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ABSTRACT 

This paper compares the performance of two different option pricing models, namely, the Black-

Scholes-Merton (B-S-M) model and the Heston Stochastic Volatility (H-S-V) model. It is known 

that the most popular B-S-M Model makes the assumption that volatility of an asset is constant 

while the H-S-V model considers it to be random. We examine the behavior of both B-S-M and H-

S-V formulae with the change of different affecting factors by graphical representations and hence 

assimilate them. We also compare the behavior of some of the Greeks computed by both of these 

models with changing stock prices and hence constitute 3D plots of these Greeks. All the numerical 

computations and graphical illustrations are generated by a powerful Computer Algebra System 

(CAS), MATLAB. 
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1. Introduction 

Fischer Black, Myron Scholes and Robert Merton proposed the B-S-M Model in 1973  which was 

the first ever analytic option pricing model [1]. Afterwards this model has been treated as the 

benchmark model in the study of Mathematical Finance. In 1997, Merton and Scholes received 

‘The Nobel Memorial Prize in Economic Science’ for their novel invention. It is broadly used to 

calculate the fair value of European options. This model is the foundation of most of the option 

pricing models. However it sometimes provides inexact prices when tested against real market 

data. The reason behind this is B-S-M model is generated on the basis of some inflexible 

assumptions which are hardly accepted in real market. For example, the assumption of constant 

volatility is a great disparity in the market  [2]. 

Many researchers contributed a lot in the evolution of the stochastic volatility option pricing 

models. Among them Johnson and Shanno [3], Wiggins [4], Hull and White [5] played massive 

important role. To address volatility related mispricing, the H-S-V model has been proposed in 

                                                        
 GANIT:  Journal of Bangladesh Mathematical Society, 2019 

mailto:tts.suki24@gmail.com


128 Suki and Hossain 

literature as a generalization of B-S-M model in 1993 [6]. This model considers the randomness of 

volatility of the underlying asset and derives a closed form solution for pricing European call (or 

put) options when the underlying asset price follows non-Gaussian distribution [4], [7], [8]. The 

H-S-V model allows sufficient flexibility of the parameters for a better fit than that obtained by 

the B-S-M model. We investigate the relative pricing by a cross-checking with real market data. 

Hence the objective of this paper is to investigate the variation of the option prices and value of 

some Greeks calculated under different circumstances for both of these models and hence 

compare them. Here we comment on different Suki and Hossain situations   when these models 

perform similarly or dissimilarly with two different data sets. 

The B-S-M model considers stock price follows a geometric Brownian motion and derivatives 

exchanged on the stock have fair prices under risk-neutral valuation [1] , [5]. It is the grounds of 

modern option pricing theory. To derive the theoretical option prices it uses five key determinants 

or affecting factors: stock price (S), strike price (K), volatility (σ), time to expiration (T) and short- 

term (risk free) interest rate (r). The B-S-M model assumes volatility to be a constant [2] while the 

H-S-V model considers the fact that volatility of the stock price is itself random and follows a CIR 

process [9]. The second assumption is more compatible with the real market. 

This paper purely provides comparative analysis of the results obtained by the models under 

discussion. We compare the change in option prices calculated by both B-S-M and H-S-V models 

with the variation of some affecting factors. Also the comparison for different Greeks under both 

models is added for two different data sets. For more details the readers are referred to go through 

[4], [5], [6], [13], [14], [16] etc. 

 

2. Our Models 

In this section, we discuss both the B-S-M and H-S-V option pricing models in brief. We refer the 

readers to see [1], [2],   [6] to know more about these models. 

2.1 The B-S-M Option Pricing Formula 

The dynamics of a risky asset, such as stock, under the B-S-M model can be characterized by the 

following Stochastic Differential equation (SDE) [1],   

t t bsm t tdS rS dt S dB  , 0,t T     
 (1) 

0tS S  when 0t  .  

Where   : 0tB B t T    is a Wiener Process under the given probability measure of the risk-

neutral world, P ; the parameter r  is the risk-free interest rate and bsm   denotes the volatility of 

the risky asset. 

The Partial Differential Equation (PDE) provided by this model for any underlying derivative C 

and current stock price S is, 
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 Then a European call option price admits the equation (2) with the following Boundary Conditions 

(BCs), 

{

                                        

                                                        
                        

   (3)                                                                

The a European call option price at time t with exercise price K, maturity T  , constant interest- rate 

r and volatility bsm  under this model is,                    

   rC SN d Ke N d
   .         (4)              
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Here ( )N z  is the standard normal cumulative distribution function. 

2.2  The H-S-V Option Pricing Formula 

On the other hand, the dynamics of the risky asset in H-S-V model is derived from the following 

SDEs [6], [10]: 

S
t t t t tdS rS dt S dB            (5) 

where t , the instantaneous variance follows a CIR process as follows, 

  tt t td dt dB                 (6) 

Here S
tB  and tB  are Wiener Processes with correlation    or equivalently, with covariance     

i.e.  

S
t tdB dB                   (7) 

The parameters in the above equations represent the followings: 

(i) r  = the rate of return of the asset. 

(ii)   = the long variance or the expected value of t  which tends to  . 

(iii)   = the rate at which t reverts to . 

(iv)   = the volatility of the volatility which calculates the variance of t .   

If the parameters follow the Feller condition as given below, then the drift is large enough for the 

variance t  to be firmly positive. 

2  > 2                          (8)     
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According to Cox, Ingersoll and Ross (1985) the mean and variance of t  conditional on the value 

of  s t s   are respectively [9], 

m       |t s      t s

s e

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     (9) 

The effect of the mean reversion rate κ on the moments is intuitive. When    the mean m  

approaches the mean reversion rate   and the variance var  approaches 0.     As 0 then 

sm   i.e. the current level of variance  2var t t s   . Here all the parameters , ,   ,    

are time and state homogeneous. In other words, Heston model assumes that the variance is a 

stochastic process rather than a constant that, 

− exhibits a proneness to revert towards a long term mean   at the rate   

− displays a volatility proportional to the square root of its level 

− and whose source of stochasticity is correlated (with correlation  ) with the randomness of 

the underlying assets’s price process. 

Now the PDE under H-S-V model for the underlying derivative C is [5] 
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Here   represents the market price of volatility risk. For a European call option, the above PDE 

(10) satisfies the following BCs: 
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ñ , the Heston PDE (10) 

can be rewritten as 0
C

AC rC
t


  


. ‘ A ’ is stated as the generator of the H-S-V model and the 

first two terms of A  as the generator of B-S-M with bsm  . The value of a European call 

option under H-S-V model is,   

                                             1 2
rC K S Ke      (12) 
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Where   is the CDF followed by the stock price return in H-S-V model defined by [1] , 

                                         
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with the characteristic functions jf , such that, 
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         with   1 21 2
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2.2.1 Effect of Heston Parameters 

As we already mentioned that, the log stock price i.e. ln tS  under Heston model follows non-

Gaussian distribution [7]. Depending on the choice of parameters, ln TS  is able to display 

skewness and excess kurtosis at maturity. Here we study the effect of correlation   and volatility of 

variance  on this log stock value distribution. For this we will use the same parameter settings 

from the first Table of [1] for a 6 months option. 

 
Table 1: Default Parameters Provided by Steven L. Heston 

 

0S  K  r  
0            

100 100 0 0.01 2 0.01 0 0.1 0 

Effect of Correlation,   

Since    is the correlation between the stock price process and the volatility process, it controls the 

heaviness of tails i.e. the skewness of the density of ln TS . If   = 0 the skewness will be close to 

zero. The following Figure 1 drawn using Table 1 can give us a better idea of the effect of 

   =   0.8,   = 0 and   = 0.8 respectively on the skewness of the Heston Density Function.  
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Figure 1: The effect of Correlation on Heston Density Function. 

We observe from Figure 1 that, the probability densities are positively skewed for   > 0 that is the 

variance increases with a rise in stock price. This widens the right tail of the distribution and 

squeezes the left tail. In case of Out-The-Money (OTM) calls i.e. calls for which tS K , the 

strike price lies in the right tail and hence deep OTM calls obtained by H-S-V model should be 

more costly than those by the B-S-M model. On the other hand, In-The-Money (ITM) call options 

for which tS K , contains a strike price lying in the left tail. In such cases, deep ITM calls from 

the volatility model should be cheaper than those obtained by B-S-M for   > 0 due to less weight 

assigned to the left tail. Again the probability densities are negatively skewed when   < 0 which 

means the volatility increases if there is a decrease in stock price. This results into a fattening of 

left tail and a thinning of the right tail of the distribution. Some counter behavior is observed for 

  < 0 in case of both ITM and OTM call options. That means the Heston model should produce 

more expensive deep ITM calls from than those generated by the B-S-M model. Thus, deep OTM 

calls by H-S-V model should be less expensive. 

Effect of Volatility of Variance,    

The volatility of variance,  effects the peak i.e. the kurtosis of the distribution of the log stock 

price under H-S-V model. When 0    the log stock price is normally distributed since the 

randomness of the variance process t as shown in equation (6) drops out. The effect of   can 

be illustrated in t h e  f o l l o w i n g  Figure 2 for Table 1 and 0   0.0001  , 0.1  , 0.2   

respectively. It is clear that, increasing   increases the peaks of the distribution and create heavy 

tails on both sides.  
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Fig. 2: The effect of Volatility of Variance on Heston Density Function. 

 

3. Comparison between B-S-M and H-S-V Model 

If we substitute 0   and 0  into equation (10) along with 0  , it will produce B-S-M PDE 

from the one provided by H-S-V model with 0bsm  [2]. Also if we set 0   then the 

Brownian Motion component in equation (6) vanishes which results into  0| 0tVar    from 

equation (9). This produces time-varying deterministic probability. Again, setting 0   we get 

from (9),    0 0|t   which is clearly constant. As a consequence the Heston price under these 

parameter values will be similar to the B-S-M price. Hence we can say that, B-S-M model is a 

special case of H-S-V model. But we cannot simply substitute 0   directly into the pricing 

functions. Otherwise it will cause invalid terms produced due to division by zero in  ,jC    and 

 ,jD   in equations (15). In this work, we consider, 0   say 0.0001  . For computations we 

use two different data sets as given below. The first data set is collected from [9] and second one 

is from [15]. 

Data Set 1:  

 0 0100, 100, 0.05, 0. 0.807, 0, 0.07 , 0., 0, 0. 0 500 1,S K r T              ñ         

Data Set 2:  

 0 0100, 100, 0.00135, 0.028087, 2.9315, 00.01, 0, 0.1, .5, 1S TK r              ñ
 

Apparently, the first data set satisfies 0  and 0   but the second one does not.  

For these different data sets, we observe the variations in call option prices obtained from both the 

H-S-V and B-S-M models with the changing affecting factors as well as compare the Greeks 
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calculated under these models with varying stock prices. We simply assume, bsm  i.e. 
2

bsm  . 

2.3 Comparison for Affecting Factors 

There are six factors affecting the stock option price under the B-S-M model [1]. They are namely, 

the current stock price, strike price, time to maturity, risk-free interest rate, volatility of the stock 

price etc. as we mentioned earlier. These factors play vital role in the life of an option. We will 

discuss the behavior of our models for changes in some of the affecting factors mentioned above.  

 

 

                            (a)                                                     (b)                                                    (c) 

 

 

(d)                                                                  (e) 

Fig. 3: Comparison for affecting factors using Data Set 1. 

In Figure 3, clearly for the parameters mentioned in Data Set 1, we get identical call option values 

for both models no matter whatever the varying affecting factor is. That means changing any 

factor effects these models in similar way and gives uniform call values. But this is not the case 

for the second data set. 
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                           (a)                                                      (b)                                                      (c)  

 

(d)                                                                         (e) 

Figure 4: Comparison for affecting factors using Data Set 2. 

Now for Data Set 2, Figure 4(a) shows that the call option values obtained by H-S-V model are less 

than those of B-S-M model except for some initial stocks. But both these model behave in quite a 

likely way as we keep changing the stock prices and result into two increasing curves. Similarly, for 

the change in other affecting factors the call values dynamic obtained by the models under 

discussion not really coincide but act equivalently. In each case, Heston call values are less than B-S-

M prices (apart from some primary values). For both cases, the blue curves denote variation of 

option prices by H-S-V model whereas the black ones denote the same for B-S-M model. 

3.2  Comparison for Greeks 

We know that, the quantities which represent the sensitivity of the price of different derivatives 

(e.g. options) to a change in underlying parameters are known as Greeks. The value of a portfolio 

of financial instruments depends. Collectively these Greeks are also called the risk sensitivities, 

risk measures or hedge parameters. We will discuss the variation in some of the European call 

option Greeks for both of our models. Observing the following Table 2, we are certain that the 

formulae for calculating Greeks under H-S-V model are much more complex in structure than the 

Greeks provided by B-S-M model (see [1], [9]). 
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Table 2: Greeks in B-S-M and H-S-V models for European Call Options 
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Using the above table, we compute different Greeks under Heston model as well as Black Scholes 

model. Hence we examine the behavior of these Greeks with the change in stock price. 

 

                                       (a)                                                                                          (b) 

 

(c)                                                                                     (d) 

Fig. 5: Comparison for Greeks using Data Set 1. 
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Using the parameter setting from Data Set 1, uniform Greek values at each stock value and hence 

overlapping configurations are captured for both the models. 

Let us consider Data Set 2 for calculating different Greeks. The following Figure 6(a) displays 

that the Delta calculated from the H-S-V model is larger than the Delta given by B-S-M equation for 

ITM options, while the Delta in the Heston model is comparatively smaller for OTM options. This 

result may be fruitful for delta hedging when an investor considers about his/her portfolio’s risk. 

 

                                     (a)                                                                                (b)                   

 

 

                                        (c)                                                                                       (d) 

Fig. 6: Comparison for Greeks using Data Set 2. 

Figure 6(b) illustrates that the Gammas computed for different stock prices by both of our models 

fluctuate a lot from each other but still they display similar type of behavior. Thus the values of 

Deltas for both these models ripple a lot from each other for different stock prices for Data Set 2. 

The Rho from our models for this data set display quite same type of behavior as Heston Delta 

with the alternating stock prices. Hence the graphs result in alike shapes in Figure 6(c). Now the 

Vega calculated using the formula for H-S-V model given in Table 2 has lower peak at maturity 

than the one computed by B-S-M model. That means, for this particular data set B-S-M model has 

larger values of Vega than those of H-S-V model.  
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                                      (a)                                                                               (b) 

                     
 

                                       (c)                                                                              (d) 

                     

                                       (e)                                                                               (f) 

                     

                                       (g)                                                                               (h) 

Fig 7: Greeks (3D) for B-S-M and H-S-V Models respectively. 
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Evidently, if we draw 3D plots for all these Greeks calculated under both B-S-M and H-S-V models 

will be identical with parameters in Data Set 1. But the following Figures 7 show the differences 

between these Greek 3D Plots drawn for both these models with parameters selected from Data 

Set 2. All the 3D diagrams in the first column display B-S-M Greeks while those in the second 

column are for Greeks under H-S-V model. 

 

4. Conclusion 

In this paper, we essentially observe that, with the settings 0  (i.e. initial volatility=long run 

average price variance) and 0  (followed by Data Set 1), the European call option values 

computed by the B-S-M model are same as the H-S-V model. Consequently, the graphical 

representations of option price variation plotted against movements in affecting factors (say, stock 

price, strike price and so on) generated by these models fall over each other uniformly. Moreover, the 

option sensitivities (i.e. Greeks) calculated for both these models under this particular environment 

are identical and the corresponding diagrams drawn against varying stock prices overlap. On the 

other hand, for different settings of   and   (Data Set 2), we notice that the option values 

executed by both these models differ slightly though the effect of changes in affecting factors are 

of similar types. In addition, the H-S-V prices display flat movements compared to B-S-M prices 

and this model is thus more realistic. Though the Greeks exhibit similar characteristics, the H-S-V 

Greeks gives different values than those of B-S-M model with the changing stock prices. Lastly, 

we can say that, due to the assumption of constant volatility the B-S-M option price is easier and 

less time consuming to calculate but sometimes it gives inaccurate results. On the contrary, the H-

S-V model is more compatible with the real market though it takes much time to evaluate option 

price. It is because of the consideration of the randomness of volatility. Though we computed and 

observed all the outcomes of B-S-M and H-S-V models here for European call options, these 

models can be used to achieve similar results for other options as well.  
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