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ABSTRACT

In this paper hyperbolic interpolation has been used instead of Lagrange interpolation in
solving an eigenvalue problem by using finite element method. The result shows that there is
a good agreement between the eigenvalues obtained by using hyperbolic interpolation and the
exact eigenvalues.
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1. Introduction

The method of separation of variables gives rise to eigenvalue problem from boundary
value problem. The different types of eigenvalue problems [1-3] can also be solved by
finite element method. In general Lagrange interpolation is used as an approximation of
the solution of these types of problems. Galerkin Weighted Residual procedure is used to
deduce the finite element model of eigenvalue problem. In this study hyperbolic shape
functions have been used to compare the results with exact values and the results
obtained by Lagrange’s interpolation. For this first we derive the hyperbolic shape
functions of ordern and particularly discuss linear, quadratic and cubic hyperbolic
functions in the subsequent sections.

The steady state form of the Schréodinger equation [1] for the electron in the hydrogen
atom moving in the Coulomb potential of the proton

—h? e’
Vzl//n(l")— l//n(l"):Ean(V) (1)
2m r

v, (r) is the wave function of the electron in the stationary state with energy E, .
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The equation (1) is made dimensionless by rescaling the radial co ordinates 7 by a, (the
Bohr radius) and dividing the equation by the energy unit of a Rydberg
~h’ e’
R, (=13.6eV) where R, = T = 2)
2ma,” 2a,

For convenience the same symbol 7 is retained for the radial coordinates after rescaling
and the symbol A is used for the reduced energy. For spherically symmetric state the
radial part of the equation (1) becomes:

d> 2d 2
— == =1 3)
( dr*  rdr r}”(r) vr)
The boundary conditionis w(r) > 0 as r — o @))

Analytical solution of this equation [5],
3 !
/=1 _ 1
w(r)= 2 Ll)z exp) — 2r 5 27 | where A =— (%)
na, 2n{(n + l)!} na, |\ na, na, n

This eigenvalue equation (3) was solved by Ram Mohan et al. [4] using finite element
method with Lagrange interpolation. In this study, finite element method has been
modified with hyperbolic interpolation and implemented to solve the eigenvalue problem.
Linear, quadratic and cubic elements have been used to calculate the eigenvalues using
finite element method with the hyperbolic interpolation. The results obtained by us for
linear, quadratic and cubic elements using hyperbolic interpolations are compared with
the analytical results. Ram Mohan et al. [4] compared the lowest four eigenvalues with
exact solutions. Eigenvalues obtained by finite element method using hyperbolic
interpolation shape functions for different ranges are in good agreement with the exact
results.
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Figure 1: Local and global nodal point numbering for linear element

For quadratic element with three points (xl, yl),(xz, yz) and (x3, y3)the hyperbolic
interpolationis y=H,y, +H,y, (6)
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where

_ sinh(x—x, )sinh (x—x,) sinh (x—x, )sinh (x—x, )

(
- H, = ,
' sinh(x, —x;,)sinh(x, —x,) * sinh(x, —x, )sinh (x, - x; )

)
sinh (x—x,)sinh (x—x,)
X

113

(7
a sinh(x3 —X, )sinh(x3 - 2)
Putting x=2 ;’Q 422 ;xl £ where y, = YL*Y3 ; X3 (8)
sinh(xzz_x1 (fj sinh[xzz_x1 (§ - l)j
= . ©
sinh(xzle) sinh(xy —x7)
sinh (xz_xl@ + g)j sinh(xz — M- 1)J
H, = : 2 (10)
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= 2 2 (11)
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Figure 2: Local and global nodal point numbering for quadratic element

[i ] are the element number

(i ) are the node number of the element
i are the global node number of the element

Element [1] is related with global node no.1 and 2.
Element [2] is related with the global node no. 2 and 3.
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For cubic element with four points (x,,,),(x,,,),(x;,v,) and (x,,,)

sinh(x — x, )sinh(x — x, )sinh(x — x, )

= 12
sinh(x, — x, )sinh(x, — x; )sinh(x, - x, ) (12
H, - ‘sinh(x - X, )s‘inh(x —x, )sinh(x —x, ) (13)
sinh(x, — x, )sinh(x, — x, )sinh(x, - x,)
sinh(x — x, )sinh(x — x, )sinh(x — x,, )
Hy=— - (14)
sinh(x, — x, )sinh(x; — x, )sinh(x; — x,)
sinh(x — x, )sinh(x — x, )sinh(x — x;)
H4 = ] B (15)
sinh(x, — x, )sinh(x, — x, )sinh(x, — x;)
On substitution
+ - 2x, + +2
:X12x4+x42x1§ and XZZM’ x}:% (16)

sinh(x“z_xlj@+ 5) sinh{x“ 4 (—;+ éj}smh(“ ;xl j(—1+ ¢) a7

sinh[xl — ]sinhi(xl —x, )sinh(x, —x, )
. sinh{(x x j(l+§)}smh{( 6 j(g 1)s1nh{( =% ](5—1)}} "
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O e e [
sinh (x, — x, )sinh {3(x4 - )} sinh {M;XI}

H]Z

(19)

Hs =

Figure 3 figure 4 and figure 5, shows the comparison between the Lagrange interpolation
shape functions and hyperbolic interpolation shape functions for the range 0 to 1. Shape
functions for linear element are shown in figure 1; where 4,4, denote the hyperbolic
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shape functions and /,/,
respectively.
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Figure 3: Linear Lagrange and corresponding hyperbolic interpolation shape functions

—— hl(x)
—— hE(x) 1
—— hI(x)
——- 1l(x) n.#
——- 1E(x) -
—— - 12(x) i
0.4
3
0.z
1

Figure 4: Quadratic Lagrange and corresponding hyperbolic interpolation shape functions;
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Figure 5: cubic Lagrange and corresponding hyperbolic interpolation shape functions
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denote the shape functions for Lagrange interpolations
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3. Formulation of Eigenvalue Problem

Consider a general class of one dimensional eigenproblems governed by the following
second order ordinary differential equation

—i(p(x)d—U)+q(x)U=ﬂ,r(x)U, a<x<b with b.c U(b):O (21)
dx dx

Let U= z a,H,; (x) be the trial approximation for a typical element e .where
=1

a are constants to be determined. H | (x) are the hyperbolic basis function’s described

in the previous section and nis the degrees of freedom. Then the Galerkin residual
equation for the element e is

J'— LZC (p(x)ilf] + q(x)l? -1 r(x)ﬁ}Hi(x)dx =0 i=123,...... 7 (22)

e

Now integrating by parts and with minor simplifications we have

i{f i) ) 2 (x)} @+ i[f () (x)} 0y i{m (Wl (@} oo0 @)

Ale dx dx = =P
i=1273,.....,n which can be written in conventional matrix form
[k Jlat-2[Mm]{a} = {o} (24)
where
) dH .
Ky :jdeI(X)p(x) d](X)dx+IH,-(x)q(x)H]-(x)dx’ M = J'Hi(x)r(x)Hj(x)dx (25)
’ e X X e ’ e

where K and M represent the stiffness matrix and the mass matrix, respectively.

3.1 Numerical example: Ram-Mohan et al. [4] solved the eigenvalue problem

_ Li(ﬁ d_Uj _2U - AU withbe. U(20)=0 (26)
x2 dx dx ) x

with domain having limit 0 to 20 taking 20 linear elements.

Multiplying the equation by the weight function v and integrating from 0 to 20 we obtain
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20
.[ {—i[xz d—UJ —2xU} vdx = jzo/lszvdx (27)
dx dx 0
and then
20 20
I(xz ﬂd—U—2vaJa’x= J.ixszdx (28)
0 dx dx 0

Considering the linear element from x=x, to x=x,writing U =HU;+H,U, (29)
and using the Galerkin approach with v= H, and v= H, , the elements of the stiffness
“( dH, dH

(xZ i J

matrix are obtained as k, = J‘

—ZXH»H» dx Wlth iaj:132 (30)
dx dx Y

X,

Using the substitution the same substitution as before

h
dx = Edf where x, —x, = h =length of an element (31)

1 _ 2 dH. JE dH -
kijzj[xﬁxuxz xlgj dH, d¢ /df_z[w+ng,wﬁd§ (32)
AU 2 2 dé dx dE dx 2 2 79

For the first element

The elements of the mass matrix are

M, = J-szl.dex (33)
:Jl‘ x1+x2+x2 _xléz 2HHﬁd§ (34)
L2 2 2

The global stiffness equation KU = A M U for two linear elements.

For 20 linear elements global stiffness matrix K and the global mass matrix M will be a
21x21 matrix.

The matrix eigenvalue equation is KU =AM U . The equation is solved by Jacobi’s
method, to find the eigenvalues Ay, A,,...... 5 A20.

Eigenvalue problem in equation (3) is solved using standard Jacobi method. Jacobi
method is preferable when all the eigenvalues and eigenvectors are required. This method
calculates negative, zero, or positive eigenvalues. All integrations are performed using 5-
point Gauss quadrature. Numerical computations are performed using FORTRAN
programming languages.
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4. Result and Discussion

Relative errors have been shown between Lagrange’s and exact eigenvalues as well
hyperbolic and exact eigenvalues in Table I, Table II and Table III. In Table I the
eigenvalues calculated using 20 elements show discrepancy with the analytical results.
Again in Table I the eigenvalues calculated using 20 elements for the range 20 using
hyperbolic interpolation gives smaller percentage error than those of Lagrange’s
interpolation for the same. Also it has been observed that as the number of elements and
the ranges increased, the percentage error also increased in case of hyperbolic
interpolation. To improve the accuracy of the results the degree of interpolation function
has been increased. Eigenvalues obtained from Table II shows less discrepancy.

From table III it is seen that, smaller number of elements are not in good agreement. It
has also been observed that from percentage relative error in Table III is smaller for both
Lagrannge and hyperbolic interpolation than those of Table I and Table II. Thus Table III
agrees well with exact eigenvalues than those of Table I and Table II.

We conclude that the eigenvalues illustrated in Table III are more compatible to those
computed in Table II and Table 1.

Table I. Eigenvalues obtained by using linear Lagrange and

Hyperbolic interpolation for different ranges

Quantum| Energy Energy Range | Number Exact Relative | Relative
Number | (Rydberg) (Rydberg) of eigenvalues| Error Error
n Lagrange Hyperbolic elements Between | Between
interpolation | Interpolation Exact & | Exact &
Lagrange | Hyperbolic
% %

1 -0.941709 -1.003040 20 20 -1.000000 | 5.8290 0.3040
2 -0.238261 -0.250049 -0.250000 | 4.6956 0.0196
3 -0.092925 -0.099322 -0.111111 16.367 10.610
4 0.047545 0.034866 -0.062500 | 176.07 155.78
1 -0.999992 -0.999109 50 50 -1.000000 | 0.0010 0.0891
2 -0.249999 -0.249078 -0.250000 | 0.0004 0.3688
3 -0.111111 -0.110304 -0.111111 | 0.0000 0.7000
4 -0.062409 -0.061600 -0.062500 | 0.1456 1.4400
1 -0.999999 -1.000053 50 100 -1.000000 | 0.0001 0.0053
2 -0.250000 -0.249999 -0.250000 | 0.0000 0.0000
3 -0.111111 -0.111110 -0.111111 | 0.0000 0.0000
4 -0.062408 -0.062399 -0.062500 | 0.1472 0.1616
1 -0.999993 -0.997429 100 100 -1.000000 | 0.0010 0.2571
2 -0.249999 -0.249833 -0.250000 | 0.0001 0.0668
3 -0.111111 -0.111065 -0.111111 | 0.00000 0.0414
4 -0.062500 -0.062480 -0.062500 | 0.0000 0.0320
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Table II. Eigenvalues obtained by using Lagrange and Hyperbolic interpolation

using quadratic element for different domain.

Quantum | Energy Energy Range | Number | Exact Relative | Relative
Number | (Rydberg) (Rydberg) of eigenvalues| Error Error
n Lagrange Hyperbolic elements Between | Between
Interpolation | Interpolation Exact & | Exact &
Lagrange | Hyperbo
% lic
%
1 -0.9989508 | -1.0196911 20 20 | -1.000000 | 0.1049 | 1.9690
2 -0.2498442 | -0.2506893 -0.250000 | 0.0623 0.2757
3 -0.0997724 | -0.0988970 -0.111111 | 10.204 | 10.990
4 0.033427 0.0366957 -0.062500 | 153.48 | 158.71
5 0.225756 0.2330899 -0.040000 | 664.39 | 682.72
1 -0.998950 -1.019691 50 50 | -1.000000 | 0.1050 | 1.9690
2 -0.249870 -0.250716 -0.250000 | 0.0520 | 0.2864
3 -0.111069 -0.110605 -0.111111 | 0.0378 | 0.4554
4 -0.062389 -0.061881 -0.062500 | 0.1776 | 0.9904
5 -0.035713 -0.034987 -0.040000 | 10.717 | 12.532
1 -0.999920 -1.001783 50 100 | -1.000000 0.008 | 0.1783
2 -0.249991 -0.250069 -0.250000 | 0.0036 | 0.0276
3 -0.111108 -0.111078 -0.111111 | 0.0027 | 0.0297
4 -0.062407 -0.062371 -0.062500 | 0.1488 | 0.20064
5 -0.035728 -0.035677 -0.040000 10.68 10.807
1 -0.099895 -1.019691 100 100 | -1.000000 | 0.1050 | 1.9690
2 -0.249870 -0.250716 -0.250000 | 0.0520 | 0.2864
3 -0.111069 -0.110605 -0.111111 | 0.0378 | 0.4554
4 -0.062481 -0.061985 -0.062500 | 0.0032 | 0.8240
5 -0.039990 -0.039584 -0.040000 | 0.0250 | 1.0400
1 -0.999919 -1.001783 100 200 | 1.000000 | 0.00811 | 0.1783
2 -0.249990 -0.250069 -0.250000 | 0.0040 | 0.0276
3 -0.111108 -0.111078 -0.111111 | 0.0018 | 0.0297
4 -0.062498 -0.062464 -0.062500 | 0.0032 | 0.0576
5 -0.039999 -0.039972 -0.040000 | 0.0025 | 0.0700
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Table III. Eigenvalues obtained by using Lagrange and Hyperbolic interpolation

using cubic element for different domain.

Quantum | Energy Energy Range | Number | Exact Relative | Relative
Number | (Rydberg) (Rydberg) of eigenvalues| Error Error
n Lagrange Hyperbolic elements Between | Between
Interpolation | Interpolation Exact & | Exact &
Lagrange| Hyperbolic
% %
1 -0.999992 -1.003040 20 20 -1.000000 | 0.0008 | 0.3040
2 -0.249973 -0.250049 -0.250000 | 0.0108 | 0.0196
3 -0.099836 -0.099322 -0.111111 | 10.14 10.610
4 0.033427 0.034866 -0.062500 | 153.48 155.78
5 0.225756 0.228553 -0.040000 | 425.20 | 671.38
1 -0.999992 -0.999109 50 50 -1.000000 | 0.0008 | 0.0891
2 -0.249999 -0.249078 -0.250000 | 0.0001 0.0922
3 -0.111111 -0.110304 -0.111111 | 0.0000 | 0.7260
4 -0.062409 -0.061600 -0.062500 | 0.1456 | 0.3688
5 -0.035730 -0.034951 -0.040000 | 10.675 12.622
1 -0.999999 -1.000053 50 100 -1.000000 | 0.0001 0.0053
2 -0.250000 -0.249999 -0.250000 | 0.00000 | 0.0004
3 -0.111111 -0.111110 -0.111111 | .00000. | 0.0009
4 -0.062408 -0.062399 -0.062500 | 1472 0.1616
5 -0.035730 -0.035727 -0.040000 | 10.751 10.680
1 -0.999993 -0.997429 100 100 -1.000000 | 0.0007 | 0.2571
2 -0.249999 -0.249833 -0.250000 | 0.0004 | 0.0668
3 -0.111111 -0.111065 -0.111111 | 0.0000 | 0.0414
4 -0.062500 -0.062480 -0.062500 | 0.0000 | 0.0320
5 -0.039999 -0.039990 -0.040000 | 0.0250 | 0.0250
Conclusion

This paper has presented the finite element method with hyperbolic interpolation shape
functions and eigenvalues have been calculated by using this modified finite element
method with hyperbolic interpolation for linear, quadratic and cubic elements. Results
obtained using these methods are compared with the analytically obtained results. It is
clear from the tables that eigenvalues obtained by using Lagrange’s interpolation gives
better accuracy and it is widely used although the new approach of using hyperbolic
interpolation can be compatible to the use of Lagrenge’s shape functions.

We conclude from this paper that results and the percentage error from hyperbolic
interpolation is thus closer to those obtained by Lagrange’s interpolations shape
functions. The fact that hyperbolic interpolation shape functions can provide better results
in the solution of an eigenvalue problem has not been appreciated earlier and we expect
to see a greater use of the finite element method in the solution of physical problems with
modified interpolation functions in the future.
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