JORDAN k-DERIVATIONS OF CERTAIN NOBUSAWA GAMMA RINGS

Sujoy Chakraborty¹

Department of Mathematics Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh E-mail: sujoy_chbty@yahoo.com and

Akhil Chandra Paul Department of Mathematic

Rajshahi University, Rajshahi-6205, Bangladesh E-mail: acpaulru_math@yahoo.com

Received 25.11.2010

Accepted 16.7.2011

ABSTRACT

From the very definition, it follows that every Jordan *k*-derivation of a gamma ring *M* is, in general, not a *k*-derivation of *M*. In this article, we establish its generalization by considering *M* as a 2-torsion free semiprime Γ_N -ring (Nobusawa gamma ring). We also show that every Jordan *k*-derivation of a 2-torsion free completely semiprime Γ_N -ring is a *k*-derivation of the same.

1. Introduction

For the sake of completeness of the study, we begin with the following introductory definitions and examples.

Definition 1.1 Let M and Γ be additive abelian groups. If there exists a mapping $(a, \alpha, b) \rightarrow a\alpha b$ of $M \times \Gamma \times M \rightarrow M$ such that the conditions

(a) $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha+\beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$,

and (b) $(a\alpha b)\beta c = a\alpha(b\beta c)$

are satisfied for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$, then M is said to be a gamma ring in the sense of Barnes[1], or simply, a gamma ring (symbolically, Γ -ring).

Example 1.1 If *R* is an ordinary associative ring, *U* is any ideal of *R*, and *I* is the ring of integers, then *R* is a Γ -ring with $\Gamma = R$ or, $\Gamma = U$ or, $\Gamma = I$. Also, *U* is a Γ -ring with $\Gamma = R$.

Definition 1.2 In addition to all the assumptions and conditions in the definition of a Γ ring given above, if there is another mapping $(\alpha, a, \beta) \rightarrow \alpha a \beta$ of $\Gamma \times M \times \Gamma \rightarrow \Gamma$ such that the properties

 (a^*) $(\alpha + \beta)a\gamma = \alpha a\gamma + \beta a\gamma$, $\alpha(a + b)\beta = \alpha a\beta + \alpha b\beta$, $\alpha a(\beta + \gamma) = \alpha a\beta + \alpha a\gamma$,

¹Corresponding author

- $(b^*)(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$, and
- (c*) $a\alpha b = 0$ implies $\alpha = 0$

hold for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$, then M is called a gamma ring in the sense of Nobusawa[9], or simply, a Nobusawa Γ -ring (symbolically, Γ_N -ring).

Example 1.2 If *R* is an ordinary associative ring with the unity 1, then *R* is a Γ_N -ring with $\Gamma=R$.

The notions of derivation and Jordan derivation of a Γ -ring have been introduced by M. Sapanci and A. Nakajima [10] as follows.

Definition 1.3 *Let* M *be a* Γ *-ring, and let* $d: M \to M$ *be an additive mapping such that*

 $d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$

is satisfied for all $a, b \in M$ and $\alpha \in \Gamma$; then d is called a derivation of M.

Definition 1.4 For a Γ -ring M, if $d: M \to M$ is an additive mapping such that

 $d(a\alpha a) = d(a)\alpha a + a\alpha d(a)$

holds for all $a \in M$ and $\alpha \in \Gamma$, then d is said to be a Jordan derivation of M.

In accordance with the notion of derivation of a Γ -ring mentioned as above, H. Kandamar [8] has introduced the concept of *k*-derivation of a Γ_N -ring as follows.

Definition 1.5 Let M be a Γ_N -ring, and let $d: M \to M$ and $k: \Gamma \to \Gamma$ be additive mappings. If

$$d(a\alpha b) = d(a)\alpha b + ak(\alpha)b + a\alpha d(b)$$

is satisfied for all $a, b \in M$ and $\alpha \in \Gamma$, then d is called a k-derivation of M.

Example 1.3 Let M be a Γ_N -ring, and let $a \in M$ and $\alpha \in \Gamma$ be any two fixed elements. Define the additive mappings $d: M \to M$ and $k: \Gamma \to \Gamma$ by $d(x) = a\alpha x$ (for all $x \in M$) and $k(\beta) = \beta a \alpha$ (for all $\beta \in \Gamma$), respectively. Then d is a k-derivation of M, for

 $d(x\beta y) = a\alpha(x\beta y) = a\alpha x\beta y - x\beta a\alpha y + x\beta a\alpha y$ $= (a\alpha x)\beta y - x(\beta a\alpha)y + x\beta(a\alpha y) = d(x)\beta y + xk(\beta)y + x\beta d(y).$

Now we introduce the concept of Jordan *k*-derivation of a Γ_N -ring using the notion of *k*-derivation of a Γ -ring due to H. Kandamar [8] as bellow.

Definition 1.6 Let M be a Γ_N -ring, and let $d: M \to M$ and $k: \Gamma \to \Gamma$ be additive mappings. Then d is said to be a Jordan k-derivation of M if

 $d(a\alpha a) = d(a)\alpha a + ak(\alpha)a + a\alpha d(a)$

holds for all $a \in M$ *and* $\alpha \in \Gamma$ *.*

Example 1.4 Let M be a Γ_N -ring, and let d be a k-derivation of M. Consider $M_1 = \{(x, x) : x \in M\}$ and $\Gamma_1 = \{(\alpha, \alpha) : \alpha \in \Gamma\}$. Let the operations of addition and multiplication on M_1 and Γ_1 be defined by

$$(x_1, x_1) + (x_2, x_2) = (x_1 + x_2, x_1 + x_2), (x_1, x_1)(\alpha, \alpha)(x_2, x_2) = (x_1\alpha x_2, x_1\alpha x_2)$$
 and

$$(\alpha_1,\alpha_1) + (\alpha_2,\alpha_2) = (\alpha_1 + \alpha_2,\alpha_1 + \alpha_2), \ (\alpha_1,\alpha_1)(x,x)(\alpha_2,\alpha_2) = (\alpha_1x\alpha_2,\alpha_1x\alpha_2)$$

for every $x, x_1, x_2 \in M$ and $\alpha, \alpha_1, \alpha_2 \in \Gamma$, respectively. Then M_1 is clearly a Nobusawa Γ_1 -ring under these operations. Let $d_1: M_1 \to M_1$ and $k_1: \Gamma_1 \to \Gamma_1$ be the additive mappings defined by

$$d_1(x, x) = (d(x), d(x))$$
 and $k_1(\alpha, \alpha) = (k(\alpha), k(\alpha))$

for all $x \in M$ and $\alpha \in \Gamma$, respectively. If we say $(x, x) = a \in M$ and $(\alpha, \alpha) = \gamma \in \Gamma$ for any $x \in M$ and $\alpha \in \Gamma$, then we have

$$d_1(a\gamma a) = d_1((x, x)(\alpha, \alpha)(x, x)) = (d(x\alpha x), d(x\alpha x))$$
$$= (d(x)\alpha x, d(x)\alpha x) + (xk(\alpha)x, xk(\alpha)x) + (x\alpha d(x), x\alpha d(x))$$
$$= d_1(a)\gamma a + ak_1(\gamma)a + a\gamma d_1(a)$$

Hence, it follows that d_1 is a Jordan k_1 -derivation of M. Obviously, d_1 is not a k_1 -derivation of M.

Considering M as a Γ -ring (until any further notice is mentioned hereafter in this section), we recall some important definitions needful for us as follows:

Definition 1.7 An additive subgroup U of M is called a left (resp., right) ideal of M if $M\Gamma U \subset U$ (resp.,, $U\Gamma M \subset U$). U is called a two-sided ideal, or simply, an ideal of M if U is a left as well as a right ideal of M (that is, if both $m\gamma u \in U$ and $u\gamma m \in U$ for all $m \in M$, $\gamma \in \Gamma$ and $u \in U$).

Definition 1.8 *M* is said to be a 2-torsion free Γ -ring if 2a = 0 implies a = 0 for all $a \in M$. Besides, *M* is called a commutative Γ -ring if $x\gamma y = y\gamma x$ holds for all $x, y \in M$ and $\gamma \in \Gamma$. The set $Z(M) = \{c \in M : c\alpha m = m\alpha c \text{ for all } \alpha \in \Gamma \text{ and } m \in M\}$ is known as the center of the Γ -ring *M*.

Definition 1.9 If $a, b \in M$ and $\alpha \in \Gamma$, then $[a,b]_{\alpha} = a\alpha b - b\alpha a$ is called the commutator of a and b with respect to α .

Lemma 1.1 *If M is a* Γ *-ring, then, for all* $a,b,c \in M$ *and* $\alpha,\beta \in \Gamma$:

- (i) $[a,b]_{\alpha} + [b,a]_{\alpha} = 0$; (ii) $[a+b,c]_{\alpha} = [a,c]_{\alpha} + [b,c]_{\alpha}$;
- (iii) $[a, b+c]_{\alpha} = [a, b]_{\alpha} + [a, c]_{\alpha}$; (iv) $[a, b]_{\alpha+\beta} = [a, b]_{\alpha} + [a, b]_{\beta}$.

Remark 1.1 A necessary and sufficient condition for a Γ -ring M to be commutative is that $[a,b]_{\alpha} = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$.

Definition 1.10 An element $x \in M$ is called a nilpotent element if (for any $\gamma \in \Gamma$), there

exists a positive integer n (depending on γ) such that $(x\gamma)^n x = (x\gamma)(x\gamma)...(x\gamma)x = 0$. Besides, an ideal U of M is said to be a nil ideal if each element of U is nilpotent. Moreover, an ideal I of M is called a nilpotent ideal if there exists a positive integer n such that $(I\Gamma)^n I = (I\Gamma)(I\Gamma)...(I\Gamma)I = 0$.

Remark 1.2 *Every nilpotent ideal of a* Γ *-ring is nil.*

Definition 1.11 (i) *M* is called prime if $a\Gamma M\Gamma b = 0$ (with $a, b \in M$) implies a=0 or b=0; (ii) *M* is said to be completely prime if $a\Gamma b = 0$ (with $a, b \in M$) implies a=0 or b=0; (iii) *M* is called semiprime if $a\Gamma M\Gamma a = 0$ (with $a \in M$) implies a=0; (iv) *M* is said to be completely semiprime if $a\Gamma a = 0$ (with $a \in M$) implies a=0.

Remark 1.3 *Every prime* Γ *-ring is semiprime, and also, every completely prime* Γ *-ring is completely semiprime.*

2. Some Consequences

We now state some useful results without their proofs, because all of these results (in this section) have already been proved in our papers [4] and [5].

Lemma 2.1 Let M be a Γ_N -ring and let d be a Jordan k-derivation of M. Then for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$, the following statements hold:

- (i) $d(a\alpha b + b\alpha a) = d(a)\alpha b + d(b)\alpha a + ak(\alpha)b + bk(\alpha)a + a\alpha d(b) + b\alpha d(a);$
- (ii) $d(a\alpha b\beta a + a\beta b\alpha a) = d(a)\alpha b\beta a + d(a)\beta b\alpha a + ak(\alpha)b\beta a + ak(\beta)b\alpha a$ $+ a\alpha d(b)\beta a + a\beta d(b)\alpha a + a\alpha bk(\beta)a + a\beta bk(\alpha)a + a\alpha b\beta d(a) + a\beta b\alpha d(a).$

In particular, if M is 2-torsion free, then

- (iii) $d(a\alpha b\alpha a) = d(a)\alpha b\alpha a + ak(\alpha)b\alpha a + a\alpha d(b)\alpha a + a\alpha bk(\alpha)a + a\alpha b\alpha d(a);$
- (iv) $d(a\alpha b\alpha c + c\alpha b\alpha a) = d(a)\alpha b\alpha c + d(c)\alpha b\alpha a + ak(\alpha)b\alpha c + ck(\alpha)b\alpha a + a\alpha d(b)\alpha c + c\alpha d(b)\alpha a + a\alpha bk(\alpha)c + c\alpha bk(\alpha)a + a\alpha b\alpha d(c) + c\alpha b\alpha d(a).$

Lemma 2.2 Let d be a Jordan k-derivation of a 2-torsion free Γ_N -ring M. Then, for all $b \in M$ and $\beta \in \Gamma$, $k(\beta b\beta) = k(\beta)b\beta + \beta d(b)\beta + \beta bk(\beta)$.

Lemma 2.3 If d is a Jordan k_1 -derivation as well as a Jordan k_2 -derivation of a 2-torsion free Γ_N -ring M, then $k_1 = k_2$.

Remark 2.1 *k* is uniquely determined if *d* is a Jordan *k*-derivation of a 2-torsion free Γ_N - ring.

Definition 2.1 Let d be a Jordan k-derivation of a Γ_N -ring M. If $a, b \in M$ and $\alpha \in \Gamma$, then we define $F_{\alpha}(a,b) = d(a\alpha b) - d(a)\alpha b - ak(\alpha)b - a\alpha d(b)$.

Lemma 2.4 If *d* is a Jordan *k*-derivation of a Γ_N -ring *M*, then for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$,

(i) $F_{\alpha}(a,b) + F_{\alpha}(b,a) = 0$; (ii) $F_{\alpha}(a+b,c) = F_{\alpha}(a,c) + F_{\alpha}(b,c)$;

(iii)
$$F_{\alpha}(a,b+c) = F_{\alpha}(a,b) + F_{\alpha}(a,c)$$
; (iv) $F_{\alpha+\beta}(a,b) = F_{\alpha}(a,b) + F_{\beta}(a,b)$.

Remark 2.2 *d* is a *k*-derivation of a Γ_N -ring *M* if and only if $F_{\alpha}(a,b) = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$.

3. Jordan *k*-Derivations of Semiprime Γ_N -Rings

In classical ring theory, I. N. Herstein [7] has shown that every Jordan derivation of a 2torsion free prime ring is a derivation of the same. The similar result for 2-torsion free semiprime rings has been proved by M. Bresar [2]. Here we extend this result for a 2torsion free semiprime Γ_N -ring to show that every Jordan *k*-derivation of a 2-torsion free semiprime Γ_N -ring *M* is a *k*-derivation of *M*.

Lemma 3.1 Let M be a semiprime Γ -ring. Then M contains no nonzero nilpotent ideal.

Proof. Let *I* be a nilpotent ideal of *M*. Then $(I\Gamma)^n I = 0$ for some positive integer *n*. Let us assume that *n* is minimum. Now suppose that n > 1. Since $I\Gamma M \subset I$, we then have

$$(I\Gamma)^{n-1}I\Gamma M\Gamma (I\Gamma)^{n-1}I \subset (I\Gamma)^{n-1}I\Gamma (I\Gamma)^{n-1}I = (I\Gamma)^n I\Gamma (I\Gamma)^{n-2}I = 0.$$

Hence, by the semiprimeness of *M*, we get $(I\Gamma)^{n-1}I = 0$, a contradiction to the minimality of *n*. Therefore, n = 1. Thus, $I\Gamma I = 0$. Then $I\Gamma M\Gamma I \subset I\Gamma I = 0$. Since *M* is semiprime, it gives I = 0.

But, since every prime Γ -ring is semiprime, we have:

Corollary 3.1 *Every prime* Γ *-ring has no nonzero nilpotent ideal.*

Again, since every nilpotent ideal of a Γ -ring is nil, it follows that

Corollary 3.2 Semiprime (and also, prime) Γ -rings have no nonzero nilpotent element.

Lemma 3.2 *The center of a semiprime (or, prime)* Γ *-ring does not contain any nonzero nilpotent element.*

Proof. Let Z be the center of a semiprime Γ -ring M. Then Z is a subring of M (as we know). Thus, since M is a semiprime Γ -ring, Z is so. Hence, by Corollary 3.2, Z has no nonzero nilpotent element. A similar reason proves the claim for a prime Γ -ring.

Lemma 3.3 Let d be a Jordan k-derivation of a 2-torsion free Γ_N -ring M. Then

(i) $F_{\alpha}(a,b)\alpha m\alpha[a,b]_{\alpha} + [a,b]_{\alpha}\alpha m\alpha F_{\alpha}(a,b) = 0$ and (ii) $F_{\alpha}(a,b)\beta m\beta[a,b]_{\alpha} + [a,b]_{\alpha}\beta m\beta F_{\alpha}(a,b) = 0$ for all $a,b \in M$ and $\alpha \in \Gamma$.

Proof. We have proved this lemma in our paper [4].

Lemma 3.4 Let *M* be a 2-torsion free semiprime Γ -ring. If $a,b,m \in M$ and $\alpha,\beta \in \Gamma$ such that $a\alpha m\beta b + b\alpha m\beta a = 0$, then $a\alpha m\beta b = b\alpha m\beta a = 0$.

Proof. Let $x \in M$ and $\gamma, \delta \in \Gamma$ be arbitrary elements. By using $a\alpha m\beta b = -b\alpha m\beta a$ (where $a, b, m \in M$ and $\alpha, \beta \in \Gamma$) repeatedly, we get

 $(a\alpha m\beta b)\gamma x\delta(a\alpha m\beta b) = -(a\alpha m\beta b)\gamma x\delta(a\alpha m\beta b).$

This implies, $2((a\alpha m\beta b)\gamma x\delta(a\alpha m\beta b)) = 0$.

Since *M* is 2-torsion free, it gives $(a\alpha m\beta b)\gamma x\delta(a\alpha m\beta b) = 0$;

that is, we have $(a\alpha m\beta b)\Gamma M\Gamma(a\alpha m\beta b) = 0$.

But, since *M* is semiprime, we obtain $a\alpha m\beta b = 0$. Hence, $a\alpha m\beta b = b\alpha m\beta a = 0$.

Corollary 3.3 *Let* M *be a 2-torsion free semiprime* Γ_N *-ring. Then, for all* $a,b,m \in M$ *and* $\alpha,\beta \in \Gamma$,

(i) $F_{\alpha}(a,b)\alpha m\alpha[a,b]_{\alpha} = 0$; (ii) $[a,b]_{\alpha}\alpha m\alpha F_{\alpha}(a,b) = 0$;

(iii) $F_{\alpha}(a,b)\beta m\beta[a,b]_{\alpha} = 0$; (iv) $[a,b]_{\alpha}\beta m\beta F_{\alpha}(a,b) = 0$.

Proof. Applying Lemma 3.4 in Lemma 3.3, we obtain the required results.

Lemma 3.5 Let *M* be a 2-torsion free semiprime Γ_N -ring. Then, for all $a,b,u,v,m \in M$ and $\alpha,\beta \in \Gamma$,

(i)
$$F_{\alpha}(a,b)\beta m\beta[u,v]_{\alpha} = 0$$
; (ii) $[u,v]_{\alpha}\beta m\beta F_{\alpha}(a,b) = 0$;

(iii) $F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma} = 0$; (iv) $[u,v]_{\gamma}\beta m\beta F_{\alpha}(a,b) = 0$.

Proof. (i) Replacing a + u for a in Corollary 3.3(iii), we obtain

 $F_{\alpha}(a,b)\beta m\beta[u,b]_{\alpha} = -F_{\alpha}(a,b)\beta m\beta[a,b]_{\alpha}.$

Therefore, we have

$$\begin{split} & (F_{\alpha}(a,b)\beta m\beta[u,b]_{\alpha})\beta m\beta(F_{\alpha}(a,b)\beta m\beta[u,b]_{\alpha}) \\ &= -F_{\alpha}(a,b)\beta m\beta[u,b]_{\alpha}\beta m\beta F_{\alpha}(u,b)\beta m\beta[a,b]_{\alpha} = 0 \; . \end{split}$$

Hence, by the semiprimeness of *M*, we get $F_{\alpha}(a,b)\beta m\beta[u,b]_{\alpha} = 0$. Similarly, by replacing b + v for *b* in this equality, we obtain $F_{\alpha}(a,b)\beta m\beta[u,v]_{\alpha} = 0$.

(ii) Proceeding in the same way as above by the similar replacements successively in Corollary 3.3(iv), we obtain $[u,v]_{\alpha}\beta m\beta F_{\alpha}(a,b) = 0$ for all $a,b,u,v,m \in M$ and $\alpha,\beta \in \Gamma$.

(iii) Putting $\alpha + \gamma$ for α in (i), we get $F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma} = -F_{\gamma}(a,b)\beta m\beta[u,v]_{\alpha}$. Then

$$(F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma})\beta m\beta(F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma})$$

= $-F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma}\beta m\beta F_{\gamma}(a,b)\beta m\beta[u,v]_{\alpha} = 0.$

By the semiprimeness of *M*, we have $F_{\alpha}(a,b)\beta m\beta[u,v]_{\gamma} = 0$.

(iv) As in the proof of (iii), the similar replacement in (ii) produces (iv).

Theorem 3.1 Every Jordan k-derivation of a 2-torsion free semiprime Γ_N -ring M is a k-derivation of M.

Proof. Let *d* be a Jordan *k*-derivation of a 2- torsion free semiprime Γ_N -ring *M*. Let $a, b, u, v, m \in M$ and $\alpha, \beta \in \Gamma$. Then, by Lemma 3.5(iii), we obtain

$$\begin{split} & [F_{\alpha}(a,b),v]_{\beta}\beta m\beta[F_{\alpha}(a,b),v]_{\beta} \\ &= (F_{\alpha}(a,b)\beta v - v\beta F_{\alpha}(a,b))\beta m\beta[F_{\alpha}(a,b),v]_{\beta} \\ &= F_{\alpha}(a,b)\beta v\beta m\beta[F_{\alpha}(a,b),v]_{\beta} - v\beta F_{\alpha}(a,b)\beta m\beta[F_{\alpha}(a,b),v]_{\beta} = 0 \,, \end{split}$$

since $v\beta m \in M$ and $F_{\alpha}(a,b) \in M$ for all $a,b,v,m \in M$ and $\alpha,\beta \in \Gamma$.

Therefore, we get $[F_{\alpha}(a,b),v]_{\beta} = 0$ (by the semiprimeness of *M*). But since $F_{\alpha}(a,b) \in M$ (for all $a,b \in M$ and $\alpha \in \Gamma$), it follows that $F_{\alpha}(a,b) \in Z(M)$.

Now let $\gamma, \delta \in \Gamma$. By Lemma 3.5(ii), $F_{\alpha}(a,b)\gamma[u,v]_{\alpha} \delta m \delta F_{\alpha}(a,b)\gamma[u,v]_{\alpha} = 0$. But, since *M* is semiprime, we get

$$F_{\alpha}(a,b)\gamma[u,v]_{\alpha} = 0.$$
⁽¹⁾

Also, by Lemma 3.5(i), we have $[u,v]_{\alpha} \gamma F_{\alpha}(a,b) \delta m \delta[u,v]_{\alpha} \gamma F_{\alpha}(a,b) = 0$, and hence, the semiprimeness of *M* implies that

$$[u,v]_{\alpha}\gamma F_{\alpha}(a,b) = 0.$$
⁽²⁾

Similarly, by Lemma 3.5(iv), we get $F_{\alpha}(a,b)\gamma[u,v]_{\beta}\delta m\delta F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0$. Since *M* is semiprime, it follows that

$$F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0.$$
(3)

Again, by Lemma 3.5(iii), we have $[u,v]_{\beta}\gamma F_{\alpha}(a,b)\delta m\delta[u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0$, and therefore, by the semiprimeness of *M*, we obtain

$$[u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0.$$
⁽⁴⁾

Thus, we have

$$2F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = F_{\alpha}(a,b)\gamma (F_{\alpha}(a,b) + F_{\alpha}(a,b)) = F_{\alpha}(a,b)\gamma (F_{\alpha}(a,b) - F_{\alpha}(a,b))$$
$$= F_{\alpha}(a,b)\gamma d([a,b]_{\alpha}) - F_{\alpha}(a,b)\gamma [d(a),b]_{\alpha}) - F_{\alpha}(a,b)\gamma [a,d(b)]_{\alpha}) - F_{\alpha}(a,b)\gamma [a,b]_{k(\alpha)}$$
Since $d(a), d(b) \in M$ and $k(\alpha) \in \Gamma$, by using (1) and (3), we get

$$F_{\alpha}(a,b)\gamma[d(a),b]_{\alpha}) = F_{\alpha}(a,b)\gamma[a,d(b)]_{\alpha}) = F_{\alpha}(a,b)\gamma[a,b]_{k(\alpha)} = 0,$$

and therefore,

$$2F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = F_{\alpha}(a,b)\gamma d([a,b]_{\alpha}).$$
(5)

By the operation (3) + (4), we obtain

$$F_{\alpha}(a,b)\gamma[u,v]_{\beta} + [u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0$$

Then Lemma 2.1(i), equation (3) and $F_{\alpha}(a,b) \in Z(M)$ gives

$$\begin{aligned} 0 &= d(F_{\alpha}(a,b)\gamma[u,v]_{\beta} + [u,v]_{\beta}\gamma F_{\alpha}(a,b)) \\ &= d(F_{\alpha}(a,b))\gamma[u,v]_{\beta} + d([u,v]_{\beta})\gamma F_{\alpha}(a,b) + F_{\alpha}(a,b)k(\gamma)[u,v]_{\beta} \\ &+ [u,v]_{\beta}k(\gamma)F_{\alpha}(a,b) + F_{\alpha}(a,b)\gamma d([u,v]_{\beta}) + [u,v]_{\beta}\gamma d(F_{\alpha}(a,b)) \\ &= d(F_{\alpha}(a,b))\gamma[u,v]_{\beta} + 2F_{\alpha}(a,b)\gamma d([u,v]_{\beta}) + [u,v]_{\beta}\gamma d(F_{\alpha}(a,b)) \,. \end{aligned}$$

Therefore, we get

$$2F_{\alpha}(a,b)\gamma d([u,v]_{\beta}) = -d(F_{\alpha}(a,b))\gamma[u,v]_{\beta} - [u,v]_{\beta}\gamma d(F_{\alpha}(a,b)).$$
(6)

From (5) and (6), we then have

$$4F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = 2F_{\alpha}(a,b)\gamma d([a,b]_{\alpha})$$
$$= -d(F_{\alpha}(a,b))\gamma [a,b]_{\beta} - [a,b]_{\beta}\gamma d(F_{\alpha}(a,b)).$$

Thus, we obtain

$$\begin{split} & 4F_{\alpha}(a,b)\gamma F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) \\ &= -d(F_{\alpha}(a,b))\gamma[a,b]_{\beta}\gamma F_{\alpha}(a,b) - [a,b]_{\beta}\gamma d(F_{\alpha}(a,b))\gamma F_{\alpha}(a,b) \,. \end{split}$$

Here, it follows that $d(F_{\alpha}(a,b))\gamma[a,b]_{\beta}\gamma F_{\alpha}(a,b) = 0$, since $[a,b]_{\beta}\gamma F_{\alpha}(a,b) = 0$ (by (4)); and also, $[a,b]_{\beta}\gamma d(F_{\alpha}(a,b))\gamma F_{\alpha}(a,b) = 0$ (by Lemma 3.5(iv)), since $d(F_{\alpha}(a,b)) \in M$ for all $a,b \in M$ and $\alpha \in \Gamma$. Therefore, we obtain $4F_{\alpha}(a,b)\gamma F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = 0$. That is, we have $4(F_{\alpha}(a,b)\gamma)^2 F_{\alpha}(a,b) = 0$. So, $(F_{\alpha}(a,b)\gamma)^2 F_{\alpha}(a,b) = 0$ (since *M* is 2-torsion free). Thus, $F_{\alpha}(a,b)$ is a nilpotent element of the Γ_N -ring *M*. But, we know that the center of a

60

semiprime Γ_N -ring does not contain any nonzero nilpotent element (by Lemma 3.2). Hence, $F_{\alpha}(a,b) = 0$ for all $a, b \in M$ and $\alpha \in \Gamma$. It means, *d* is then a *k*-derivation of *M*.

4. Jordan *k*-Derivations of Completely Semiprime Γ_N -Rings

In sequel to the last result, we now prove it analogously in case of a 2-torsion free completely semiprime Γ_N -ring. To reach our goal in this section, we develop some useful results in the following way.

Lemma 4.1 A completely semiprime Γ -ring has no nonzero nilpotent ideal.

Proof. Let *I* be an ideal of *M* such that $(I\Gamma)^n I = 0$ for some positive integer *n*. Assume that *n* is minimum and that n > 1. Then $(I\Gamma)^{n-1} I = (I\Gamma)^n I\Gamma (I\Gamma)^{n-2} I = 0$. Since *M* is completely semiprime, we get $(I\Gamma)^{n-1} I = 0$, which is a contradiction to the minimality of *n*. Hence, we conclude that n = 1. Thus, we obtain $I\Gamma I = 0$. So, the completely semiprimeness of *M* implies that I = 0.

But, since every completely prime Γ -ring is completely semiprime, we have:

Corollary 4.1 *A completely prime* Γ *-ring has no nonzero nilpotent ideal.*

Again, since every nilpotent ideal of a Γ -ring is nil, it follows that

Corollary 4.2 Completely semiprime (and also, completely prime) Γ -rings have no nonzero nilpotent element.

Lemma 4.2 *The center of a completely semiprime (or, completely prime)* Γ *-ring does not contain any nonzero nilpotent element.*

Proof. If Z is the center of a completely semiprime Γ -ring M, then we know that Z is a subring of M. Since M is completely semiprime, Z is also a completely semiprime Γ -ring. So, by Corollary 4.2, Z has no nonzero nilpotent element. It also proves the claim for a completely prime Γ -ring similarly.

Lemma 4.3 Let *d* be a Jordan *k*-derivation of a Γ_N -ring *M*, and suppose that $a, b \in M$ and $\alpha, \gamma \in \Gamma$. Then $F_{\alpha}(a,b)\gamma[a,b]_{\alpha} + [a,b]_{\alpha}\gamma F_{\alpha}(a,b) = 0$.

Proof. This result is proved in our paper [5].

Lemma 4.4 Let M be a 2-torsion free completely semiprime Γ_N -ring, and suppose $a, b \in M$ and $\gamma \in \Gamma$ such that $a\gamma b + b\gamma a = 0$. Then $a\gamma b = b\gamma a = 0$.

Proof. Suppose that δ is an arbitrary element of Γ . Let $a, b \in M$ and $\gamma \in \Gamma$ such that $a\gamma b + b\gamma a = 0$. Hence, by using $a\gamma b = -b\gamma a$ repeatedly, we get

 $(a\gamma b)\delta(a\gamma b) = -(b\gamma a)\delta(a\gamma b) = -(b(\gamma a\delta)a)\gamma b = (a(\gamma a\delta)b)\gamma b$ $= a\gamma(a\delta b)\gamma b = -a\gamma(b\delta a)\gamma b = -(a\gamma b)\delta(a\gamma b)$

This implies, $2((a\gamma b)\delta(a\gamma b)) = 0$. Since *M* is 2-torsion free, we have $(a\gamma b)\delta(a\gamma b) = 0$; that is, $(a\gamma b)\Gamma(a\gamma b) = 0$. By the completely semiprimeness of *M*, we get $a\gamma b = 0$. Hence, $a\gamma b = b\gamma a = 0$.

Corollary 4.3 Let M be a 2-torsion free completely semiprime Γ_N -ring. Then, for all $a, b \in M$ and $\alpha, \gamma \in \Gamma$,

(i) $F_{\alpha}(a,b)\gamma[a,b]_{\alpha} = 0$; (ii) $[a,b]_{\alpha}\gamma F_{\alpha}(a,b) = 0$.

Proof. By applying Lemma 4.4 in the result of Lemma 4.3, we obtain this corollary.

Lemma 4.5 Let M be a 2-torsion free completely semiprime Γ_N -ring. Then, for all $a,b,u,v,m \in M$ and $\alpha, \gamma \in \Gamma$,

(i)
$$F_{\alpha}(a,b)\gamma[u,v]_{\alpha} = 0$$
; (ii) $[u,v]_{\alpha}\gamma F_{\alpha}(a,b) = 0$;

(iii)
$$F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0$$
; (iv) $[u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0$.

Proof. (i) Replacing a + u for a in Corollary 4.3(i), we get

$$F_{\alpha}(a,b)\gamma[u,b]_{\alpha} = -F_{\alpha}(u,b)\gamma[a,b]_{\alpha}.$$

Hence, we have $F_{\alpha}(a,b)\gamma[u,b]_{\alpha}\gamma F_{\alpha}(a,b)\gamma[u,b]_{\alpha} = 0$. By the completely semiprimeness of *M*, we obtain $F_{\alpha}(a,b)\gamma[u,b]_{\alpha} = 0$. Similarly, by replacing b + v for *b* in this equality obtained, we get $F_{\alpha}(a,b)\gamma[u,v]_{\alpha} = 0$.

(ii) The similar replacements (as above) in Corollary 4.3(ii) yields $[u,v]_{\alpha}\gamma F_{\alpha}(a,b) = 0$.

(iii) Putting $\alpha + \beta$ for α in (i), we get $F_{\alpha}(a,b)\gamma[u,v]_{\beta} = -F_{\beta}(a,b)\gamma[u,v]_{\alpha}$ which then implies that $F_{\alpha}(a,b)\gamma[u,v]_{\beta}\gamma F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0$. But, since *M* is completely semiprime, we obtain $F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0$.

(iv) By performing the similar replacement in (ii) [as in the proof of (iii)], we easily get this required result.

Theorem 4.1 If d is a Jordan k-derivation of a 2-torsion free completely semiprime Γ_N - ring M, then d is also a k-derivation of M.

Proof. Let *d* be a Jordan *k*-derivation of a 2-torsion free completely semiprime Γ_N -ring *M*, and suppose that $a, b, v \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Then, by using Lemma 4.5(iii), we have

$$[F_{\alpha}(a,b),v]_{\beta}\gamma[F_{\alpha}(a,b),v]_{\beta} = (F_{\alpha}(a,b)\beta v - v\beta F_{\alpha}(a,b))\gamma[F_{\alpha}(a,b),v]_{\beta}$$
$$= F_{\alpha}(a,b)\beta v\gamma[F_{\alpha}(a,b),v]_{\beta} - v\beta F_{\alpha}(a,b)\gamma[F_{\alpha}(a,b),v]_{\beta} = 0,$$

since $\beta v \gamma \in M$ and $F_{\alpha}(a,b) \in M$ for all $a,b,v \in M$ and $\alpha,\beta,\gamma \in \Gamma$. So, $[F_{\alpha}(a,b),v]_{\beta} = 0$ (since *M* is completely semiprime), where $F_{\alpha}(a,b) \in M$ for all $a,b,v \in M$ and $\alpha,\beta \in \Gamma$. Therefore, we get $F_{\alpha}(a,b) \in Z(M)$.

Now, from Lemma 4.5(iii), we have

$$F_{\alpha}(a,b)\gamma[u,v]_{\beta} = 0.$$
⁽⁷⁾

And, from Lemma 4.5(iv), we get

$$[u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0.$$
(8)

Thus, we obtain

$$2F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = F_{\alpha}(a,b)\gamma (F_{\alpha}(a,b) - F_{\alpha}(a,b))$$
$$= F_{\alpha}(a,b)\gamma d([a,b]_{\alpha}) - F_{\alpha}(a,b)\gamma [d(a),b]_{\alpha}) - F_{\alpha}(a,b)\gamma [a,d(b)]_{\alpha}) - F_{\alpha}(a,b)\gamma [a,b]_{k(\alpha)}.$$

Since $d(a), d(b) \in M$ and $k(\alpha) \in \Gamma$, by using Lemma 4.5(i) and (7), we get

$$F_{\alpha}(a,b)\gamma[d(a),b]_{\alpha}) = F_{\alpha}(a,b)\gamma[a,d(b)]_{\alpha}) = F_{\alpha}(a,b)\gamma[a,b]_{k(\alpha)} = 0,$$

and so, we have

$$2F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = F_{\alpha}(a,b)\gamma d([a,b]_{\alpha}).$$
(9)

By the operation (7) + (8), we get $F_{\alpha}(a,b)\gamma[u,v]_{\beta} + [u,v]_{\beta}\gamma F_{\alpha}(a,b) = 0$. Then, by Lemma 2.1(i) with the use of (7), and since $F_{\alpha}(a,b) \in Z(M)$, we have

$$\begin{aligned} 0 &= d(F_{\alpha}(a,b)\gamma[u,v]_{\beta} + [u,v]_{\beta}\gamma F_{\alpha}(a,b)) \\ &= d(F_{\alpha}(a,b))\gamma[u,v]_{\beta} + 2F_{\alpha}(a,b)\gamma d([u,v]_{\beta}) + [u,v]_{\beta}\gamma d(F_{\alpha}(a,b)) \,. \end{aligned}$$

Therefore, we get

$$2F_{\alpha}(a,b)\gamma d([u,v]_{\beta}) = -d(F_{\alpha}(a,b))\gamma[u,v]_{\beta} - [u,v]_{\beta}\gamma d(F_{\alpha}(a,b)).$$
⁽¹⁰⁾

Then, from (9) and (10), we have

$$4F_{\alpha}(a,b)\gamma F_{\alpha}(a,b) = 2F_{\alpha}(a,b)\gamma d([a,b]_{\alpha})$$
$$= -d(F_{\alpha}(a,b))\gamma [a,b]_{\beta} - [a,b]_{\beta}\gamma d(F_{\alpha}(a,b)).$$

Thus, we obtain

$$4F_{\alpha}(a,b)\gamma F_{\alpha}(a,b)\gamma F_{\alpha}(a,b)$$

= $-d(F_{\alpha}(a,b))\gamma[a,b]_{\beta}\gamma F_{\alpha}(a,b) - [a,b]_{\beta}\gamma d(F_{\alpha}(a,b))\gamma F_{\alpha}(a,b)$

Now, by (8), we get $d(F_{\alpha}(a,b))\gamma[a,b]_{\beta}\gamma F_{\alpha}(a,b) = 0$ (since $[a,b]_{\beta}\gamma F_{\alpha}(a,b) = 0$); and by Lemma 4.5(iv), we obtain $[a,b]_{\beta}\gamma d(F_{\alpha}(a,b))\gamma F_{\alpha}(a,b) = 0$ (since $d(F_{\alpha}(a,b)) \in M$). Thus, $4(F_{\alpha}(a,b)\gamma)^2 F_{\alpha}(a,b) = 0$. Since *M* is 2-torsion free, it gives $(F_{\alpha}(a,b)\gamma)^2 F_{\alpha}(a,b) = 0$. So, $F_{\alpha}(a,b)$ is a nilpotent element of the Γ_N -ring M, where $F_{\alpha}(a,b) \in Z(M)$. Hence, by Lemma 4.2, we get $F_{\alpha}(a,b) = 0$ (for all $a,b \in M$ and $\alpha \in \Gamma$) from which we conclude that d is a k-derivation of M.

REFERENCES

- 1. Barnes W. E., On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411–422.
- 2. Bresar M., Jordan Derivations on Semiprime Rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
- 3. Ceven Y. and Ozturk M. A., On Jordan Generalized Derivations in Gamma Rings, *Hacettepe J. Math. and Stat.* **33** (2004), 11–14.
- 4. Chakraborty S. and Paul A. C., On Jordan *k*-Derivations of 2-Torsion Free Prime Γ_N -rings, *Punjab Univ. J. Math.* **40** (2008), 97–101.
- 5. Chakraborty S. and Paul A. C., Jordan *k*-Derivations of Completely Prime Γ_N -rings, *Southeast Asian Bull. Math.* **35**(1) (2011), 29-34.
- 6. Herstein I. N., Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
- 7. Herstein I. N., Jordan Derivations on Prime Rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
- 8. Kandamar H., The k-derivation of a Gamma Ring, Turk. J. Math. 24 (2000), 221–231.
- 9. Nobusawa N., On a Generalization of the Ring Theory, Osaka J. Math. 1 (1964), 81-89.
- Sapanci M. and Nakajima A., Jordan Derivations on Completely Prime Gamma Rings, *Math. Japonica* 46(1) (1997), 47–51.