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ABSTRACT 

Computer-Aided Geometric Design (CAGD) is a branch of applied mathematics that focuses on the computational 

modeling and representation of geometric shapes. It plays a crucial role in diverse fields such as geographic information 

systems, computer gaming, medical imaging, robotics, engineering, and traditional industries like automobile, aircraft, 

and ship design. A core challenge in CAGD is the creation of smooth curves and surfaces through efficient mathematical 

techniques. In recent years, subdivision schemes have emerged as a practical and elegant method for generating smooth 

limit curves. These techniques are widely used in computer animation (CA), CAGD, and computer graphics (CG) due to 

their simplicity, flexibility, and effectiveness. This study presents three prominent subdivision schemes which as the 

Chaikin Subdivision (CS), Corner-Cutting Subdivision (CSS), and Four-Point Subdivision (FPS) schemes. Each operates 

by refining an initial control polygon through iterative rules that add new points as weighted combinations of existing 

ones. Repeated application of these rules produces a limit curve with increasing smoothness. We begin by constructing 

various initial shapes—such as a jar, a mango, pi, and a car—and applying the CS scheme at multiple subdivision levels. 

Next, we apply the CSS scheme to shapes like a rabbit, a five-fingered hand, and a pi. Finally, the FPS scheme is applied 

to “U”, mug, and pi shapes. The results convincingly demonstrate the capability of these schemes to produce smooth and 

visually appealing curves with high precision. Looking ahead, our future research aims to develop and investigate non-

uniform variants of these schemes. This direction seeks to improve adaptability for handling complex and irregular 

geometries, while maintaining the core properties of convergence, smoothness, and visual fidelity—ultimately expanding 

their utility in advanced geometric modeling. 
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1. Introduction 

Subdivision is a powerful algorithm used to generate curves and surfaces through the iterative refinement of control 

polygons and control meshes. The set of rules governing this refinement process is collectively known as a subdivision 

scheme [1, 2, 3, 4, 5]. These techniques are capable of producing highly smooth and accurate geometric representations 

by repeatedly applying simple topological or geometric operations. Beginning with an initial control polygon, subdivision 

methods introduce new control points at each iteration, gradually converging toward a smooth limit curve or surface. 

Subdivision schemes are widely used in CA, CAGD, CG, and signal analysis, due to their simplicity, efficiency, and 

visual fidelity. In recent years, the study and application of subdivision curves have become a significant research focus 

within CAGD and CG [6, 7, 8]. Early research primarily explored the relationships between control points and the 

resulting geometric shapes. Subdivision schemes can be broadly categorized into two types: interpolating and 
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approximating [9, 10]. If the resulting limit curve passes through the original control points, the scheme is classified as 

interpolating; if not, it is termed approximating. This work aims to construct high-quality limit curves that satisfy various 

geometric constraints, providing insight into the current state of subdivision research and its practical applications. 

In this paper, we apply three prominent subdivision schemes, which are CS [11, 12, 13], CSS [14, 15], and FPS [16, 17, 

18] schemes, to a variety of initial models. We begin by applying the CS scheme to shapes such as a jar, a mango, a pi, 

and a car. Then, the CSS scheme is applied to shapes like a rabbit, a five-fingered hand, and a pi. Finally, the FPS scheme 

is applied to “U”, mug, and pi shapes. The results illustrate the effectiveness of these schemes in producing smooth, 

visually pleasing curves suitable for advanced geometric modeling tasks. In summary, the main objectives of this research 

are as follows: 

(a) To study three subdivision curve schemes, which are the CS scheme, the CSS scheme, and the FPS scheme. 

(b) To construct the subdivision matrices for these schemes, with particular emphasis on their stationarity, meaning 

all refinement matrices remain consistent throughout the iterative process. 

(c) To perform numerical experiments demonstrating that the resulting limit curves exhibit superior geometric 

quality. 

(d) To emphasize the importance of the high-quality, smooth limit curves and continuity properties achieved by 

these schemes, which are vital for applications in CG and CAGD. 

(e) To analyze the continuity and convergence properties of the schemes by examining the eigenvalues and 

eigenvectors of the local subdivision matrices. 

 

2. Problem statements 

This section provides a brief overview of the CS scheme, CSS scheme, and FPS scheme. These three techniques are 

widely used in computer graphics to generate smooth curves from an initial set of points or a polyline. The algorithms 

work by iteratively inserting new points along the line, progressively refining it to produce a smoother curve according 

to the following steps: 

(a) Input: Polygon or Polyhedron meshes (Figure 2a). 

(b) Process: Repeatedly refine (subdivide) Geometry (Figure 2b). 

(c) Output:  Smooth curve or surface (Figure 2c). 

 
(a) Input 

 
(b) Process 

 
(c) Output 

Figure 2: The rules for subdivision 

3. Chaikin’s subdivision scheme 

This section provides a comprehensive examination of the CS scheme, focusing on its refinement rules, continuity 

analysis, and numerical simulations. The continuity of the scheme is rigorously analyzed using eigenvalue analysis of the 

associated local subdivision matrix. This analytical approach provides a solid theoretical foundation for evaluating the 

smoothness properties of the scheme, a crucial aspect for producing high-quality visual results in computer graphics and 

animation. 

3.1. The topological and geometric rules for the CS scheme 

The topological rule for the Chaikin curve subdivision scheme can be considered as an iterative procedure that begins 

with a set of input control points, as illustrated in Figure 3.1(a). At each iteration, the scheme upsamples the curve by 

inserting new control points between every pair of adjacent existing points. This process effectively doubles the number 

of control points—transforming an initial set of n control points into 2n, as shown in Figure 3.1(b). 
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(a) Initial control points 

 
(b) Topology rule 

 
(c) Geometric rule 

Figure 3.1: The rules for the Chaikin subdivision curve scheme 

The geometric rules of the Chaikin curve subdivision scheme can be formalized in a similar way. For level N  with k

control points ,N

MP   after subdivision, a k2 new control points 
1

2

+N

MP  and ,1

12

+

+

N

MP 𝑀 = 0,1,2,⋯ , 𝑘 − 1 are computed as 

follows which is shown in Figure 3.1(c): 
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Equation (3.1) can be written as the matrix representation is given below. 
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When we set the value of For 𝑀 = 0,1,2,⋯ , 𝑘 − 1, then equation (3.2)  becomes 
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                                                                (3.3) 

The Chaikin curve subdivision scheme is a simple and effective method for generating smooth curves. It is commonly 

used for line simplification and curve generation. To perform a mathematical proof of the continuity analysis for the 

Chaikin curve subdivision scheme, we will focus on 
0C  and 

1C continuity [13]. For 
0C continuity, we need to ensure 

that the curve is continuous at the junction points. By applying the subdivision scheme and comparing the newly computed 

points with the original points at the junction, we can verify that they match. This demonstrates that the curve remains 

continuous at these points [13]. For 
1C continuity, we need to examine the derivatives at the junction points. By setting 

N

M

N

M PP 1+=  and )()( 1

N

M

N

M P
dt

d
P

dt

d
+= for the original curve, we can verify that the derivatives are the same at the 

junction points, ensuring 
1C continuity [13]. 

3.2. Continuity analysis for the CS scheme 

Substituting M=0 in equation (3.1), we have 

              
1

0 0 1

3 1
;

4 4

N N NP P P+ = +  
1

1 0 1

1 3
;

4 4

N N NP P P+ = +                                                                                 (3.4) 

Now, we convert equation (3.4) into matrix form, and we obtain 
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 has an invariant neighborhood size of two. Eigenvalues 
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 This can be proved by induction on N. Since   is diagonal matrix and for any diagonal matrix 

2  means square of diagonal entries and so on. Therefore, 
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 Thus, the limit stencil is 

1 1
[ , ].
2 2

 This limit stencil can be used to find the limiting position of the control point 
0

0P  on the limit curve. Key 

observations for the CS scheme include: 

 

• The CS scheme is convergent because one of the eigenvalues is 1, and the other eigenvalues are less than 1. 

• The first row of 
1Q−

 is called a limit stencil, which is 
1 1

[ , ].
2 2

 

• If we apply a limit stencil on two consecutive points, we obtain a point on the limit curve. 

• We work at any level, and can snap the point to limit the curve can be used to estimate the distance to the 

limit curve 

• In this CS scheme, even/odd stencils are symmetric to each other. 

3.3. Numerical experiments for the CS scheme 

In this section, several numerical experiments are performed to demonstrate the effectiveness and quality of the shapes 
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generated using the Chaikin curve subdivision scheme. High-quality, smooth subdivision limit curves are illustrated with 

the aid of Python programming. To evaluate the quality of the resulting curves, we apply the Chaikin subdivision scheme 

to various real-world polygonal models. The experiments are conducted on four distinct shapes: a Jar, a Mongo, a Pi, and 

a Car. The Chaikin subdivision scheme is applied iteratively to the jar-shaped polygon. Subdivision results after the 1st, 

2nd, 10th, and 20th iterations are shown in Figure 3.2. The 20th subdivision clearly yields a smooth and high-quality limit 

curve. Similarly, the Mongo-shaped polygon undergoes Chaikin subdivision. The results of the 1st, 2nd, 10th, and 20th 

subdivisions are illustrated in Figure 3.3, with the final (20th) subdivision producing a visually smooth and refined curve. 

The same procedure is followed for the Pi-shaped polygon. As shown in Figure 3.4, progressive subdivision leads to 

increasingly smooth curves, culminating in a high-quality result at the 20th iteration. Lastly, the Car-shaped polygon is 

subdivided using the same technique. Figure 3.5 displays the results after the 1st, 2nd, 10th, and 20th subdivisions. The 

final curve after 20 iterations exhibits a highly smooth and visually appealing shape. These experimental results confirm 

that the Chaikin curve subdivision scheme effectively produces smooth and aesthetically pleasing curves from a variety 

of polygonal shapes. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3.2: Refinement of a Jar-shaped polygon using the Chaikin subdivision scheme is illustrated in the sequence of 

figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3.3: Refinement of a Mango-shaped polygon using the Chaikin subdivision scheme is illustrated in the sequence 

of figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 



Alam / GANIT  J.  Bangladesh Math. Soc. 45.1 (2025) 050–063                      55 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3.4: Refinement of a Pi-shaped polygon using the Chaikin subdivision scheme is illustrated in the sequence of 

figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 

Figure 3.5: Refinement of a Car-shaped polygon using the Chaikin subdivision scheme is illustrated in the sequence of 

figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 

4. Corner-Cutting subdivision scheme 

This section comprehensively examines the CCS scheme, covering its refinement rules, continuity evaluation, and 

numerical simulations. The scheme’s continuity is thoroughly analyzed through eigenvalue analysis of the associated 

local subdivision matrix. This method offers a rigorous theoretical basis for understanding the smoothness characteristics 

of the scheme, which are essential for producing high-quality visual outcomes in computer graphics and animation. 

4.1. The topological and geometric rules for the CSS scheme 

The topology and geometric rule of the corner cutting subdivision curve scheme is exactly as the Chaikin curve 

subdivision scheme. The corner-cutting subdivision curve scheme is the generalized form of the Chaikin curve 

subdivision scheme with the parameters 10  SR . If you set 
4

3
=R   and 

4

1
=S  of the equation (4.1), then the 

corner cutting subdivision curve scheme is the same as the Chaikin subdivision curve scheme. If 
4

3
R   and 

4

1
S  of 

the equation (4.1), then it is called the corner-cutting subdivision curve scheme.  The topological rule for the corner cutting 

subdivision scheme can be described as an iterative process that starts with a given set of input control points, as shown 

in Figure 4.1(a). In each iteration, new control points are inserted between every pair of adjacent existing points, 

effectively upsampling the curve. This results in the doubling of control points from n to 2n as depicted in Figure 4.1(b). 
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(a) Initial control points 

 
(b) Topology rule 

 
(c) Geometric rule 

Figure 4.1: The rules for Corner-cutting subdivision curve scheme 

The geometric rules of the Corner-cutting subdivision curve scheme can be formalized in the similar way. For level N  

with k control points ,N

MP  , after subdivision, a k2 new control points 
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MP  and ,1
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+
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MP 𝑀 = 0,1,2,⋯ , 𝑘 − 1  are 

computed is shown in the Figure 4.1(c), which as the following: 
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Equation (4.1) can be written as the matrix representation is given below. 
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When we set the value of For 𝑀 = 0,1,2,⋯ , 𝑘 − 1, then equation (4.2)  becomes 
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                                              (4.3) 

The Corner cutting curve subdivision scheme, also known as the corner cutting algorithm, is used for generating smoother 

curves from an initial set of control points. To conduct a mathematical proof of the continuity analysis for the Corner 

cutting curve subdivision scheme, we will examine 
0C  and 

1C continuity [15]. For 
0C  continuity, we need to 

demonstrate that the curve remains continuous at the junction points. By applying the subdivision scheme and examining 

the newly computed points at the junction, we can verify that they match. This ensures that the curve remains continuous 

at these points. For 
1C  continuity, we need to examine the derivatives at the junction points. Taking the derivative of the 

Corner cutting subdivision equations, we have:
N

M

N

M

N

M PPP
dt

d
−= +

+

1

1

2 )( . This derivative is constant and does not 

depend on t. Therefore, the derivative is the same for the junction points, ensuring 
1C  continuity [15]. This analysis 

demonstrates the 
0C  and 

1C continuity for the Corner cutting curve subdivision scheme. The simplicity of the algorithm 

ensures that the resulting curves remain continuous and smooth across the subdivision iterations, making it an effective 

method for generating smoother approximations of complex curves. 

4.2. Continuity analysis for the CCS scheme 

Substituting M=0 in equation (3.2), we have 
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subdivision matrix is defined below are 
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 This limit stencil can be used to find the limiting position of the control point 

0

0P  on the limit 

curve. 

4.3. Numerical experiments for the CSS scheme 

In this section, we present a series of numerical experiments to evaluate the effectiveness of the Chaikin curve subdivision 

scheme and the corner-cutting subdivision curve scheme in generating high-quality shapes. The results are visualized 

through smooth subdivision limit curves produced using Python programming. To illustrate the quality of the generated 

curves, we apply the corner-cutting subdivision scheme to several real-world polygonal models. The corner-cutting 

scheme is applied to a polygon resembling a rabbit. The results after the 1st, 2nd, 10th, and 20th subdivisions are shown 

in Figure 4.2. As evident from the figure, the 20th subdivision yields a highly smooth and visually refined limit curve. 

The same subdivision process is applied to a five-finger-shaped polygon. Figure 4.3 displays the results at various stages 

of subdivision (1st, 2nd, 10th, and 20th iterations). The final result exhibits a smooth and high-quality curve after 20 

subdivisions. Finally, the corner-cutting scheme is used on a Pi-shaped polygon. As illustrated in Figure 4.4, the 1st, 2nd, 

10th, and 20th subdivisions progressively smooth the shape, with the 20th subdivision producing an excellent quality 

limit curve. These experimental results demonstrate the capability of the corner-cutting subdivision scheme in generating 

smooth and visually appealing curves from a variety of polygonal input shapes.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure 4.2: Refinement of a Rabbit -shaped polygon using the corner-cutting subdivision scheme is illustrated in the 

sequence of figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, 

(d) after the 10th subdivision, and (e) after the 20th subdivision. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4.3: Refinement of a five finger-shaped polygon using the corner-cutting subdivision scheme is illustrated in the 

sequence of figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, 

(d) after the 10th subdivision, and (e) after the 20th subdivision. 

 

 
(a) 

 
(b) 

 
(c)  

(d) 
 

(e) 

Figure 4.4: Refinement of a Pi-shaped polygon using the corner-cutting subdivision scheme is illustrated in the sequence 

of figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 

5. FPS scheme 

This section comprehensively examines the FPS scheme, covering its refinement rules, continuity evaluation, and 

numerical simulations. The scheme’s continuity is thoroughly analyzed through eigenvalue analysis of the associated 

local subdivision matrix. This method offers a rigorous theoretical basis for understanding the smoothness characteristics 

of the scheme, which are essential for producing high-quality visual outcomes in computer graphics and animation. 

5.1. The topological and geometric rules for the FPS scheme 

The topological rule for the four-point subdivision scheme can be considered as an iterative process that begins with a set 

of input control points, as illustrated in Figure 5.1(a). At each iteration, the curve is upsampled by inserting a new control 

point between every pair of adjacent control points. This operation doubles the total number of control points from n to 

2n as depicted in Figure 5.1(b). 
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(a) Initial control points 

 
(b) Topology rule 

 
(c) Geometric rule 

Figure 5.1: The rules for the four-point subdivision curve scheme 

The geometric rules of the four-point subdivision curve scheme can be formalized similarly. For level N  with k control 

points ,N

MP  𝑀 = 0,1,2,⋯ , 𝑘 − 1, after subdivision, a k2 new control points 
1

2

+N

MP  and ,1

12

+

+

N

MP 𝑀 = 0,1,2,⋯ , 𝑘 − 1 

are computed as follows which is shown in Figure 5.1(c): 
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M

N
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 ),())(5.0( 211

1

12
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M
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+

+ +−++=                      (5.1) 

where W  is the tension parameter. If we set 
16

1
=W ,  then equation (5.1) becomes 

;1

2

N

M

N

M PP =+ 𝑃2𝑀+1
𝑁+1 =

9

16
(𝑃𝑀

𝑁 + 𝑃𝑀+1
𝑁 ) −

1

16
(𝑃𝑀−1

𝑁 + 𝑃𝑀+2
𝑁 ).            (5.2) 

Which represents the best continuity properties and positions 
1

2

+N

MP  on the Lagrange cubic through 
N

MP 1−
, 

N

MP , 
N

MP 1+
 

and .2

N

MP +
 The subdivided polygon is then considered as a new control polygon and the same methods implement to it 

and much more repeatedly. Repeating this sequence of polygons that converges to a limit curve. It is understood that the 

uniform four point subdivision curve scheme makes a 
1C  continuity limit curve for .

8

1
0 W  

5.2. Continuity analysis for the FPS scheme 

Substituting M=-1 in equation (5.2), we have 

              
1

2 1 ;N NP P+

− −=  
1

1 2 1 0 1

1 9 9 1
.

16 16 16 16

N N N N NP P P P P+

− − −= − + + −                                    (5.3) 

Substituting M=0 in equation (5.2), we have 

               
1

0 0 ;N NP P+ =  
1

1 1 0 1 2

1 9 9 1
.

16 16 16 16

N N N N NP P P P P+

− −= − + + −                                      (5.4) 

Substituting M=1 in equation (5.2), we have 

                
1

2 1 .N NP P+ =                                                                                                                            (5.5) 

Now, we convert equations (5.3), (5.4), and (5.5) into matrix form, and we obtain 

1
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16 16 16 16
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This implies 
1 ,N NP SP+ =  where 

1 1 2

2{ }N N

M MP P+ + −

==  and 
2

2{ }N N

M MP P −

==  are column matrices and S is the 

local subdivision matrix is defined below are  
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0 1 0 0 0

1 9 9 1
0

16 16 16 16

0 0 1 0 0

1 9 9 1
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16 16 16 16
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 − −
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has invariant neighborhood size of five. Eigenvalues i , where i=1, 2, 3, 4, 5 of the matrix S are 1 1 = , 2

1

2
 = , 

3

1

4
 = , 4

1

4
 =  and 5

1
.

8
 =  Eigenvectors corresponding to these eigenvalues are 1 (1,1,1,1,1) ,Tv =  

2

1 1
( 1, ,0, ,1) ,

2 2

Tv = − − 3

1 1
(1, ,0, ,1) ,

4 4

Tv =  4 (0,0,0,0,0)Tv =  and 5

1 1
( 1, ,0, ,1) ,

8 8

Tv = − −  respectively. 

Therefore, we can define diagonal matrix   and non-singular matrix Q  as  
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1
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1
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4
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  and 

1 1 1 0 1

1 1 1
1 0

2 4 8
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1 1 1
1 0

2 4 8
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 
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Similarly, for the CS and CSS scheme discussed in Sections 3 and 4, diagonalization of the local subdivision matrix S, 

we get 
1S Q Q−=   and  

1 1lim lim (lim ) .N N N

N N N
S Q Q Q Q − −

→ → →
 =  =   After this, consider the subdivision 

system, we get 
1 0(lim ) ) ,N

N
P Q Q P −

→
=   which is the complete procedure to find out the limit stencil that can be 

used to find the limiting position of the control point 
0

0P  on the limit curve. This approach is valid for all interpolating 

schemes. We establish the 
1C continuity of the FPS scheme using eigenvalue analysis of its local subdivision matrix S. 

The matrix yields eigenvalues 1 1 =  and 2

1

2
 =  , while all remaining eigenvalues satisfy 

1

2
i  . This confirms 

that the scheme preserves he 
1C continuity and generates visually smooth curves. 

5.3. Numerical experiments for the FPS scheme 

In this section, a series of numerical experiments is conducted to demonstrate the effectiveness of the FPS scheme in 

generating high-quality curves. Smooth limit curves are obtained and visualized using Python programming, highlighting 

the scheme's ability to produce visually appealing and refined shapes. To evaluate the performance of the FPS scheme, it 

is applied to several real-world polygonal models. The FPS scheme is applied to a “U”-shaped polygon. The results after 

the 1st, 2nd, 10th, and 20th subdivisions are illustrated in Figure 5.2. As observed, the 20th subdivision produces a highly 

smooth and visually pleasing limit curve. Similarly, the Mug-shaped polygon is subjected to the FPS scheme. Figure 5.3 

shows the curve evolution across the 1st, 2nd, 10th, and 20th subdivisions. The final result demonstrates a high-quality 

smooth curve after 20 iterations. Finally, the FPS scheme is applied to a Pi-shaped polygon. The outcomes of the 1st, 2nd, 

10th, and 20th subdivisions are presented in Figure 5.4. The 20th subdivision yields a smooth and refined limit curve, 

confirming the effectiveness of the scheme. These experimental results validate the capability of the Four-Point 



Alam / GANIT  J.  Bangladesh Math. Soc. 45.1 (2025) 050–063                      61 

Subdivision scheme in producing smooth, high-quality curves from various polygonal input shapes.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.2: Refinement of a U-shaped polygon using the four-point subdivision scheme is illustrated in the sequence of 

figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.3: Refinement of a Mug-shaped polygon using the four-point subdivision scheme is illustrated in the sequence 

of figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

(e) 

Figure 5.4: Refinement of a Pi-shaped polygon using the four-point subdivision scheme is illustrated in the sequence of 

figures from left to right: (a) the initial polygon, (b) after the 1st subdivision, (c) after the 2nd subdivision, (d) after the 

10th subdivision, and (e) after the 20th subdivision. 

 

6. Conclusion 

In this presentation, we have successfully studied three prominent subdivision curve schemes: the CS scheme, the CSS 

scheme, and the FPS scheme. Each of these methods has demonstrated the ability to generate high-quality, smooth limit 

curves suitable for geometric modeling. To validate their performance, we constructed initial control polygons for several 
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shapes, including the jar, mango, Pi, rabbit, five-finger, “U”, and mug shapes. The experiments were conducted as follows: 

• The CS scheme was applied to the jar, mango, Pi, and car shapes. The resulting curves after the 1st, 2nd, 10th, 

and 20th subdivisions are shown in Figures 3.2–3.5. 

• The CSS scheme was implemented for the rabbit, five-finger, and Pi shapes, with results illustrated in Figures 

4.2-4.4. 

• The FPS scheme was applied to the “U”, mug, and Pi shapes, with the corresponding results presented in Figures 

5.2–5.4. 

Through a comparative analysis of the resulting smooth limit curves, we observed that all three schemes effectively 

produce visually appealing and high-quality curves. These findings reaffirm the significance of subdivision techniques in 

geometric modeling, particularly in fields such as CG, CAGD, and CA. However, a number of challenges remain open 

for further research. There is a growing need to develop novel subdivision schemes to meet the demands of emerging 

practical applications. As future work, we aim to explore non-uniform subdivision schemes to achieve even higher-quality 

limit curves tailored to complex modeling scenarios. 
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