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Abstract 

This paper presents a geometric framework in which our observable three-dimensional universe is modeled as a smooth 
submanifold—specifically, a slice—embedded within an infinite-dimensional Hilbert manifold. Drawing on classical 
embedding theorems by Whitney, Nash, Kuiper, and Henderson, we reinterpret established results in differential 
topology through a novel lens that bridges geometry and physics. We demonstrate that any smooth 3-manifold can be 
realized as an isometric leaf in a smooth foliation of an infinite-dimensional manifold, and construct such foliations 
explicitly using smooth normal vector fields along a fixed embedding. We prove that the space of these foliations, 
parametrized by such fields, forms an infinite-dimensional Fréchet manifold—effectively a moduli space of parallel 
universes, each represented as a geometric slice. An explicit example using the 3-sphere 𝑆𝑆3 embedded in the Hilbert 
space ℓ2 is developed, illustrating the theoretical construction in concrete terms. Diagrams and visualization 
accompany the model to clarify the geometric intuition and moduli variation. Our approach remains purely geometric, 
independent of physical field equations, yet conceptually resonates with brane world scenarios, emergent gravity, and 
infinite-dimensional quantum theories. This reinterpretation of classical geometry provides not only a rigorous 
mathematical result but also opens a pathway toward new models of dimensional emergence and foundational 
questions in cosmology and ontology. By positioning the universe as a geometric object embedded in an infinite-
dimensional ambient structure, we offer a new direction for thinking about space, structure, and reality. 
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I. Introduction 

The question of whether our observable universe is a 
fundamental entity or merely a lower-dimensional 
substructure embedded within a higher-dimensional reality 
has intrigued both physicists and philosophers for decades. 
In modern theoretical physics, this idea manifests in a 
variety of proposals that position our universe not as a self-
contained totality, but as a lower-dimensional “brane” or 
hypersurface embedded in a higher-dimensional space. 

One of the most influential frameworks in this regard is 
string theory, which posits that the fundamental constituents 
of reality are not point particles but one-dimensional strings 
whose vibrational modes give rise to the observed particle 
spectrum. These strings naturally exist in higher-
dimensional spacetime, with extra spatial dimensions 
compactified or hidden from observation1,2. In M-theory, an 
extension of string theory, membranes (or “branes”) of 
various dimensionalities appear, and our universe is 
sometimes modeled as a 3-brane within a higher-
dimensional bulk3. 

Closely related are braneworld scenarios, such as those 
developed by Randall and Sundrum4,5, in which gravity can 
propagate in extra dimensions, while standard model fields 

are confined to a lower-dimensional brane. These models 
have been used to explain hierarchies in fundamental forces 
and to explore testable deviations from Newtonian gravity. 

Holographic dualities, particularly the AdS/CFT 
correspondence20, offer a different but conceptually related 
view: they suggest that a gravitational theory in a bulk 
spacetime is equivalent to a conformal field theory on its 
boundary, implying that the bulk geometry itself may 
emerge from lower-dimensional quantum dynamics. 

Philosophically, these approaches challenge traditional 
notions of space and dimensionality. If what we perceive as 
a 3 + 1-dimensional universe is merely an emergent or 
embedded structure, then spatial dimensionality may not be 
an intrinsic property of the universe but a contextual one - 
dependent on the embedding or emergent mechanism6,7,8. 

In this paper, we explore a mathematically rigorous and 
geometrically motivated version of this idea: the hypothesis 
that our 3-dimensional world can be viewed as a slice, or 
embedded submanifold, within an infinite-dimensional 
manifold. Unlike traditional high-dimensional models which 
consider embedding into finite-dimensional ambient spaces, 
we focus on embeddings into manifolds modeled on 
infinite-dimensional separable Hilbert spaces. These spaces 
arise naturally in many areas of mathematical physics, *Author for correspondence. e-mail: sujanapolin@du.ac.bd 
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including functional analysis, quantum mechanics, and field 
theory. 

The mathematical study of embeddings of manifolds has a 
rich history. The Whitney embeddingtheorem9,10 established 
that any smooth 𝑛𝑛-dimensional manifold can be embedded 
in ℝ2𝑛𝑛, providing one of the foundational results in 
differential topology. Later, Nash's embedding theorem11 

demonstrated that Riemannian manifolds can be 
isometrically embedded into finite-dimensional Euclidean 
spaces. In the infinite-dimensional context, Kuiper12showed 
that infinite-dimensional Hilbert spaces are remarkably 
flexible: every smooth Hilbert manifold is diffeomorphic to 
the Hilbert space itself. Further work by Henderson13 
proved that any finite-dimensional smooth manifold can be 
smoothly embedded in a separable infinite-dimensional 
Hilbert manifold. 

These results imply, in particular, that our 3-dimensional 
spatial universe, modeled as a smooth manifold ℳ3, can 
always be realized as a submanifold of some infinite-
dimensional smooth manifold ℳ∞. While this embedding 
result is mathematically well established, its geometric 
interpretation and physical significance remain largely 
unexplored in the literature. 

Our work is motivated by the following guiding question: 
Can we meaningfully model the physical universe as a 
geometric slice of an infinite-dimensional manifold, and if 
so, what structures or insights does this perspective offer? 
To this end, we adopt the view that our universe is a 3-
dimensional embedded submanifold-analogous to a 
hyperplane-residing within an infinite-dimensional ambient 
space. We explore this embedding not only as a 
mathematical construction, but as a potential foundational 
framework for thinking about the emergence of physical 
laws, dimensionality, and perhaps even parallel universes as 
neighboring slices in a foliated structure. 

We emphasize that this approach does not rely on 
speculative physics such as strings, supersymmetry, or 
quantum gravity, but rather draws directly from the core 
principles of differential geometry and manifold theory, 
extended into infinite dimensions. 

The remainder of this paper is organized as follows. In 
Section II, we establish the mathematical framework for 
embedding smooth 3-manifolds into infinite-dimensional 
Hilbert manifolds, introducing key definitions and recalling 
relevant embedding theorems. Section III offers a physical 
interpretation of these embeddings, proposing that our 
universe may be viewed as a geometric slice within an 
infinite-dimensional foliated structure. In Section IV, we 
explore the philosophical implications of this model, 
particularly regarding the ontology of space, the emergence 
of dimensionality, and the generative role of mathematical 

structures. Section V presents the main technical results: we 
construct explicit foliations of Hilbert manifolds by 
isometric copies of a given 3-manifold, and we prove that 
the space of such foliations forms a smooth infinite-
dimensional Fréchet manifold. A concrete example 
involving the 3-sphere embedded in ℓ2 is also developed. 
Section VI concludes the paper by summarizing the main 
ideas and reinforcing the conceptual and geometric 
significance of the model. 

II. Mathematical Framework 

We now formalize the mathematical setting in which our 
model operates. Our goal is to rigorously establish the 
possibility of embedding a smooth 3-dimensional manifold-
representing a spatial model of the physical universe---into 
an infinite-dimensional smooth manifold. We then explore 
structural interpretations of such embeddings, including the 
analogy with hyperplanes and foliations. 

Preliminaries and Definitions 

Hilbert Manifold  

Let 𝑀𝑀3 be a connected, smooth 3-dimensional manifold. Let 
ℋ denote a real, separable Hilbert space, and let ℳ∞ be a 
smooth infinite-dimensional manifold modeled on ℋ. A 
smooth manifold modeled on ℋ is called a Hilbert manifold 
if each point admits a coordinate chart diffeomorphic to an 
open subset of ℋ, with smooth transition maps. 

Embedding  

A smooth map 𝑓𝑓: 𝑀𝑀3 → ℳ∞ is called an 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 if it 
is an injective immersion and a homeomorphism onto its 
image, where the image is endowed with the subspace 
topology. 

Embedding Theorem in Infinite Dimensions 

The classical Whitney embedding theorem guarantees that 
any smooth 𝑛𝑛 −dimensional manifold can be embedded in 
ℝ2𝑛𝑛9. Later, Nash extended this result to isometric 
embeddings of Riemannian manifolds11. In the context of 
infinite-dimensional geometry, these ideas were generalized 
significantly. In particular, the following theorem plays a 
central role: 

Theorem1(Henderson,13) 

Let 𝑀𝑀𝑛𝑛 be a smooth, paracompact, finite-dimensional 
manifold. Then there exists a smooth embedding 𝑓𝑓: 𝑀𝑀𝑛𝑛 ↪
ℋ, where ℋ is any separable infinite-dimensional Hilbert 
space. 

This result ensures that any 3-manifold 𝑀𝑀3 can be realized 
as a submanifold of an infinite-dimensional Hilbert manifold, 
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bypassing the dimension constraints present in finite-
dimensional settings. 

Hyperplane Interpretation and Slicing Structure 

While in finite-dimensional Euclidean spaces a hyperplane 
is defined as a codimension-one affine subspace, in infinite-
dimensional Hilbert spaces, the notion generalizes. A 
hyperplane may refer to a closed affine subspace defined by 
a continuous linear functional. In our model, however, we 
adopt a geometric analog: the 3-dimensional manifold 𝑀𝑀3 is 
considered a slice of ℳ∞, i.e., a smooth embedded 
submanifold resembling a hyperplane in local structure. 

This motivates the following conceptual structure: suppose 
ℳ∞ admits a smooth foliation 

ℳ∞ = ⋃ Σα
𝛼𝛼∈𝐴𝐴

 (1) 

where each 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Σα ⊂ ℳ∞ is diffeomorphic to 𝑀𝑀3. Then, 
our observed universe could correspond to a single leaf Σα0 , 
while the ambient space contains many such slices, opening 
the possibility for a multiverse-like interpretation or a 
functional-theoretic perspective on dimensional emergence. 

 
Fig. 1. Schematic illustration of hyperplane-like 
slices Σα embedded in the infinite-dimensional 
manifold ℳ∞. The central slice Σα0 ≅ 𝑀𝑀3 represents 
the universe as we observe it.  
 

Metric and Geometric Considerations 

We may equip 𝑀𝑀3 with a Riemannian or Lorentzian metric 
 𝑔𝑔 , and the ambient manifold ℳ∞ with a compatible 
infinite-dimensional metric structure. The embedding, 

𝑓𝑓: 𝑀𝑀3 → ℳ∞ may then be analyzed for whether it is 
isometric, conformal, or more generally geometric in nature. 
These structural constraints will play a role in determining 
what physical features of the embedded manifold are 
preserved or altered by the embedding. 

III. Physical Interpretation  

While the embedding of finite-dimensional manifolds into 
infinite-dimensional Hilbert manifolds is a well-established 
mathematical result, the physical interpretation of such 
embeddings is far less explored. In this section, we develop 
a conceptual framework in which our 3-dimensional 
universe is modeled as a geometric slice within an infinite-
dimensional ambient space. This interpretation is not merely 
topological or differential in nature, but aims to offer a 
pathway to understanding the emergence of physical laws, 
dimensions, and structure from more abstract geometric 
foundations. 

The Universe as a Geometric Slice 

We consider the possibility that our observable universe 
corresponds to a specific embedded submanifold 𝑀𝑀3 ⊂
ℳ∞, where ℳ∞ is a smooth infinite-dimensional Hilbert 
manifold modeled on a separable Hilbert space ℋ. This 
embedding is realized through a smooth injective immersion 
𝑓𝑓: 𝑀𝑀3 ↪ ℳ∞, which is assumed to be topologically and 
geometrically regular, so that 𝑓𝑓(𝑀𝑀3) retains the differential 
structure of 𝑀𝑀3 as a slice in ℳ∞. 

Locally, this embedded image may be understood as a 
hyperplane-like slice-in the sense that its tangent space at 
any point is a finite-dimensional subspace of the tangent 
space of the ambient manifold. While hyperplanes in finite-
dimensional geometry are typically defined by the level sets 
of linear functionals, we adopt a more general interpretation: 
the slice 𝑀𝑀3 represents a codimension-infinite submanifold, 
realized by holding fixed a specific foliation parameter in a 
global product-like structure on ℳ∞, such as ℳ∞ ≅ 𝑅𝑅 × 𝑀𝑀3 
or more abstractly ℳ∞ = ⋃ Σαα . 

This construction invites us to reinterpret the physical 
universe not as the totality of the geometric space, but as a 
selected leaf - a section of a far richer structure. The higher-
dimensional manifold ℳ∞ may carry geometric and 
topological features that are not directly accessible from 
within the slice 𝑀𝑀3, but that influence the geometry of the 
embedding and thus constrain the physics observed within 
it. 

This idea resonates with various paradigms in modern 
physics. In string theory, our universe is modeled as a three-
dimensional brane embedded in a higher-dimensional bulk 
spacetime, where gravity and other fields can propagate into 
the extra dimensions. Similarly, the AdS/CFT 
correspondence considers a conformal field theory living on 
the boundary of a higher-dimensional anti-de Sitter space, 
where physical laws in the lower-dimensional boundary 
encode the dynamics of the bulk. 

However, our model differs fundamentally in that it does 
not rely on specific physical field theories or action 
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principles. Instead, we propose that the embedding itself and 
the infinite-dimensional geometric context it implies - 
serves as a foundational structure. The embedding, 

𝑓𝑓: 𝑀𝑀3 ↪ ℳ∞ is not merely a technical artifact, but rather a 
statement about the ontological position of the universe 
within a potentially infinite-dimensional geometric reality. 

In this view, the properties of spacetime and the physical 
laws we observe may emerge as effective descriptions 
constrained by the geometry of the slice and its interaction 
(or lack thereof) with the ambient manifold. If ℳ∞ admits a 
foliation into similarly embedded submanifolds, each 
diffeomorphic to 𝑀𝑀3, then the universe may be one among 
many - not in a speculative cosmological sense, but as a 
consequence of the mathematical structure of infinite-
dimensional topology. 

Foliation and Multiverse Analogy  

We now consider the case where the ambient infinite-
dimensional manifold ℳ∞admits a smooth foliation ℱ 
whose leaves are 3-dimensional submanifolds Σα, each 
diffeomorphic to a fixed compact manifold 𝑀𝑀3. That is, 
there exists a decomposition: 

ℳ∞ = ⋃ Σα
α∈𝐴𝐴

,  with Σα ≅ 𝑀𝑀3 for all α, 

such that each Σα is a connected, injectively immersed, 3-
dimensional submanifold of ℳ∞, and the foliation satisfies 
the usual local triviality condition: around every point in 
ℳ∞, there exists a chart diffeomorphic to 𝑅𝑅𝟛𝟛 × 𝑅𝑅∞ in 
which the leaves are locally of the form 𝑅𝑅𝟛𝟛 × {const}. 

This structure naturally leads to a "multiverse-like" 
interpretation. Each leaf Σα can be regarded as a distinct 
realization of a 3-dimensional geometric universe embedded 
within the same infinite-dimensional geometric framework. 
While the individual leaves are locally identical in topology 
and dimension, they may differ in curvature, embedding 
data, or even in induced geometric structures, such as 
metrics or connections inherited from the ambient manifold. 
As such, each leaf could encode distinct physical 
configurations or laws, constrained by the local geometry of 
Σα and its placement within ℳ∞. 

This leads to a profound conceptual shift: the multiverse is 
not a speculative cosmological hypothesis, but rather a 
mathematical consequence of the global structure of ℳ∞. 
The foliation structure does not require probabilistic or 
metaphysical assumptions. Instead, it provides a rigorous 
differential-topological mechanism by which multiple 
universes can coexist as distinct geometric "sheets" in a 
common ambient manifold. 

Importantly, the physical interpretation of these slices 
depends not just on their local geometry, but on how they 
are embedded in ℳ∞, including their relative positioning, 
the smooth vector fields that define their normal directions, 
and any global constraints or symmetries present in the 
foliation. This framework invites new perspectives on the 
variability of physical laws, the concept of cosmic 
neighborhoods, and the role of higher-dimensional geometry 
in shaping observed phenomena. 

While we do not suggest that this foliation corresponds 
directly to a physical multiverse in the traditional 
cosmological sense, the analogy is conceptually and 
mathematically rich. It shows how a rigorous mathematical 
structure - the foliation of an infinite-dimensional manifold – 
naturally supportsa multiverse-like configuration, grounded 
entirely in smooth geometry and topology. 

Remark 1(Mathematical Structure of the Foliation) 

The foliation ℱ = {Σα} described above can be understood, 
at least formally, as arising from an integrable distribution 
of 3-dimensional tangent planes within the tangent 
bundle 𝑇𝑇ℳ∞. In the classical finite-dimensional setting, 
this corresponds to the Frobenius integrability condition; in 
the infinite-dimensional setting, similar results have been 
studied under functional-analytic constraints in Hilbert and 
Banach manifolds. 

Further, if each leaf Σα is endowed with an induced metric 
(𝑔𝑔α from the ambient geometry, one can consider smooth 
variation of geometric invariants (e.g., scalar curvature, 
Ricci curvature, or topological class) as a function of the 
foliation parameter α. This opens the door to the study of 
leafwise geometry and moduli theory within infinite-
dimensional foliated spaces, as developed in the works of 
Haefliger14, Godbillon15, and Moore-Schochet16. 

Emergent Dimensionality and Physical Laws 

A key implication of viewing our universe as a geometric 
slice Σα0 ⊂ ℳ∞ is that the observed dimensionality of space 
may be a derived, rather than fundamental, property. That is, 
three-dimensionality may emerge as a consequence of the 
structure of the foliation and the nature of the embedding, 
rather than being hardwired into the fabric of the ambient 
reality. 

In this framework, Σα0  appears as a finite-dimensional 
“cross-section” of an infinite-dimensional manifold, and the 
effective physics observed on this slice is shaped by the 
embedding map 𝑓𝑓 , the geometry induced from ℳ∞, and 
the local configuration of the surrounding foliation. 
Dimensionality here is contextual: it reflects the structure of 
the leaf Σα0, but not necessarily that of the ambient 
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manifold, which may contain geometric or topological 
degrees of freedom inaccessible from within the slice. 

Mathematically, the effective physical content on Σα0 can be 
derived by considering the restriction of global geometric 
structures on ℳ∞-such as a curvature tensor 𝑅𝑅 , connection 
∇, or metric  𝑔𝑔  to the image of the embedding 𝑓𝑓(𝑀𝑀3). The 
pullback 𝑓𝑓∗𝑔𝑔 induces a local geometry on 𝑀𝑀3,while the 
normal bundle and second fundamental form encode how 
this slice is curved or twisted within the ambient manifold. 

In this sense, differential operators such as the Laplacian Δ, 
the Dirac operator 𝐷𝐷, or the d'Alembertian ∎, which play 
fundamental roles in physical theories, may arise as induced 
or projected structures from the geometry of ℳ∞. These 
operators then govern the dynamics of fields restricted to the 
slice. 

This perspective resonates with theories of emergent 
gravity17, in which gravitational dynamics arise from 
entropic or statistical principles, and with holographic 
dualities such as AdS/CFT20, where the physics on a lower-
dimensional boundary encodes a higher-dimensional bulk. 
In quantum field theory, fields are commonly modeled as 
sections over infinite-dimensional configuration spaces18,19, 
making the idea of slice-based emergence geometrically 
natural. 

By grounding this interpretation in rigorous manifold 
theory, we aim to reposition geometry not merely as the 
background upon which physics unfolds, but as a generator 
of dimensional structure and physical law. The embedding 
of (𝑀𝑀3)into(ℳ∞) is not just a topological curiosity-it is a 
geometric act that induces, filters, and possibly determines 
what kinds of physics can exist on the slice. 

Remark 2 (Geometric Origin of Physical Operators)  

Let∇ be a connection on ℳ∞ with curvature tensor  𝑅𝑅 . 
Then the restriction 𝑅𝑅|𝑇𝑇Σα0

 governs intrinsic dynamics on 
the slice, while mixed components of R involving normal 
directions relate to extrinsic constraints. Field equations 
such as the Einstein 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝐺𝐺 =  𝑇𝑇 , when formulated in 
the ambient space, may reduce to effective versions on Σα0 
via projection, pullback, or constraint implementation. 

IV. Philosophical Implications 

The mathematical framework developed in this work offers 
a precise and rigorous setting in which our observable 
universe is reinterpreted as a geometric slice-specifically, a 
finite-dimensional submanifold-embedded within an 
infinite-dimensional ambient space. While grounded in 
differential topology and infinite-dimensional geometry, this 
formulation raises deep philosophical questions about the 
nature of physical reality, the emergence of dimensionality, 

and the role of mathematics in describing, or perhaps 
constituting, the universe. 

Is the Ambient Manifold Physically Real? 

A central ontological question is whether the ambient 
manifold ℳ∞ should be regarded as physically real, or 
merely as a mathematical construct used to model observed 
phenomena. In standard physics, higher-dimensional 
embeddings often serve as auxiliary framework (as in 
Kaluza-Klein theory or string theory), with no obligation to 
be empirically accessible. However, in the present model, 
the ambient structure plays a generative role: it determines 
the geometry and potential dynamics of the slice Σα0that 
corresponds to our universe. If physical laws emerge from 
restrictions of global structures on ℳ∞, then the ontology 
of the ambient space may be at least as relevant as that of 
the slice itself. 

This aligns with philosophical views that treat mathematical 
structures as ontologically substantial, such as Tegmark’s 
Mathematical Universe Hypothesis 21, or with structural 
realist interpretations of physics, where entities are 
secondary to the relations and structures in which they are 
embedded22. 

Dimensionality and Emergence 

From the perspective of a being confined to a slice Σα0 , the 
dimensionality of the universe appears as a fixed, empirical 
fact. Yet in this framework, dimensionality is local and 
relative: it emerges from the embedding structure and 
foliation, not from the intrinsic architecture of reality. This 
echoes philosophical discussions on the relational and 
emergent nature of space, and challenges ontologies that 
treat dimensionality as an absolute category of being. 

Furthermore, the inability to directly perceive or measure 
the ambient infinite-dimensional manifold may not diminish 
its relevance. As with Kantian noumena, or unobservable 
structures in quantum field theory, the unobserved may still 
be foundational. The slice provides the empirical interface; 
the ambient manifold provides the structural context. 

Mathematics as Description or Genesis? 

One of the most profound questions prompted by this model 
is whether mathematics merely describes the structure of 
physical reality or actively generates it. In traditional 
Platonism, mathematical structures are timeless and real but 
external to the physical world. In contrast, the present 
framework suggests that **mathematical structure may be 
causally or ontologically prior to physical law**. The 
embedding  𝑓𝑓: 𝑀𝑀3 ↪ ℳ∞ is not merely a notational 
convenience, but a move that determines what kind of 
physics can exist. 
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This resonates with Wigner's question about the 
"unreasonable effectiveness of mathematics in the natural 
sciences"23, but reframes it: mathematics is effective 
because reality is mathematical. It also echoes the views of 
Butterfield and Isham24who explore the idea that space, 
time, and matter may emerge from deeper algebraic and 
topological structures, perhaps best understood not as 
"things" but as interrelated mathematical relations. 

Concluding Thought 

The interpretation of our universe as a slice in an infinite-
dimensional geometric reality is more than a formal 
exercise. It suggests that **ontology is geometry**, that 
dimensionality is contingent, and that the mathematical 
structure of space may be both the language and the 
substance of the physical world. While speculative in scope, 
this framework is rigorous in its construction and thus opens 
a conceptual window between geometry and metaphysics, 
between physics and philosophy. 

V. Structured Embeddings and Infinite Dimensional 
Foliations 

We now extend the previous discussion by formalizing a 
class of embeddings of smooth 3-manifolds into infinite-
dimensional Hilbert manifolds that admit foliations by 
isometric copies of the same manifold. This structure 
introduces not only a geometric embedding, but a repetition 
of the embedded geometry across a foliation of the ambient 
manifold. Our aim is to provide both existence results and a 
structural framework for this type of configuration. 

Setup and Definitions 

Let 𝑀𝑀3 be a compact, connected, oriented Riemannian 3-
manifold with metric  𝑔𝑔 . Let ℋ denote a separable infinite-
dimensional Hilbert space, and let ℳ∞ be a smooth Hilbert 
manifold modeled on ℋ. 

We recall the following definitions, adapted from standard 
sources on foliation theory and infinite-dimensional 
differential geometry14,15,16,25: 

Definition 1(Foliation) 

A 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℱ of a smooth manifold ℳ is a decomposition 
of ℳ into a disjoint union of connected, injectively 
immersed submanifolds (called 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) such that ℳ admits 
an atlas of charts {(𝑈𝑈𝑖𝑖, ϕ𝑖𝑖)} where each chart maps 𝑈𝑈𝑖𝑖 ⊂
ℳ diffeomorphically onto an open set in 𝑅𝑅𝑘𝑘 × 𝑅𝑅∞−𝑘𝑘, and 
such that leaves locally correspond to slices of the form 
(𝑅𝑅𝑘𝑘 × {const})14,16 . 

Definition 2 (Leaf) 

Given a foliation ℱ on a manifold ℳ, a leaf Σ ∈ ℱ is a 
connected, injectively immersed submanifold of ℳ such 

that ℳ is locally diffeomorphic to 𝑅𝑅𝑘𝑘 × 𝑅𝑅∞−𝑘𝑘, and Σ 
locally corresponds to (𝑅𝑅𝑘𝑘 × {const})15,16. 

Definition 3 (Codimension) 

The codimension of a foliation ℱ of a manifold ℳ is 
defined as the difference between the dimension of ℳ and 
the dimension of each leaf. For a foliation with 𝑘𝑘 - 
dimensional leaves in an  𝑛𝑛 −dimensional manifold, the 
codimension is  𝑛𝑛 −  𝑘𝑘 . In the case of Hilbert manifolds, 
this may be infinite16,25. 

Definition 4 (Regular Foliation) 

A foliation ℱ on ℳ is said to be regular if all leaves have 
the same dimension and the foliation is defined by a 
globally integrable smooth distribution 𝒟𝒟 ⊂ 𝑇𝑇ℳ. This 
means there exists a smooth sub bundle such that 𝑇𝑇𝑝𝑝Σ =
𝒟𝒟𝓅𝓅for each  𝑝𝑝 ∈ Σ, for all leaves Σ16,25. 

Main Result 

We now state and prove the central result of this section. 

Theorem 2 (Existence of Isometric Foliation by Copies of a 
3-Manifold) 

Let (𝑀𝑀3, 𝑔𝑔) be a compact Riemannian 3-manifold. Then 
there exists a smooth Hilbert manifold ℳ∞ modeled on a 
separable Hilbert space ℋ, and a smooth foliation  
 ℱ = {𝛴𝛴𝛼𝛼}𝛼𝛼∈𝑅𝑅 of ℳ∞, such that for every𝛼𝛼 ∈ 𝑅𝑅, the leaf 𝛴𝛴𝛼𝛼 
is isometrically diffeomorphic to (𝑀𝑀3, 𝑔𝑔). 

Proof: 

Let (𝑀𝑀3, 𝑔𝑔) be a compact Riemannian 3-manifold. Since 
𝑀𝑀3 is compact and smooth, there exists a smooth 
embedding (𝑓𝑓0: 𝑀𝑀3 ↪ ℋ) into a separable infinite-
dimensional Hilbert space ℋ, by the result of Henderson 13. 

Let us construct a one-parameter family of embeddings 
𝑓𝑓α: 𝑀𝑀3 → ℋ defined by 

 
𝑓𝑓𝛼𝛼(𝑥𝑥) = 𝑓𝑓0(𝑥𝑥) + 𝛼𝛼 ⋅ 𝑣𝑣(𝑥𝑥) 

 

 
   (2) 

where α ∈ 𝑅𝑅, and 𝑣𝑣: 𝑀𝑀3 → ℋ is a smooth non-vanishing 
vector field along the image of 𝑓𝑓0 such that: 

1. 𝑣𝑣(𝑥𝑥) ⊥ 𝑑𝑑𝑓𝑓0(𝑇𝑇𝑥𝑥𝑀𝑀3)𝑥𝑥 ∈ 𝑀𝑀3  ∀  x ∈ M3 
2. |𝑣𝑣(𝑥𝑥)| = 𝑐𝑐 for some constant  𝑐𝑐 >  0  we may 

choose  𝑐𝑐 =  1  without loss of generality. 

These conditions ensure that each embedded image 𝑓𝑓α(𝑀𝑀3) 
is a parallel copy of the original embedding, displaced in the 
direction orthogonal to the tangent space of 𝑓𝑓0(𝑀𝑀3). The 
vector field  𝑣𝑣  is smooth and non-vanishing because such 
vector fields exist globally on compact manifolds embedded 
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in Hilbert spaces, given the triviality of the normal bundle in 
infinite dimensions. 

Now define: 

 
ℳ∞ ≔ ⋃ 𝑓𝑓𝛼𝛼(𝑀𝑀3)

𝛼𝛼∈𝑅𝑅
⊂ ℋ 

 

 
   (3) 

This set inherits the structure of a smooth Hilbert manifold 
modeled on 𝑅𝑅 × 𝑀𝑀3, and the parameter α provides a global 
foliation coordinate. Each slice Σα ≔ 𝑓𝑓α(𝑀𝑀3) is 
diffeomorphic to 𝑀𝑀3 via 𝑥𝑥 ↦ 𝑓𝑓α(𝑥𝑥), and the family {Σα}α∈𝑅𝑅 
defines a smooth foliation of ℳ∞. 

To show that each embedding 𝑓𝑓α is isometric, consider the 
induced metric 𝑓𝑓α

∗⟨⋅,⋅⟩ℋ. Since the displacement vector 
α𝑣𝑣(𝑥𝑥) lies in the normal direction and is constant in α, it 
does not affect the pullback of the inner product along the 
tangent directions. Thus, for any tangent vectors 𝑋𝑋, 𝑌𝑌 ∈
𝑇𝑇𝑥𝑥𝑀𝑀3, 

⟨𝑑𝑑𝑓𝑓α(𝑋𝑋), 𝑑𝑑𝑓𝑓α(𝑌𝑌)⟩ = ⟨𝑑𝑑𝑓𝑓0(𝑋𝑋), 𝑑𝑑𝑓𝑓0(𝑌𝑌)⟩ = 𝑔𝑔(𝑋𝑋, 𝑌𝑌) 

Therefore, each 𝑓𝑓α is an isometric embedding, and each leaf 
Σα is isometrically diffeomorphic to (𝑀𝑀3, 𝑔𝑔). 

Hence, ℳ∞is foliated by isometric copies of 𝑀𝑀3, 
parameterized smoothly by α ∈ 𝑅𝑅. 

 
 

Fig 2. Foliation of ℳ∞ by isometric copies of the 3-
manifold 𝑀𝑀3. Each slice Σα corresponds to a distinct 
embedded copy. 

Corollary 1 

The ambient Hilbert manifold ℳ∞ constructed above 
admits an infinite number of disjoint, isometrically 
embedded copies of (𝑀𝑀3, 𝑔𝑔), forming a smooth foliation 
parameterized by 𝑅𝑅. 

 

Remark 3 

This construction may be viewed as an abstract 
generalization of brane-world models, where each leaf 
corresponds to a separate universe. Unlike in string theory, 
however, this construction relies only on differential 
topology and functional geometry, without invoking any 
specific field equations or energy conditions. 

Remark 4 

The choice of 𝑅𝑅 as the parameter space is arbitrary; more 
general parameter spaces can be used depending on the 
regularity and global properties of  𝑣𝑣 . This opens the door 
to analyzing the moduli of such foliations.   

Moduli of Foliations Induced by Normal Fields 

We now explore the space of foliations constructed via 
parallel embeddings along normal vector fields. Let 
(ℰ(𝑀𝑀3, ℋ)) denote the space of smooth embeddings of a 
compact manifold 𝑀𝑀3 into a Hilbert space ℋ. Fix a 
reference embedding 𝑓𝑓0 ∈ ℰ(𝑀𝑀3, ℋ), and define a space of 
smooth normal vector fields: 

𝒱𝒱
≔ {𝑣𝑣 ∈ 𝐶𝐶∞(𝑀𝑀3, ℋ) | 𝑣𝑣(𝑥𝑥) ⊥ 𝑑𝑑𝑓𝑓0(𝑇𝑇𝑥𝑥𝑀𝑀3),  |𝑣𝑣(𝑥𝑥)| = 1, ∀ 𝑥𝑥 ∈ 𝑀𝑀3 } 

Each 𝑣𝑣 ∈ 𝒱𝒱 gives rise to a 1-parameter family of 
embeddings: 

𝑓𝑓α(𝑥𝑥) = 𝑓𝑓0(𝑥𝑥) + α𝑣𝑣(𝑥𝑥),  α ∈ 𝑅𝑅 
 

(4) 

and thus defines a foliation ℱ𝓋𝓋 = {𝑓𝑓α(𝑀𝑀3)}α∈𝑅𝑅 of an open 
subset of  ℋ. 

Theorem 3 (Moduli of Parallel Foliations) 

Let (𝑀𝑀3, 𝑔𝑔) be a compact Riemannian manifold and 𝑓𝑓0 ∶
𝑀𝑀3 ↪ ℋ a fixed embedding. Then the space of foliations 
{ℱ𝓋𝓋} induced by parallel translations along unit normal 
vector fields 𝑣𝑣 ∈ 𝒱𝒱 is a smooth infinite-dimensional Fréchet 
manifold, modeled on a closed subspace of𝐶𝐶∞(𝑀𝑀3, ℋ). 

Proof: Let 𝑓𝑓0: 𝑀𝑀3 ↪ ℋ be a fixed smooth embedding. The 
space 𝐶𝐶∞(𝑀𝑀3, ℋ), the set of all smooth maps from𝑀𝑀3 to 
 ℋ, is a Fréchet space when endowed with the C∞ −topology 
(i.e., convergence in all derivatives uniformly on compact 
sets). Since 𝑀𝑀3is compact, this topology is metrizable and 
complete. 

Define the subspace: 

𝒱𝒱 ≔ {𝑣𝑣 ∈ 𝐶𝐶∞(𝑀𝑀3, ℋ) | 𝑣𝑣(𝑥𝑥) ⊥ 𝑑𝑑𝑓𝑓0(𝑇𝑇𝑥𝑥𝑀𝑀3),  |𝑣𝑣(𝑥𝑥)| = 1 } 

We now show that 𝒱𝒱 is a smooth infinite-dimensional 
submanifold of 𝐶𝐶∞(𝑀𝑀3, ℋ). To do so, consider the constraint 
map defined in Equation (5): 

Φ: 𝐶𝐶∞(𝑀𝑀3, ℋ) → 𝐶𝐶∞(𝑀𝑀3, 𝑅𝑅𝑘𝑘+𝟙𝟙),  
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Φ(𝑣𝑣)(𝑥𝑥)
= (⟨𝑣𝑣(𝑥𝑥), 𝑑𝑑𝑓𝑓0(𝑒𝑒1(𝑥𝑥))⟩, , . ⟨𝑣𝑣(𝑥𝑥), 𝑑𝑑𝑓𝑓0(𝑒𝑒𝑘𝑘(𝑥𝑥))⟩,  

|𝑣𝑣(𝑥𝑥)|2  −  1 ) 

(5) 

where {𝑒𝑒1(𝑥𝑥), … , 𝑒𝑒𝑘𝑘(𝑥𝑥)} is a smooth local orthonormal 
frame for 𝑇𝑇𝑥𝑥𝑀𝑀3. This map encodes the orthogonality 
conditions and the unit norm condition. 

Each component of Φ is smooth (since the inner product 
and norm are smooth in ℋ), and Φ−1(0) = 𝒱𝒱. We aim to 
apply the implicit function theorem in Fréchet spaces. For 
this, we must check that the derivative DΦv at any v ∈ 𝒱𝒱 is 
surjective and admits a continuous right inverse. 

The linearization: 

𝐷𝐷Φ𝑣𝑣: 𝐶𝐶∞(𝑀𝑀3, ℋ) → 𝐶𝐶∞(𝑀𝑀3, ℝ𝑘𝑘+1)is given by: 

(𝐷𝐷Φ𝑣𝑣)(𝑤𝑤)(𝑥𝑥)
= (⟨𝑤𝑤(𝑥𝑥), 𝑑𝑑𝑓𝑓0(𝑒𝑒𝑖𝑖(𝑥𝑥))⟩,  2⟨𝑤𝑤(𝑥𝑥), 𝑣𝑣(𝑥𝑥)⟩) 

 
(6) 

 

This is a surjective bundle map (pointwise surjective at each 
𝑥𝑥 ∈ 𝑀𝑀3), and since all maps involved are smooth and linear, 
and 𝑣𝑣(𝑥𝑥) ≠ 0, the inverse function theorem (Hamilton’s 
version) applies. 

Therefore, 𝒱𝒱 = Φ−1(0) ⊂ 𝐶𝐶∞(𝑀𝑀3, ℋ) is a smooth infinite-
dimensional Fréchet submanifold. 

Now, each𝑣𝑣 ∈ 𝒱𝒱 defines a foliation: 

ℱ𝓋𝓋 ≔ {𝑓𝑓𝛼𝛼(𝑀𝑀3) | 𝑓𝑓𝛼𝛼(𝑥𝑥) = 𝑓𝑓0(𝑥𝑥) + 𝛼𝛼𝛼𝛼(𝑥𝑥),  𝛼𝛼 ∈ 𝑅𝑅} 
 

 
(7) 

Since the dependence on 𝑣𝑣  is smooth, and the map 𝑣𝑣 ↦ 𝑓𝑓𝛼𝛼 
is smooth in 𝐶𝐶∞-topology (with fixed 𝑓𝑓0, the space of such 
foliations inherits a smooth structure from 𝒱𝒱. 

Hence, the moduli space of such foliations is a smooth 
Fréchet manifold modeled on 𝒱𝒱.  

Remark 5 

Two foliations ℱ𝓋𝓋1, ℱ𝓋𝓋2  may be considered equivalent if 
there exists a diffeomorphism of ℋ mapping one leaf 
structure to the other. Quotienting by such equivalences 
leads to a stratified moduli space, potentially with rich 
geometric features. 

Explicit Example: Embedding and Foliation of 𝑆𝑆3 

We now present a concrete example of the abstract 
construction outlined above, using the standard 3-sphere 𝑆𝑆3. 
Consider 𝑆𝑆3 ⊂ 𝑅𝑅𝟜𝟜defined by 

𝑆𝑆3 = {(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) ∈ 𝑅𝑅𝟜𝟜 | 𝑥𝑥1
2 + 𝑥𝑥2

2 + 𝑥𝑥3
2 + 𝑥𝑥4

2 = 1} 

We construct an embedding 𝑓𝑓0: 𝑆𝑆3 ↪ ℋ into the infinite-
dimensional Hilbert space ℋ = ℓ2(𝑁𝑁) via a Fourier-type 
expansion: 

𝑓𝑓0(𝑥𝑥) = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 0,0, … ) 

This is a smooth and injective map, and 𝑓𝑓0(𝑆𝑆3) ⊂ ℋ is an 
isometric image of 𝑆𝑆3 under the standard inner product 
restricted to the first four coordinates. 

Next, define a smooth vector field 𝑣𝑣: 𝑆𝑆3 → ℋ by 

𝑣𝑣(𝑥𝑥)
= (0,0,0,0, cos(2𝜋𝜋𝑥𝑥1) , cos(2𝜋𝜋𝑥𝑥2) , cos(2𝜋𝜋𝑥𝑥3) , cos(2𝜋𝜋𝑥𝑥4) , 0, … ) 

normalized such that |𝑣𝑣(𝑥𝑥)| = 1 and 𝑣𝑣(𝑥𝑥) ⊥ 𝑑𝑑𝑓𝑓0(𝑇𝑇𝑥𝑥𝑆𝑆3) for 
all 𝑥𝑥 ∈ 𝑆𝑆3. This construction ensures that 𝑣𝑣 is a smooth 
normal vector field. 

For each 𝛼𝛼 ∈ 𝑅𝑅, define 

𝑓𝑓𝛼𝛼(𝑥𝑥) = 𝑓𝑓0(𝑥𝑥) + 𝛼𝛼𝛼𝛼(𝑥𝑥). 

The image Σ𝛼𝛼 ≔ 𝑓𝑓𝛼𝛼(𝑆𝑆3) is again diffeomorphic to 𝑆𝑆3, and 
the family {Σ𝛼𝛼}𝛼𝛼∈𝑅𝑅 defines a smooth foliation of an open 
subset of ℋ into isometric copies of the 3-sphere. This 
provides a tangible realization of the abstract foliation 
framework, grounded in familiar geometric objects. 

 
 
Fig. 3. Visualization of variations in the embedding of 𝑆𝑆3 

into ℋ using different normal vector fields 𝑣𝑣(𝑥𝑥). 
Each curve represents a distinct foliation leaf Σα, and 
the vertical deviation reflects changes in the moduli 
space 𝒱𝒱. 

VI. Conclusion 

In this paper, we have proposed a geometric and conceptual 
framework in which our observable 3-dimensional universe 
is modeled as a smooth submanifold-a slice-embedded 
within an infinite-dimensional Hilbert manifold. Building 
on classical results in differential topology and infinite-
dimensional geometry, we constructed explicit embeddings 
of 3-manifolds into infinite-dimensional spaces and 
introduced a foliation structure where each leaf is 
isometrically diffeomorphic to a fixed 3-manifold 𝑀𝑀3. 
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We proved that such a foliation can be generated through 
smooth variation of a normal vector field along a fixed 
embedding, and demonstrated that the space of all such 
foliations-a moduli space of geometric configurations-forms 
an infinite-dimensional Fréchet manifold. An explicit 
example involving the 3-sphere 𝑆𝑆3 embedded in ℓ2 was 
presented, along with visualizations illustrating variation 
within this moduli space. 

This perspective not only enriches the mathematical theory 
of embeddings and foliations in infinite-dimensional 
manifolds, but also opens the door to new physical and 
philosophical interpretations. The idea that physical space 
may emerge as a slice of a more complex ambient geometry 
resonates with theories of emergent spacetime, brane 
worlds, and infinite-dimensional quantum frameworks. 
While the model remains geometric and kinematic in nature, 
it provides a fertile ground for introducing dynamics, 
variational principles, and possibly field-theoretic structures 
over the foliation. 
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