

 (   )  (
      
      

) 

where 

                       [
  
 
] 

           

       
          

            
              

At   (    )  the Jacobian matrix is given by 

 (  (    ))

 (
             
         

              
) 

The eigenvalues of the above Jacobian matrix are      

     and            
              . Now we 

state the following lemma for the stability criterion of 

  (    ).  

Lemma 1. The following topological classification holds 

for the border fixed point   (    ).  

(i) The fixed point   (    ) with       (   
     ) is  

(i.1) sink when         ,
 

  
 

 

     (   
     )

-  

(i.2) source when       ,
 

  
 

 

     (   
     )

-  

(i.3) non-hyperbolic when    
 

  
 or    

 

     (   
     )

 

(ii) The fixed point   (    ) with       (   
     ) is  

(ii.1) source when    
 

  
  

(ii.2) saddle when    
 

  
  

(ii.3) non-hyperbolic when    
 

  
 

(iii) The fixed point   (    ) is no-hyperbolic when  

     (   
     ). 

 One of the eigenvalues of    (  (    ))  is certainly -1 and 

the other may not be    when    
 

  
 or    

 

     (   
     )

 . A PD bifurcation may happen, if the set of 

parameters changes around    ̌  
  or    ̌  

 . 

   ̌  
  {(                    )  (   )    

 

  
   

 
 

     (   
     )

 } 

or 

   ̌  
  {(                    )  (   )   

 
 

     (   
     )

    
 

  
 } 

 

At   ( 
   

  *  
  
  
+

  
    

    *
  
  
+

  
)  the characteristic 

equation changes as 

   ( )   
  (      )  (           

 )    (6) 

where 

           
    

 
      

     ((    
    

 
)         

    
 
   

   [
  
  
]) 

So we state the following lemma for the stability conditions 

of the fixed point   . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/    

Lemma 2.  The following topological classification holds 

for the border fixed point   . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/. 

(i) source when  

(i.1)   
        and    

    √  
     

  
, 

(i.2)   
        and    

   

  
, 

(ii) sink when 

(ii.1)   
        and    

    √  
     

  
, 

(ii.2)   
        and    

   

  
, 

(iii) non-hyperbolic when  
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(iii.1)   
        and    

    √  
     

  
,    

 
 

  
  

 

  
 

(iii.2)   
        and     

 

  
, 

(iv) otherwise saddle  

Consider  

   ̌  
    {(                    )  (   )    

    √  
     

  
    }  

with    
             

 

  
  

 

  
 

A PD bifurcation at   . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/ may 

happen, if the set of parameters 

(                    ) changes around    ̌  
   

. 

Also, consider 

   ̌  
  ,(                    )  (   )    

   

  
 

       
       -  

when (                    ) changes around    ̌  
  , the 

system experienced with NS bifurcation. 

III.  Neimark Sacker Bifurcation Analysis 

Recent research has drawn a lot of attention to bifurcation 

in discrete dynamical systems because of these systems' 

complicated behavior. In population dynamics, bifurcations 

can occasionally be very unfavorable because of the 

possibility of extinction due to chaos. In a dynamical 

system, several kinds of bifurcations break away from a 

fixed point when a given parameter crosses its critical 

value. Because of the emergence of NS bifurcation, many 

dynamical aspects of a system can be explored. Bifurcation 

typically happens when a dynamical system's qualitative 

characteristics alter, or when the stability of a fixed point 

shifts. In this section, we have discussed about NS 

bifurcation at    . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/ for model ( )   

The bifurcation parameter in the analysis of the NSB is   . 

Moreover,   
  (   

    ) represents the perturbation of  

  , and we examine the following perturbation of the 

model: 

        (     
 ) (      

  

  
       )  

  (        )   

        (     
 )(  (   

     )       )  

  (        )  (7) 

Consider        
  and        

 , then     is 

shifted to the origin. Applying Taylor series expansion to 

the functions    and    about (     )  (   ), the model 

( ) becomes  

                    
               

  

      
        

            
        

  

 ((         )
 )  

                    
               

  

      
        

            
        

  

 ((         )
 )  (8) 
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+
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Dynamic Complexity of a Discrete-time Prey-Predator Model with Mixed Functional Responses 19 

The characteristic equation linked to model (7)'s 

linearization at (0,0) is as follows 

    ̌ (  
 )   ̌ (  

 )    

where  

 ̌ (  
 )          

 ̌ (  
 )             

   

The characteristic equations' roots are 

    (  
 )  

  ̌ (  
 )  √  ̌ (  

 )  ( ̌ (  
 ))

 

 
 

With |    (  
 )|     and   

     we obtain     (  
 )  

[ ̌ (  
 )]

 

  and  

  *
 |    (  

 )|

   
 +

  
   

    

Additionally, with   
        

               which is 

same as  ̌ (  
 )           . 

For analyzing the normal structure, consider     (    ) 

and     (    )  Also using   [
  
  

] and *
  
  
+  

 [
  ̅̅ ̅
  ̅̅ ̅
] model (8) becomes 

    ̅̅ ̅̅ ̅̅     ̅̅ ̅     ̅̅ ̅    (  ̅̅ ̅   ̅̅ ̅)  

    ̅̅ ̅̅ ̅̅     ̅̅ ̅     ̅̅ ̅    (  ̅̅ ̅   ̅̅ ̅) (10) 

For Neimark-Sacker Bifurcation to occur, we need the 

discriminatory quantity   to be nonzero. 

     *
(    ̅) ̅ 
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   (12) 

The following outcome can be obtained from the analysis 

above. 

Theorem 1.  The model ( ) is experienced with NS 

bifurcation if     with    varies near the set    ̌  
 . 

Additionally, with     (   ) the invariant closed 

orbits to split off from   . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/ 

for   
    (  

   )  

IV.  Period-Doubling Bifurcation Analysis 

This section uses the center manifold theorem and 

bifurcation theory
20,21,24

 to examine the PD bifurcation at 

  . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/ of the discrete model  ( )  

The bifurcation parameter in the analysis of the PD 

bifurcation is   . Moreover,   
  (   

    ) represents the 

perturbation of    , and we examine the following 

perturbation of the model. 

        (     
 ) (      

  

  
       )  

  (        )   

        (     
 )(  (   

     )       )  

  (        )  (13) 

Consider        
  and        

 , then     is 

shifted to the origin. Applying Taylor series expansion to 

the functions    and    about (        
 )  (     ), the 

model (  ) becomes  

                    
                 

  

       
        

        
               

          
   ((             

  ) )   

                    
               

  

       
         

        
        

    

      
   

            
        

   
   ((     

        
  ) )  (14)     

where  
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+

  
  

        
    

 
       

      
  
      

 
      *

  
  
+

  
  

        
    

 
   (15) 

We assume   *
    

          
+ and   is invertible 

obviously. Prosecute  *
  
  
+   [

  ̅̅ ̅
  ̅̅ ̅
], the model (14) 

becomes 

    ̅̅ ̅̅ ̅̅     ̅̅ ̅    (  ̅̅ ̅   ̅̅ ̅   
 )  

    ̅̅ ̅̅ ̅̅      ̅̅ ̅    (  ̅̅ ̅   ̅̅ ̅   
 ) (16) 

The center manifold of (  ) at (   ) around   
     can 

be written as follows 

  (     )  {(  ̅̅ ̅   ̅̅ ̅   
 )         ̅̅ ̅̅ ̅̅    ̅  ̅̅ ̅

  

  ̅̅ ̅   ̅̅ ̅  
   ((   ̅̅ ̅     

  ) )}  

where 

  ̅  
  [(    )         ]

    
  

   (    )
 

    
  

(    )[   (    )      ]

    
    

  ̅̅ ̅  
(    )[   (    )      ]

  (    )
  

(    )[         ]

(    )
      (17) 

The center manifold can be rewritten as follows 

    ̅̅ ̅̅ ̅̅     ̅̅ ̅      ̅̅ ̅
      ̅̅ ̅  

      ̅̅ ̅
   

  

    ̅̅ ̅  
       ̅̅ ̅

   ((   ̅̅ ̅     
  ) )   (  ̅̅ ̅   

 )   

 (18) 

where  

   
  ̅̅̅̅ [(     ̅̅̅̅ )      ̅̅̅̅    ]
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[(     )         ](     )  ̅̅̅̅
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(     )  ̅̅̅̅             [(     )           ]     (    )
 

    
 

     ̅̅̅̅ [(     )         ]

    
 
(    )[(     )           ]

    
 

      ̅̅̅̅ (    )(     )

    
 
  ̅̅̅̅ [(     )         ](        )

    
  

   
  ̅̅̅̅ [(     )         ]

    
 
[(     )         ](     )  ̅̅̅̅

    
 

     ̅̅̅̅ [(     )         ]

    
 
      ̅̅̅̅ (    )(     )

    
 

  ̅̅̅̅ [(     )         ](        )

    
  

   
     ̅̅̅̅ [(     )         ]   ̅̅̅̅

 [(     )           ]

    
 

      ̅̅̅̅ (     )(    )

    
 
  ̅̅̅̅ [(     )         ](        )

    
 

  ̅̅̅̅ (    )[(     )           ]

    
    (19) 

We require the two discriminatory quantities for PD 

bifurcation. 

   .
   

   ̅̅ ̅   
 
 
 

 

  

   
 

   

   ̅̅ ̅
 /  (   )  

   (
 

 

   

   ̅̅ ̅
  .

 

 

   

   ̅̅ ̅
 /

 

)  (   )  

We can conclude the above analysis in the following 

theorem. 

Theorem 2.  The model ( ) is experienced with PD 

bifurcation if      and      with    varies near the 

set    ̌  
   

. Additionally, with      (    ) the 

period-two orbits to split off from   . 
   

  *  
  
  
+

  
    

    *
  
  
+

  
/ are stable (unstable). 

V. Quantitative Study 

Arbitrary data are utilized to describe the analytical results. 

Once more, it's noted that the parameters within the system 

do not directly reflect real-life scenarios. Therefore, the 

primary features are examined through simulations outlined 

here, which should be interpreted qualitatively rather than 

quantitatively. Numerical simulation work has been done in 

this section to offer phase pictures and bifurcation diagrams 

of the system ( ) which both validate our theoretical 

findings and highlight some new, intriguing, complicated 

dynamical behaviors that the system ( )  exhibits. We have 

used iterative techniques for the numerical simulations of 

our study.  We consider the following illustrations. 

Illustrations 1:  By choosing                     

                            and    varies in the 

range                   We get a fixed point 

(     )  (                  ) and PD bifurcation 

point is             . The associated eigenvalues are 

               Figure 1 illustrates the model's 

trajectory as it transitions from a fixed point to a PD 
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bifurcation and then to a chaotic attractor. The phase 

portrait corresponding to Figure 1 for different values of    

are displayed in Figure 2. This essentially illustrates the 

bifurcation of a smooth, unchanging closed curve into a 

chaotic attractor from a stable fixed point. 

 

(a) Diagram of Bifurcations for     

 

(b) Diagram of Bifurcations for     

Fig. 1. Diagram of Bifurcations of model ( ) with    

                                

            and     varies in the range        

         . 
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Fig 2. Phase portraits of the model ( ) with            
                                    for 

different choices of       (a) Phase diagram for            
(b) Phase diagram for            (c) Phase diagram for 

          (d) Phase diagram for             

VI.  Chaos Control 

It is the goal of dynamical systems to avoid chaos and 

optimize the system concerning a performance criterion. In a 

discrete prey-predator model, chaos control is essential to 

comprehending and controlling ecological systems. 

Nonlinear interactions between prey and predator populations 

in such models can lead to chaos. Even in situations where 

deterministic equations control the system, seemingly 

random and unpredictable behavior is referred to be chaos. 

Controlling chaos in discrete-time systems has drawn a lot of 

attention from researchers lately, and useful techniques can 

be applied in a variety of settings, including turbulence, 

physics labs, communications, and medical sectors
16

. Several 

techniques, including the pole-placement approach
17

(Ott-

Grebogi-Yorke (OGY) method), hybrid control method
18

, 

and state feedback control method
19

, can be used to achieve 

chaos control in discrete-time models. We just focus on the 

hybrid control approach, which is based on parameter 

perturbation and feedback control technique, in this part. 

We use the hybrid control feedback mechanism
18

 to control 

chaos in the system (5). We write our uncontrolled system 

(5) using a hybrid control technique. 

      (      ) (20)    

Where      is the bifurcation parameter. Applying a hybrid 

control strategy to (  )  we get, 

        (      )  (   )   (21)      

where      .  The control system of ( ) becomes     

{
      (     (      

  

  
       ))  (   )   

      (     (  (   
     )       ))  (   )   

                 

  (22) 

The Jacobian matrix at     ( 
    ) is written as follows    

   (     )

 .
   ̌         

   
    

 
         (       

 
)           

/ 

where  ̌  (    
        *

  

  
+)    . 

The eigenvalues of the above Jacobian matrix satisfy the 

following equation. 

     ⃛    ⃛     (23) 

where   ⃛     (       
    

 
       

    

    *
  

  
+)      

  ⃛     (  ( 
    ))  

 
(a) 

 
(b) 

Fig. 3. Chaos control of the system (  ) (a) Time trajectory 

(b) Phase picture. 
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Lemma 3. If the roots of (23) are inside an open disc and 

the conditions in Lemma 1 are satisfied, then the controlled 

system (22) is a sink (stable) for the unstable uncontrolled 

system's fixed point   ( 
    ). 

Illustration 2. We choose                    

                            and           

     to assess the effectiveness of hybrid control strategy. 

We observe that the fixed point of the model ( ) is 

unstable. The fixed point turns into a sink for   

         for the controlled system (  ) which reduces the 

chaotic dynamics (see Figure 3).  

VII. Conclusions 

To create a more accurate portrayal of predator-prey 

interactions in ecological systems, a mixed functional 

response can be added to a discrete prey-predator model. 

It's crucial to remember that the specific traits of the 

predator and prey species being modeled should guide the 

selection of functional responses. Furthermore, mixed 

functional responses add more complexity even as they 

boost realism.  The qualitative study of a predator-prey 

model with mixed functional responses in discrete time is 

the subject of this paper. The manuscript presents our 

findings in full and offers a thorough stability analysis of 

these equilibrium points.  

 Using the center manifold theorem and bifurcation theory, 

we determined the requirements for the occurrence of a PD 

bifurcation and an NS bifurcation of the map (5) at a 

positive fixed point. Phase portraits, bifurcation diagrams, 

and other analytical tools have been utilized to examine 

additional dynamic characteristics of the system (5). In 

particular, system (5) displays dynamical behavior when the 

range of parameters changes. A PD bifurcation within the 

model demonstrates the evolutionary dynamics of predator 

and prey populations. The transition from a stable state to 

chaotic behavior is associated with this bifurcation, 

highlighting the widespread occurrence of chaos across 

various natural systems and phenomena. Lastly, the hybrid 

control approach is used to stabilize the chaotic orbits at an 

unstable fixed point. To sum up, this paper provides a 

thorough examination of the dynamics of a model system 

and shows that, under certain parametric circumstances, 

bifurcations and chaos can occur. For this discrete system, 

further investigation is warranted to explore other 

properties such as synchronization and co-dimension-2 

bifurcation. 
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