AROUND A CENTRAL ELEMENT OF A NEARLATTICE

Jahanara Begum

Department of Mathematics, Dhaka College, Dhaka E mail : drk_azam@yahoo.com

and

A.S.A. Noor Department of ECE, East West University, Dhaka. E mail: noor@ewubd.edu

Received 30.12.2010

Accepted 25.02.2012

ABSTRACT

A nearlattice *S* is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. It is well known that if $n \in S$ is a neutral and upper element then its isotope $S_n = (S; \cap)$ is again a nearlattice, where $x \cap y = (x \land y) \lor (x \land n) \lor (y \land n)$ for all $x, y \in S$. In this paper we have discussed the central elements in a nearlattice and also in a lattice. We included several characterizations of these elements. We showed that for a central element $n \in S$, $P_n(S) \cong (n]^d \times [n]$, where $P_n(S)$ is the set of principal n-ideals of *S*. Then we proved that for a central element $n \in S$, an element $t \in S$ is central if and only if it is central in S_n . We also proved that for a lattice L, L_n is again a lattice if and only if *n* is central. Finally we showed that *B* is a Boolean algebra if and only if B_n is a Boolean algebra with same complement when *n* is central. Moreover, $B \cong B_n$.

Keywords: Central element, Nearlattice, Isotope, Boolean algebra.

1. Introduction

By a nearlattice *S*, we will always mean a (lower) semilattice which has the property that any two elements possessing a common upper bound, have a supremum. Nearlattice will form a lattice if it has a largest element. A nearlattice *S* is distributive if and only if for all $x, y, z \in S, t \land ((x \land y) \lor (x \land z) = (t \land x \land y) \lor (t \land x \land z)$. Let *S* be a nearlattice and $S \in S$. Then *S* is called a standard element if for all $x, y, t \in S, t \land [(x \land y) \lor (x \land s)] = (t \land x \land y)$ $\lor (t \land x \land s)$. In a nearlattice, an element *s* is neutral if for any $t, x, y \in S, s$ is standard and $s \land [(t \land x) \lor (t \land y)] = (s \land t \land x) \lor (s \land t \land y)$. An element *s* of a nearlattice *S* is called a medial element if $m(x, s, y) = (x \land y) \lor (x \land s) \lor (y \land s)$ exists for all $x, y \in S$. An element *s* of a nearlattice *S* is called sesquimedial if for all $x, y, z \in S, J_s(x, y, z)$ exists in *S* where $J_s(x, y, z) = [(x \land s) \lor (y \land s)] \land [(y \land s) \lor (z \land s)] \lor (x \land y) \lor (y \land z)$. Every sesquimedial element is medial. An element *n* of a nearlattice *S* is called an upper element if $x \lor n$ exists for all $x \in S$. Every upper element is of course sesquimedial. An element is called a central element of *S* if it is neutral, upper and complemented in each interval containing it. We know by [2] that for a neutral element $n \in S$ if *n* is sesquimedial then $S_n = (S; \cap)$ is again a nearlattice where $x \cap y - (x \land y) \lor (x \land n) \lor (y \land n)$. For a fixed element *n* of a nearlattice *S*, a convex subnearlattice containing *n* is called an *n*-ideal. An *n*-ideal generated by a finite number of elements $a_1, ..., a_m$ is called a finitely generated n-ideal denoted by $(a_1, ..., a_m)_n$. Set of all finitely generated *n*-ideals of *S* is denoted by $F_n(S)$. An *n*-ideal generated by a single element is called a principal *n*-ideal. The set of all principal *n*-ideals of *S* is denoted by $P_n(S)$. If *S* is a lattice then $(a_1, ..., a_m)n = [a_1 \land ... \land a_m \land n, a_1 \lor ... \lor a_m \lor n]$. Thus $(a)_n = [a \land n, a \lor n]$. For detailed literature on *n*-ideal of lattices and nearlatices we refer the reader to consult [3], [5], [7], [8]. In this paper we have given several characterizations of central elements of a nearlattice. We proved that for a central element $n \in S$, $P_n(S) \cong (n]^d \times [n]$. Then we proved that for a central element $n \in S$, an element $t \in S$ is central if and only if it is central in S_n . We also showed that for a lattice *L*, L_n is again a lattice if and only if *n* is central. Finally we extended a result of Goetz's result on isotopes of Boolean algebras.

1. Isotopes L_n when n is a Central Element

We start this paper with the following characterization of a central element of a nearlattice.

Theorem 1.1. Let *S* be a nearlattice and $n \in S$. Then the following conditions are equivalent :

(i) n is central ;(ii) n is standard, upper and complemented in each interval containing it.

Proof. (i) \Rightarrow (ii) is trivial from the definition .

(ii) \Rightarrow (i). Suppose *n* is standard and complemented in each interval containing it. It

is enough to prove that $n \land ((t \land x) \lor (t \land y) = (n \land t \land x) \lor (n \land t \land y)$

Since $(n \wedge t \wedge x) \vee (n \wedge t \wedge y) \le n \le (t \wedge x) \vee (t \wedge y) \vee n$, there exists $r \in S$ such that $n \wedge r = (n \wedge t \wedge x) \vee (n \wedge t \wedge y)$ and $n \vee r = (t \wedge x) \vee (t \wedge y) \vee n$

Figure 1

Around a Central Element of a Nearlattice

Now $t \wedge x = (t \wedge x) \wedge [(t \wedge x) \vee (t \wedge y) \vee n]$

 $= (t \land x) \land (n \lor r)$

$$= (t \wedge x \wedge n) \vee (t \wedge x \wedge r)$$
 (as *n* is standard).

Similarly $t \land y = (t \land y \land n) \lor (t \land y \land r)$

So $(t \land x) \lor (t \land y) = (t \land x \land n) \lor (t \land x \land r) \lor (t \land y \land n) \lor (t \land y \land r)$

$$= (t \land x \land r) \lor (t \land y \land r) \lor (n \land r) \le r$$

Therefore $n \land ((t \land x) \lor (t \land y)) \le n \land r$

 $= (n \wedge t \wedge x) \vee (n \wedge t \wedge y)$

But the reverse inequality is trivial.

Hence $n \land ((t \land x) \lor (t \land y)) = (n \land t \land x) \lor (n \land t \land y)$

Therefore *n* is neutral, and so *n* is central \Box

We know from [1] that for a neutral element *n* of a lattice L, L_n is a medial nearlattice. Now we have the following result.

Theorem 1.2. Suppose *L* is a lattice and $n \in L$ is standard. Then the isotope L_n is a lattice if and only if *n* is central in *L*.

Proof. Since *n* is standard, so by [2, Theorem 2.1]

 $(L; \subseteq) \cong (P_n(L); \subseteq)$

Thus L_n is a lattice if and only if $(P_n(L); \subseteq)$ is a lattice, But by [7],

 $P_n(L)$ is a lattice if and only if *n* is complemented in each interval containing it. Therefore L_n is a lattice if and only if *n* is central in $L \square$

Corollary 1.3. For a central element $n \in L$ of a bounded lattice, L_n is also a bounded lattice with n as the smallest and n' as the largest element.

Moreover, $x \cap y = m(x, n, y)$ and $x \cup y = m(x, n', y) \square$

Theorem 1.4. Let *L* be a bounded lattice and $n \in L$ be central. If *n'* is the complement of *n* then *n'* is also central.

Proof. Let $a \le n' \le b$

Consider $(a \lor n) \land b$

Now $n' \wedge [(a \lor n) \wedge b] = [n' \wedge (a \lor n)] \wedge b$ $= [(a \wedge n') \lor (n \wedge n')] \wedge b \quad (as n is standard)$ $= [(a \wedge n') \lor 0] \wedge b$ $= a \wedge n' \wedge b = a$ $n' \lor [(a \lor n) \wedge b] = n' \lor (a \wedge b) \lor (b \wedge n) \quad (as n is standard)$ $= n' \lor a \lor (b \wedge n)$ $= n' \lor (b \wedge n)$ $= (b \wedge n') \lor (b \wedge n)$ $= b \wedge (n \lor n') \quad (as n is standard)$ $= b \wedge (n \lor n') \quad (as n is standard)$ $= b \wedge 1 = b.$

Therefore $(a \lor n) \land b$ is the complement of n' in [a,b].

Now we shall show that for all $x, y \in L$,

$$x \wedge (y \vee n') = (x \wedge y) \vee (x \wedge n')$$

Now $n \wedge [x \wedge (y \vee n')] = x \wedge n \wedge (y \vee n')$
 $= x \wedge [(y \wedge n) \vee (n \wedge n')] (as n is neutral)$
 $= x \wedge y \wedge n$
Also $n \wedge [(x \wedge y) \vee (x \wedge n')] = (x \wedge y \wedge n) \vee (x \wedge n \wedge n')$
 $= x \wedge y \wedge n$ (as n is neutral)
Again $n \vee [x \wedge (y \vee n')] = (n \vee x) \wedge (y \vee n \vee n') = n \vee x$,
and $n \vee [(x \wedge y) \vee (x \wedge n')] = (x \wedge y) \vee n \vee (x \wedge n')$
 $= (x \wedge y) \vee [(n \vee x) \wedge (n \vee n')]$, (as n is distributive)
 $= (x \wedge y) \vee [(n \vee x) \wedge 1]$
 $= (x \wedge y) \vee (n \vee x)$
 $= n \vee x$

Therefore $x \land (y \lor n') = (x \land y) \lor (x \land n')$, (as *n* is standard). So *n'* is standard. Around a Central Element of a Nearlattice

Therefore n' is central by Theorem 1.1. \Box

The following result is due to Kolibiar [6]

Lemma 1.5. If an element is central in a lattice then it is also central in the dual lattice.

Proof. Let *n* be central in *L*. Suppose $a \leq_d n \leq_d b$ in L^d .

Then $b \le n \le a$ in L.

So there exists $t \in [b, a]$ such that $n \wedge t = b$ and $n \vee t = a$ in L.

Then $n \lor_d t = b$ and $n \land_d t = a$ in L^d .

Thus *n* is complemented in [a,b] in L^d .

Moreover for all
$$x, y \in L^d$$
, $x \wedge_d (y \vee_d n) = x \vee (y \wedge n) = x \vee (x \wedge n) \vee (y \wedge n)$

$$= x \vee [n \wedge (x \vee y)]$$
 (as *n* is neutral),

$$= [(x \lor y) \land x] \lor [(x \lor y) \land n]$$

 $= (x \lor y) \land (x \lor n)$ (as n is standard),

$$=(x\wedge_d y)\vee_d(x\wedge_d n).$$

This implies *n* is standard in L^d .

Therefore by Theorem 1.1, *n* is neutral and hence central in $L^d \square$

Now we give a characterization of central element in a nearlattice.

Lemma 1.6. Suppose $S = A \times B$ where A is a lattice and B is a nearlattice. Then any element $t = (t_1, t_2)$ of S is central if and only if t_1, t_2 are central in A and B respectively.

Proof. Suppose $t = (t_1, t_2)$ is central in *S*.

Let $p_1 \le t_1 \le q_1$ in A. Then $(p_1, t_2) \le (t_1, t_2) \le (q_1, t_2)$

Then there exists $(r_1, r_2) \in S$ such that $(t_1, t_2) \land (r_1, r_2) = (p_1, p_2)$ and

 $(t_1, t_2) \lor (r_1, r_2) = (q_1, t_2)$

This implies $r_1 \wedge t_1 = p_1$ and $r_1 \vee t_1 = q_1$.

So t_1 is complemented in each interval containing it in A.

For $x, y \in A$, $(x, t_2) \land [(y, t_2) \lor (t_1, t_2)]$

= $((x,t_2) \land (y,t_2)) \lor (x,t_2) \land (t_1,t_2)$, (as (t_1,t_2) is standard in *S*).

This implies $(x \land (y \lor t_1), t_2) = ((x \land y) \lor (x \land t_1), t_2)$,

Then $x \wedge (y \vee t_1) = (x \wedge y) \vee (x \wedge t_1)$ and so t_1 is standard in A.

Thus t_1 is central in A.

Similarly t_2 is central in B.

Conversely, Let t_1, t_2 be central in A and B.

Let $(p_1, p_2) \le (t_1, t_2) \le (q_1, q_2)$.

This implies $p_1 \le t_1 \le q_1$ and $p_2 \le t_2 \le q_2$.

So there exists $r_1 \in A, r_2 \in B$, such that,

$$p_1 = r_1 \wedge t_1, p_2 = r_2 \wedge t_2, q_1 = r_1 \vee t_1 \text{ and } q_2 = r_2 \vee t_2$$

Hence $(t_1, t_2) \land (r_1, r_2) = (p_1, p_2)$ and $(t_1, t_2) \lor (r_1, r_2) = (q_1, q_2)$

Therefore (r_1, r_2) is the relative complement of (t_1, t_2) in

$$[(p_1, p_2), (q_1, q_2)].$$

Again for $(x, y), (p, q) \in S$,

$$(x, y) \wedge [(p, q) \lor (t_1, t_2)] = (x \land (p \lor t_1), y \land (q \lor t_2))$$

= $((x \land p) \lor (x \land t_1), (y \land q) \lor (y \land t_2))$ (as t_1, t_2 are standard),
= $(x \land p, y \land q) \lor (x \land t_1, y \land t_2)$
= $((x, y) \land (p, q)) \lor ((x, y) \land (t_1, t_2))$

This implies (t_1, t_2) is standard in *S* and hence it is central \Box

Thus we have the following result.

Corollary 1.7. For lattices A and B in $L = A \times B$ an element $t = (t_1, t_2) \in A \times B$ is central if and only if t_1 and t_2 are central in A and B respectively \Box

Lemma 1.8. For a central element *n* of a nearlattice *S*, $S_n \cong (n)^d \times [n)$.

Proof. Consider the map $\varphi: S_n \to (n]^d \times [n)$, defined by $\varphi(a) = (a \land n, a \lor n)$

Suppose $a \le b$ in S_n . Then $a = (a \land b) \lor (a \land n) \lor (b \land n)$

and so $b \land n \le a \land n \le a \lor n \le b \lor n$.

Thus $a \wedge n \leq_d b \wedge n$ in $(n]^d$ and $a \vee n \leq b \vee n$ in [n).

Hence $(a \land n, a \lor n) \le (b \land n, b \lor n)$ in $(n]^d \times [n]$

Therefore φ is isotone (order preserving).

Around a Central Element of a Nearlattice

Now let $a, b \in S_n$ are such that $\varphi(a) \leq \varphi(b)$

That is $(a \land n, a \lor n) \le (b \land n, b \lor n)$ in $(n]^d \times [n]$.

Then $a \wedge n \leq_d b \wedge n$ in $(n]^d$ and $a \vee n \leq b \vee n$ in [n].

This implies $b \land n \le a \land n \le a \lor n \le b \lor n$ in *S*.

So $\langle a \rangle_n \subseteq \langle b \rangle_n$.

Thus by [2, Theorem 2.1], $a \subseteq b$ in S_n

and this says that ϕ is order isomorphism.

Finally, Let $(t_1, t_2) \in (n]^d \times [n)$.

Then $t_1 \le n \le t_2$ since *n* is central,

so there exists $c \in S$, such that $t_1 = c \land n, t_2 = c \lor n$ implies

 $(t_1, t_2) = (c \land n, c \lor n) = \varphi(c)$, implies φ is onto.

Therefore ϕ is isomorphism \Box

Now we include another characterization of a central element in a nearlattice.

Lemma 1.9. Let n be a neutral and upper element of a nearlattice S.Define $\varphi: S \to (n] \times [n)$ by $\varphi(a) = (a \land n, a \lor n)$.

Then the following conditions are equivalent:

(i) n is central;

(ii) φ is an isomorphism.

Proof. (*i*) \Rightarrow (*ii*) $\phi(a) = (a \land n, a \lor n)$

$$\varphi(a \land b) = ((a \land b) \land n, (a \land b) \lor n)$$
$$= ((a \land n) \land (b \land n), (a \lor n) \land (b \lor n))$$
$$= (a \land n, a \lor n) \land (b \land n, b \lor n)$$
$$= \varphi(a) \land \varphi(b)$$

Similarly $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$

So ϕ is homomorphism.

Now suppose $\varphi(a) = \varphi(b)$. This implies

 $(a \land n, a \lor n) = (b \land n, b \lor n)$, and so,

102

 $a \wedge n = b \wedge n$ and $a \vee n = b \vee n$.

This implies a = b

Therefore ϕ is one-one.

Let $t \in (n] \times [n]$.

Then $t = (t_1, t_2)$ such that $t_1 \in (n], t_2 \in [n]$.

Thus $t_1 \leq n \leq t_2$.

Then there exists $r \in S$ such that $r \wedge n = t_1, r \vee n = t_2$.

This implies $t = (r \land n, r \lor n) = \varphi(r)$, and so φ is onto.

Hence $S \cong (n] \times [n]$

 $(ii) \Rightarrow (i)$. Let $a \le n \le b$

Since φ is an isomorphism, so it is onto.

Then $(a,b) \in (n] \times [n]$.

Since φ is onto, so there exists $r \in S$ such that $\varphi(r) = (a, b)$.

Thus $(r \land n, r \lor n) = (a, b)$, and so $r \land n = a, r \lor n = b$.

That is *r* is the relative complement of *n* in [a,b].

Therefore *n* is central \Box

Thus we have the following results:

Theorem 1.10. Let *n* be a central element of a nearlattice *S*. Then any $t \in S$ is central if and only if it is central in S_n .

Proof. By the above Lemma, $S \cong (n] \times [n]$

So $t \in S$ is central in S if and only if it is also central in $(n] \times [n)$.

Then by Lemma 1.5. and Lemma 1.6, *t* is central in $(n]^d \times [n]$.

As t is central in $(n]^d \times [n]$ then by Lemma 1.5, it is central in S_n as $(n]^d \times [n] \cong S_n \square$

Corollary 1.11. For a central element *n* of a lattice *L*, *L* is distributive and relatively complemented if and only if L_n is so \Box

Theorem 1.12. If n is neutral in L, then the following conditions are equivalent:

- *(i) n* is central and L is bounded;
- (ii) There exists a unique n' such that for all $x \in L, x = m(n, x, n')$

(iii) $(L_n; \cap, \cup)$ is a bounded lattice with n' as the largest element and for any $x, y \in L_n, x \cup y = m(x, n', y)$.

Proof. $(i) \Rightarrow (iii)$ follows from Theorem 1.3.

 $(iii) \Rightarrow (ii)$. Since $x \cup y = m(x, n', y)$ for all $x, y \in L$ (ii) clearly follows by choosing y = n.

Moreover n' is unique as it is the largest element of L_n .

 $(ii) \Rightarrow (i)$. Clearly $n \land n' \le x \le n \lor n'$ for all $x \in L$.

Thus *L* is bounded. Since *n* is neutral, we already know by [2, Theorem 2.3.] that L_n is a nearlattice with *n* as the smallest element.

Now (*ii*) says that obviously n' is the largest element of L_n , and hence L_n is a bounded lattice. Thus by Theorem 1.2, n is central \Box

Following result is due to Goetz [4].

Theorem 1.13. Let $(B; \land, \lor, ', 0, 1)$ be a Boolean algebra, $n \in B$. Then B_n is also a Boolean algebra with $B_n = (B; \cap, \cup, ', n, n')$.

Also the complement of any element is invariant under the formation of isotopes. Moreover $B \cong B_n \square$

We conclude the paper with the following result which is an extension of the above result.

Theorem 1.14. Let n be a central element of the distributive lattice $B = (B; \land, \lor, 0, 1)$. If the isotope $B_n = (B; \cap, \cup, ', n, n')$ is the Boolean algebra, then B is also Boolean algebra with the same complement.

Proof. By [1, Theorem 3.1.6], B is distributive as B_n is so.

Let a' be the complement of a in B_n .

Then $a \cap a' = n$ and $a \cup a' = n'$.

Then $(a \lor a') \land n = (a \land n) \lor (a' \land n)$

$$= (a \cap a') \wedge n$$
$$= n \wedge n = n = 1 \wedge n$$

$$n' = a \cup a'$$

= $m(a, n', a')$
= $(a \lor n') \land (a \lor a') \land (a' \land n')$
 $1 = n' \lor n$

104

 $= n \lor [(a \lor n') \land (a \lor a') \land (a' \lor n')]$ $= (a \lor n \lor n') \land (a \lor a' \lor n) \land (a' \lor n \lor n')$ $= 1 \land (a \lor a' \lor n) \land 1$

 $= a \lor a' \lor n$

So, $a \lor a' \lor n = 1 = 1 \lor n$.

Thus $a \lor a' = 1$ (by the neutrality of *n*).

Again, $0 = (a \cap a') \wedge n' = [(a \wedge a') \vee (a \wedge n) \vee (a' \wedge n)] \wedge n'$

$$= (a \land a' \land n') \lor (a \land n \land n') \lor (a' \land n \land n')$$

$$= (a \land a' \land n') \lor o \lor o = a \land a' \land n'$$

Thus $a \wedge a' \wedge n' = o \wedge n'$

Again $a \cup a' = n'$

Thus m(a, n', a') = n' implies $(a \land a') \lor (a \land n') \lor (a' \land n') = n'$

This implies $(a \land a') \lor n' = n' = o \lor n'$

Hence $a \wedge a' = o$.

This implies that a' is also the complement of a in $(B; \land, \lor, o, 1)$.

Therefore *B* is also Boolean \Box

REFERENCES

- 1. Jahanara Begum, Study of n-ideals of a nearlattice by isotopes, Ph.D. Thesis, Jahangirnagar University, Savar, Dhaka, Bangladesh (2009).
- 2. Jahanara Begum and A.S.A. Noor, A ternary operation in a lattice, accepted in Ganit J. Bangladesh, Math. Soc.
- 3. W.H. Cornish and A.S.A.Noor, Around a neutral element of a nearlattice, comment. Math. Univ. Carolinae, 28(2) (1987).
- 4. A.Goetz, On Various Boolean Structures in a given Boolean algebra, Publ. Math. Debrecen 18(1971), 103-107.
- 5. M.G.Hossain and A.S.A.Noor, n-ideals of a nearlattice, J. Sc. The Rajshahi Univ. Studies, 28(2000), 105-111.
- 6. Kolibiar, A ternary operation in lattices, Czechoslovak Math. J.6 (1956).
- 7. M.A. Latif and A.S.A.Noor, n-ideals of a lattice, The Rajshahi Univ.Studies (Part-B), 22(1994), 173-180.
- 8. A.S.A. Noor and M.A. Latif, Finitely generated n-ideals of a lattice, SEA Bull, Math. 22(1998), 73-79.