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ABSTRACT 

In this paper, a model for competition of two populations of microorganisms in a chemostat 
with monotone functional response is considered. We prove that the solutions are positive and 
bounded for all time. Stability of nonnegative equilibria and persistence of solutions are 
presented. Graphical results are also given to help illustrate the key points in the population 
dynamics of the model. 
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1. Introduction 

In mathematical biology, the chemostat is the best laboratory apparatus that can be used 
to study competition between different populations of microorganisms for a growth 
limiting nutrient and has the advantage that certain of the biological parameters presumed 
to influence competitive outcome can be controlled by the experimenter. In this paper, we 
consider the general form of the model done by Kapur [5] describing two populations of 
microorganisms competing for a single growth limiting nutrient in a chemostat. Rigorous 
mathematical analysis of the chemostat model for an arbitrary number of competitors 
with Michaelis-Menten type functional response has been carried out by Hsu [3] and  
Hsu, Hubbell, and Waltman [4]. A model of competition with discrete delay has been 
carried out by Wolkowicz and Xia [7].  The mathematical results in all of these papers 
indicate that competitive exclusion holds. A ‘competitive exclusion principle’, stating 
that in the long run only one population survives while the others die out. We assume that 
there is no direct interaction in each of the species. Our model consists of a set of three 
non-linear differential equations and predicts that at most one population survives and 
that the population that survives can be predicted based on the relative values of the 
break-even concentrations, parameters that can be determined by growing each 
population alone in the chemostat and measuring the steady state concentration of the 
nutrient.  

2. Model equations  

We shall consider the following model of two populations of microorganisms competing 
exploitatively for a single, essential, nonreproducing growth limiting nutrient in a well-
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stirred chemostat: 
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In system (1), )(ts  denotes the concentration of nutrient and )( tpi  denotes the 

concentration of the ith population of microorganism in the chemostat at time t ; 
i

i sf
γ

)(  

represents the nutrient uptake function for the ith population; we assume that )(sf i  
represents the per-capita growth rate of the ith population as a function of nutrient 
concentration and so iγ  is a growth yield constant; 0s  and D  are positive constants and 
denote respectively the concentration of the growth limiting nutrient in the fresh 
inflowing medium and the flow rate of the chemostat. It is assumed that the individual 
death rate of any species is insignificant, compared to the flow rate, and hence can be 
ignored. 

We make the assumptions below on the response functions  1,2)(i , =if  in model (1): 

 ++ → RRfi :  is continuously differentiable and 0)0( =if ;         (2a) 

 if  is monotonically increasing;             (2b) 

 there exists a unique (possibly extended) real number ∞<< iλ0  such that  
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Here, the value iλ  represents the break-even concentration of the nutrient for the ith 
population and it has played an important role in determining competitive ability. 

Now it is convenient to pass to non-dimensional variables 0: s
ss =  and ( )0: s

p
i i

ip γ= . 

After dropping the bars and writing )(sf i  instead of )( 0ssf i , we obtain  
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It is observed that the ‘new’ )(sf i  also satisfy the properties (2). 

Note that in the definition of (1), we assume 00 >ip  for 2,1=i . This involves no loss 
of generality since if 00 =ip  for 2,1=i , then 0)( =tpi  for all 0≥t  and that 
population can be eliminated from consideration. 

 

3. Preliminary results 

We first observe that the right hand side of the system (3) is a smooth function of the 
variable ( )21 ,, pps . So local existence and uniqueness properties hold in the region 

( ){ }2,1,0,, 3
21 =>∈ + ipRpps i . Now we shall prove that (3) has positive and bounded 

solutions, which is a prerequisite for any model of the chemostat. 

 

Lemma 3.1: Let ),( ∞−∞∈a  and Raf →∞],[:  be a differentiable function. If 
)(lim tft ∞→  exists (finite) and the derivative function )(tf ′  is uniformly continuous on 

),( ∞a , then 0)(lim =′∞→ tft . 

The proof of this lemma due to Barbalat can be found in Gopalsamy [2]. 

Lemma 3.2: All the solutions )2,1(),(),( =itpts i  of system (3) are positive and 
bounded for 0>t . Moreover, if 1<iλ , )2,1( =i , then 1)( <ts  for all sufficiently large 
t . 

Proof: Suppose it is not true that 0)( >ts  for all 0>t . Let 
}0)(  &  0:min{1 =>= tsttt . Then ),0[    ,0)( 1ttts ∈∀> . But from the first 

equation of (3), we have 0)( 1 >=′ Dts . That is, 0)( >′ ts  on a neighborhood of 1t . 
This implies there exists 0>ε  such that )(ts  is increasing on ),( 11 εε +− tt . 
Therefore, we have )()2/(0 11 tsts <−< ε , a contradiction. Thus 0)( >ts  for all 

0>t . Again, from the second equation of (3), we have 

 2,1),()))((()( =+−=′ itptsfDtp iii . This gives 

 ])))d(s((exp[)(
 t

0 0 ∫ +−= θθiii fDptp , which shows that 0)( >tpi  for all 0≥t . 

Therefore, the system (3) with positive initial conditions at 0=t  produces positive 
solution for 0>t .  

We set  
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where 2,1),(),( =itpts i  are arbitrary positive solutions of (3). Then it follows from (3) 
that  

 )()( tDvtv −=′  for all 0≥t  

and consequently, 
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where 0)( →tε  exponentially as ∞→t . 

Since all solutions are positive for all 0>t , it follows from (4) that all solutions are 
bounded. 

We now prove that under the condition 1<iλ , 1)( <ts  for all sufficiently large t . First 
note that if 1)( =ts  for some 0≥t , then 0)( <′ ts  and so if 1)( ≤Ts  for some 0≥T  
then 1)( <ts  for all Tt > . 

Suppose that 1)( >ts  for all large t . Then 0))(1()( <−≤′ Dtsts  and so 

ists λ>≥↓ 1)( *  for some *s  as ∞→t . Since )(ts  is bounded below and satisfies 

(3), we must have 1* =s . Thus its λ>)(  for all large t . Then (3) and (2) imply that  

 0)()))((()( >+−=′ tptsfDtp iii              (5) 

for all large t . Therefore 0)( * >↑ ii ptp  exists as ∞→t . From (5), we see that )(tpi′  
is uniformly continuous on ),0[ ∞ , since )(and)(),(),( tptstpts ii ′′  are all bounded for 
all 0>t . Hence by Lemma 3.1, 0)(lim =′∞→ tpit . Since it ts λ>=∞→ 1)(lim , it 

follows that 0)(lim =∞→ tpit , by (5). But this contradicts 0)( * >↑ ii ptp  as ∞→t . 
This completes the proof.   

Theorem 3.3: For every positive solution of (3), if 1≥iλ , )2,1( =i , then 
0)(lim =∞→ tpit . 

Proof: By an argument similar to the one given in Lemma 3.2, it follows that either 
1)( ↓ts  as ∞→t  or 1)( <ts  for all sufficiently large t . Suppose that 1)( ↓ts  as 

∞→t . Since )(),( tpts i  and their derivatives )(,)( tpts i′′  are bounded, from (3), 
)(ts′  is uniformly continuous. By Lemma 3.1, 0)(lim =′∞→ tst  and consequently,  
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This leads to 0)(lim =∞→ tpit , as desired. 

Suppose now that its λ≤< 1)(  for all large t . Then (2) gives 

 0)()))((()( ≤+−=′ tptsfDtp iii              (6) 

for all large t  and so 0)( * ≥↓ ii ptp  as ∞→t . As in Lemma 3.2, it can be shown that 
0)(lim =′∞→ tpit  and by (6), it then follows that 

 0)()))(((lim =+−∞→ tptsfD iit              (7) 

If there is a sequence { } ∞↑mt  such that 0)(lim >∞→ mim tp , then (7) forces 
Dtsf mim =∞→ ))((lim , leading to imm ts λ=∞→ )(lim . But 1)( <mts  for large m  and 

1≥iλ . This is a contradiction if 1>iλ . When 1=iλ , a contradiction can also be 
derived by using (4) and the fact that 1)(lim ==∞→ imm ts λ . This shows that 

0)(lim =∞→ tpit  and this completes the proof. 

  

4. Equilibria 

System (3) has the following equilibria 

)0,0,1(0E , )0,1,( 111 λλ −E , )1,0,( 222 λλ −E  

where the break-even concentration iλ ,  )2,1( =i  is defined as the unique solution of 

 0)( =− Dsfi  (if it exists) 

and an interior equilibrium )ˆ,ˆ,ˆ(ˆ
21 ppsE  

where ŝ  is defined as the unique solution of Dsfsf == )()( 21  and 21 ˆ&ˆ pp  satisfy 
the equation spp ˆ121 −=+  with )1,0(ˆ ∈s . 

The washout equilibrium point 0E  always exists. 

The necessary and sufficient condition for the existence of iE  is 1<iλ , 2,1=i . 

Finally, it can be easily shown that Ê  exists and is unique if 0ˆ >ip , 2,1=i . 
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5. Stability analysis 

Here we shall investigate the local stability of the equilibrium points EEEE ˆand,, 210  
by finding the eigenvalues of the associated Jacobian matrices. 

System (3) is persistent, i.e., all populations coexist at a nonzero level if all the boundary 
equilibria are repellers. 

The Jacobian matrix of (3) takes the form 
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5.1. Local stability and persistence 

Now we are positive to prove the following result. 

Theorem 5.1: 

If 2,1   ,1 => iiλ                 (9) 

Then 0E  is locally asymptotically stable (LAS) and the system (3) is not persistent. 

If  10 21 <<< λλ                (10) 

Then 1E  is LAS in the s - 1p  plane and the system (3) is not persistent. 

 If 10 12 <<< λλ               (11) 

Then 2E  is LAS in the s - 1p  plane and the system (3) is not persistent. 

If 2,1,0ˆ => ipi                  (12) 

Then Ê  is LAS in the positive octant. 

Proof: For 0E , the eigenvalues of the Jacobian matrix (8) are D− , and 
2,1,)1( =− iDfi . By Eq. (9), they are all negative. So 0E  is LAS and the system (3) 

is not persistent. 

For 1E , the eigenvalues of the Jacobian (8) are   

0<− D , 0)( 12 <− Dsf  and   0))1)(( 111 <−′− ssf  by Eq. (10) 

Therefore 1E  is LAS in the 1ps −  plane and the system (3) is not persistent. 

For 2E , the eigenvalues of (8) are  
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0<− D , 0)( 21 <− Dsf  and 0))1)(( 222 <−′− ssf  by Eq. (11) 

Therefore 2E  is LAS in the 2ps −  plane and the system (3) is not persistent. 

For Ê , the eigenvalues of the Jacobian (8) are  

0 , 0<− D  and 0)()( 2211 <′−′− psfpsf  by Eq. (12) 

Thus Ê  is LAS and the system (3) locally persistent. Since one of the eigenvalues is zero 
and other two are negative so if the position of interior equilibrium point 3E  is disturbed, 
it returns to another position of boundary equilibrium point.  

 

5.2. Global stability results 

In this section, we shall show that 0E  is globally asymptotically stable if only 0E  exists. 
The proof is very straightforward. If 0E  and 1E  (or 2E ) exist, then 1E  (or 2E ) is 
globally asymptotically stable. The proofs involve the construction of a Lyapunov 
function and the application of the Lyapunov-LaSalle theorem.  

The following theorem shows the extinction of both populations, i.e., 0E  is a global 
attractor. 

Theorem 5.2: If (9) holds, then all solutions of (3) satisfy 
)0,0,1())(),(),((lim 21 =

∞→
tptpts

t
. 

Proof: It is a direct consequence of Theorem 3.3 and formula (4).   

 

Our next theorem shows that competitive exclusion holds and only one competitor 
survives. 

Theorem 5.3: If (10) holds, then all solutions of (3) satisfy  
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on the set { }2,1,0),1,0(:),,( 21 =>∈=Ψ ipspps
i

, where 1
*
1 1 λ−=p . Then the 

time derivative of V  along solutions of the differential equation is  
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First note that the first term in V&  is always nonpositive for 10 << s  and equals 0  for 
)1,0[∈s  if and only if 1λ=s  or 01 =p . 

Define  ( )
)1(

)1)()()(()()( 112
2 sD

DsfsfDsfsh
−

−−
−−=

λ
α . 

If ],[ 21 λλ∈s , then 0)( <sh  for any choice of 0>α . Therefore, by definition of α  
satisfying (13), 0)( <sh  for every )1,0(∈s . By Lemma 3.2 every bounded solution of 
(3) is contained in Ψ , and hence by LaSalle extension theorem [6] every solution of (3) 
approaches the set Μ , the largest invariant subset of { }0:),,( 21 =Ψ∈=Φ Vpps & . Φ  
is made up of points of the following forms 

 )0,0,(s , where ]1,0[∈s  

 )0,,( 11 pλ , where ),0[ ∞∈ip . 

Since V  is bounded above, any point of the form )0,0,(s  can not be in the ω -limit set 
Ω  of any solution initiating in the interior of 3

+R . The unique point of the form 
Μp ∈)0,,( 11λ  implies that 1)( λ=ts  and 0)(2 =tp , which in turn leads to 

111 )()1()(0 pfDts λλ −−=′=  and hence 11 1 λ−=p . Therefore }{ 1EM = . This 
completes the proof.    

Theorem 5.4: If (11) holds, then all solutions of (3) satisfy  

)1,0,())(),(),((lim 2221 λλ −=
∞→

tptpts
t

. 

The proof follows by similar argument in Theorem 5.3. 

 

6. Discussion 

In this paper, we considered a model of exploitative competition for a single, essential, 
nonreproducing growth limiting nutrient. Kapur [5] carried out the equilibrium and 
extinction criteria for the competing populations in the case that the response functions 
are modeled by Michaelis-Menten dynamics. We assumed that the functional response is 
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general monotone function. For this response function we proved that the outcome of 
competition for nutrient depends on the relative values of the break-even concentration. It 
is known (see Hsu [3] and  Hsu, Hubbell, and Waltman [4]) that in chemostat models all 
species concentration eventually approach equilibrium concentration and at most one 
population avoids extinction, that is the competitive exclusion principle (see Armstrong 
and McGehee [1]) occurs. We found that if the break-even concentration iλ  of the 
population ip  is larger than one then that population dies out whether or not there is 
other competitor. If  0E  is the only equilibrium point, we showed that 0E  is a global 
attractor (this happens if 1>iλ ). When 0E , 1E  or 2E  are the equilibrium points, we 
found that 1E  is LAS (for 10 21 <<< λλ ). By constructing a Lyapunov function, we 
were able to show that 1E  is globally asymptotically stable, i.e., the population that 

survives is the one with the lowest break-even concentration. We also showed that if  Ê  
exists then it is asymptotically stable. 

Finally, for the Holling type III 
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(multiple saturation) functional response (Fig-1), initial values, and parameters, 
numerical simulations show that solutions are converging to the positive equilibrium in 
the model (Fig-2). However, if the two populations only compete indirectly for the 
nutrient and do not compete directly each other, then only one population can survive 
(Fig-3, 4). This is similar to the phenomenon observed in chemostat models (see Hsu, 
Hubbell, and Waltman [4]). Both populations can also die out (Fig-5). 
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    Fig-1: Graphical depiction of response functions if with 

10.,12.,94.2,15.,20.,5.3 222111 ====== cbmcbm . 
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Fig-2: 1.2=D , 

)7,.4,.5(.))0(2),0(1),0(( =pps , 

 and all other parameters are the same as in Fig-1. 
The solution trajectories tend to positive equilibrium 

Ê  and shows that both populations coexist.  

Fig-3: 2.2=D , 

)7,.4,.5(.))0(2),0(1),0(( =pps , 

 and all other parameters are the same as in Fig-1. 
The solution trajectories tend to 1E  and shows that 

first population avoids extinction.  
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Fig-4: ,94.22,18.1,20.1,5.31 ==== mcbm  

0.2,11.2,13.2 === Dcb , ))0(2),0(1),0(( pps  

)7,.4,.5(.=  The solution trajectories tend to 2E  and 

shows that second population avoids extinction. 

Fig-5: 5.2=D  and all other parameters are the 
same as in Fig-4. The solution trajectories tend 
to 0E  and shows that both populations extinct.
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